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Preface 

This sixth edition of Biostatistics: A Foundation for Analysis in the Health Sciences should 
appeal to the same audience for which the first five editions were written: advanced 
undergraduate students, beginning graduate students, and health professionals in 
need of a reference book on statistical methodology. 

Like its predecessors, this edition requires few mathematical prerequisites. 
Only reasonable proficiency in algebra is required for an understanding of the 
concepts and methods underlying the calculations. The emphasis continues to be 
on an intuitive understanding of principles rather than an understanding based on 
mathematical sophistication. 

Since the publication of the first edition, the widespread use of microcomput-
ers has had a tremendous impact on the teaching of statistics. It is the rare student 
who does not now own or have access to a personal computer. Now, more than 
ever, the statistics instructor can concentrate on teaching concepts and principles 
and devote less class time to tracking down computational errors made by students. 
Relieved of the tedium and labor associated with lengthy hand calculations, today's 
students have more reason than ever before to view their statistics course as an 
enjoyable experience. 

Consequently this edition contains a greater emphasis on computer applica-
tions. For most of the statistical techniques covered in this edition, we give the 
MINITAB commands by which they can be applied. (MINITAB is a registered 
trademark. Further information may be obtained from MINITAB Data Analysis 
Software, 3081 Enterprise Drive, State College, PA 16801; telephone: 814/238-3280; 
telex: 881612.) We also present printouts of the results obtained from the MINITAB 
calculations. The appendix contains some of the more useful basic MINITAB 
commands. Included are commands for entering, editing, and sorting data. 

We are also, for the first time, including in this edition of Biostatistics computer 
printouts obtained by use of the SAS®  software package. We hope that this new 
feature will be helpful to those students who use SAS®  in conjunction with their 
statistics course. 

In response to reviewers and users of previous editions of the text, we have 
made some major changes in this edition that are designed to make the book more 
readable, more useful, and more attractive to the student, the professor, and the 
researcher. 

vii 
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The following are some of the additional specific improvements in the sixth 
edition of Biostatistics: 

1. Chapter 1 split. Chapter 1, titled "Organizing and Summarizing Data" in 
previous editions, has been split into two chapters as follows: Chapter 1 titled 
"Introduction to Biostatistics" and Chapter 2 titled "Descriptive Statistics." The 
new Chapter 1 includes the sections on basic concepts and computer usage that 
were in the old Chapter 1. In addition, the section on measurement and measure-
ment scales, originally in Chapter 11, and the second on simple random sampling 
formerly in Chapter 4, have been moved to the new Chapter 1. Chapter 2 contains 
the remainder of the material that has been a part of Chapter 1 in previous 
editions. 

2. Chapter 9 split. Chapter 9, titled "Multiple Regression and Correlation" in 
previous editions, has been split into two chapters as follows: The section on 
qualitative independent variables has been moved to a new Chapter 11 titled 
"Regression Analysis—Some Additional Techniques." To this chapter have been 
added two new topics covering variable selection procedures and logistic regression. 
The remaining sections of the old Chapter 9 are now contained in Chapter 10. 

3. New Topics. In addition to variable selection procedures and logistic regres-
sion, the new topics appearing in this edition of Biostatistics include the following: 

a. The Type II Error and the Power of a Test (Chapter 7) 

b. Determining Sample Size to Control Both Type I and Type II Errors 
(Chapter 7) 

c. The Repeated Measures Design (Chapter 8) 

d. The Fisher Exact Test (Chapter 12) 

e. Relative Risk (Chapter 12) 

f. Odds Ratio (Chapter 12) 

g. The Mantel–Haenszel Statistic (Chapter 12) 

4. Real Data. In an effort to make the text more relevant to the health sciences 
student and practitioner, we have made extensive use of real data obtained directly 
from researchers in the health field and from reports of research findings published 
in the health sciences literature. More than 250 of the examples and exercises in 
the text are based on real data. 

5. Large Data Sets on Computer Disk. The large data sets that appeared 
throughout the text in the previous edition are now available only on computer 
disk, free to adopters of the text. The twenty large data sets are designed for 
analysis by the following techniques: interval estimation (Chapter 6), hypothesis 
testing (Chapter 7), analysis of variance (Chapter 8), simple linear regression 
(Chapter 9), multiple regression (Chapter 10), advanced regression analysis 
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(Chapter 11), and chi-square (Chapter 12). Exercises at the end of these chapters 
instruct the student on how to use the large data sets. 

6. Clarity. Many passages and paragraphs within the book have been rewritten 
in an effort to achieve the highest level of clarity and readability possible. With 
clarity in mind we have also added new illustrations where it was felt that they 
would help the reader's understanding of the written material. Many new headings 
have been added in an effort to highlight important concepts and topics. 

7. Design. The sixth edition has been comprehensively redesigned. The new 
format includes a larger text trim size and typeface as well as bolder chapter titles, 
section titles, and other pedagogical features of the work. A third of the illustra-
tions have been redrawn. The overall effect should be a more accessible and clearly 
organized text. 

A solutions manual is available to adopters of the text. 
For their many helpful suggestions on how to make this edition of Biostatistics 

better, I wish to express my gratitude to the many readers of the previous editions 
and to the instructors who have used the book in their classrooms. In particular, I 
thank the following people who made detailed recommendations for this revision: 

Howard Kaplan 

K. C. Carriere 

Michael J. Doviak 

Stanley Lemeshow 

Mark S. West 

Dr. Leonard Chiazze, Jr. 

Kevin F. O'Brien 

Towson State University 

Baltimore, Maryland 

University of Manitoba 

Winnipeg, Manitoba 

Old Dominion University 
Norfolk, Virginia 

University of Massachusetts at Amherst 

Amherst, Massachusetts 

Auburn University 

Montgomery, Alabama 

Georgetown University School of Medicine 

Washington, DC 

East Carolina University 
Greenville, North Carolina 

I wish to acknowledge the cooperation of Minitab, Inc., for making available to 
me the latest version of the MINITAB software package for illustrating the use of 
the microcomputer in statistical analysis. 

Special thanks are due to my colleagues at Georgia State University—Profes-
sors Geoffrey Churchill and Brian Schott, who wrote computer programs for 
generating some of the Appendix tables—and Professor Lillian Lin of the Emory 
University School of Public Health, who read the section on logistic regression and 
made valuable suggestions for its improvement. I am grateful to the many 
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researchers in the health sciences field who so generously made available to me raw 
data from their research projects. These data appear in the examples and exercises 
and are acknowledged individually wherever they appear. I would also like to thank 
the editors and publishers of the various journals who allowed me to reprint data 
from their publications for use in many of the examples and exercises. 

Despite the help of so many able people, I alone accept full responsibility for 
any deficiencies the book may possess. 

Wayne W. Daniel 
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Biostatistics 

CONTENTS 

1.1 Introduction 

1.2 Some Basic Concepts 

1.3 Measurement and Measurement Scales 

1.4 The Simple Random Sample 

1.5 Computers and Biostatistical Analysis 

1.6 Summary 

1.1 
Introduction 

The objectives of this book are twofold: (1) to teach the student to organize and 

summarize data and (2) to teach the student how to reach decisions about a large 

body of data by examining only a small part of the data. The concepts and methods 

necessary for achieving the first objective are presented under the heading of 

descriptive statistics, and the second objective is reached through the study of what is 

called inferential statistics. This chapter discusses descriptive statistics. Chapters 2 

through 5 discuss topics that form the foundation of statistical inference, and most 

of the remainder of the book deals with inferential statistics. 

Since this volume is designed for persons preparing for or already pursuing a 

career in the health field, the illustrative material and exercises reflect the 

problems and activities that these persons are likely to encounter in the perfor-

mance of their duties. 

1 
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1.2 
Some Basic Concepts 

Like all fields of learning, statistics has its own vocabulary. Some of the words and 
phrases encountered in the study of statistics will be new to those not previously 
exposed to the subject. Other terms, though appearing to be familiar, may have 
specialized meanings that are different from the meanings that we are accustomed 
to associating with these terms. The following are some terms that we will use 
extensively in the remainder of this book. 

Data The raw material of statistics is data. For our purposes we may define 
data as numbers. The two kinds of numbers that we use in statistics are numbers 
that result from the taking—in the usual sense of the term--4–of a measurement, and 
those that result from the process of counting. For example, when a nurse weighs a 
patient or takes a patient's temperature, a measurement, consisting of a number 
such as 150 pounds or 100 degrees Fahrenheit, is obtained. Quite a different 
type of number is obtained when a hospital administrator counts the number of 
patients—perhaps 20—discharged from the hospital on a given day. Each of the 
three numbers is a datum, and the three taken together are data. 

Statistics The meaning of statistics is implicit in the previous section. More 
concretely, however, we may say that statistics is a field of study concerned with (1) the 
collection, organization, summarization, and analys of data, and (2) the drawing of 
inferences about a body of data when only a part of the ata is observed. 

The person who performs these statistical activities must be prepared to 
interpret and to communicate the results to someone else as the situation demands. 
Simply put, we may say that data are numbers, numbers contain information, and 
the purpose of statistics is to determine the nature of this information. 

Sources of Data The performance of statistical activities is motivated by the 
need to answer a question. For example, clinicians may want answers to questions 
regarding the relative merits of competing treatment procedures. Administrators 
may want answers to questions regarding such areas of concern as employee 
morale or facility utilization. When we determine that the appropriate approach to 
seeking an answer to a question will require the use of statistics, we begin to search 
for suitable data to serve as the raw material for our investigation. Such data are 
usually available from one or more of the following sources: 

1. Routinely kept records It is difficult to imagine any type of organization that does 
not keep records of day-to-day transactions of its activities. Hospital medical 
records, for example, contain immense amounts of information on patients, 
while hospital accounting records contain a wealth of data on the facility's 
business activities. When the need for data arises, we should look for them first 
among routinely kept records. 
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2. Surveys If the data needed to answer a question are not available from 
routinely kept records, the logical source may be a survey. Suppose, for 
example, that the administrator of a clinic wishes to obtain information 
regarding the mode of transportation used by patients to visit the clinic. If 
admission forms do not contain a question on mode of transportation, we may 
conduct a survey among patients to obtain this information. 

3. Experiments Frequently the data needed to answer a question are available 
only as the result of an experiment. A nurse may wish to know which of several 
strategies is best for maximizing patient compliance. The nurse might conduct 
an experiment in which the different strategies of motivating compliance are 
tried with different patients. Subsequent evaluation of the responses to the 
different strategies might enable the nurse to decide which is most effective. 

4. External sources The data needed to answer a question may already exist in the 
form of published reports, commercially available data banks, or the research 
literature. In other words, we may find that someone else has already asked the 
same question, and the answer they obtained may be applicable to our present 
situation. 

Biostatistics The tools of statistics are employed in many fields—business, 
education, psychology, agriculture, and economics, to mention only a few. When 
the data being analyzed are derived from the biological sciences and medicine, we 
use the term biostatistics to distinguish this particular application of statistical tools 
and concepts. This area of application is the concern of this book. 

Variable If, as we observe a characteristic, we find that it takes on different 
values in different persons, places, or things, we label the characteristic a variabk. 
We do this for the simple reason that the characteristic is not the same when 
observed in different possessors of it. Some examples of variables include diastolic 
blood pressure, heart rate, the heights of adult males, the weights of preschool 
children, and the ages of patients seen in a dental clinic. 

Quantitative Variables A quantitative variable is one that can be measured 
in the usual sense. We can, for example, obtain measurements on the heights of 
adult males, the weights of preschool children, and the ages of patients seen in a 
dental clinic. These are examples of quantitative variables. Measurements made on 
quantitative variables convey information regarding amount. 

Qualitative Variables Some characteristics are not capable of being mea-
sured in the sense that height, weight, and age are measured. Many characteristics 
can be categorized only, as for example, when an ill person is given a medical 
diagnosis, a person is designated as belonging to an ethnic group, or a person, 
place, or object is said to possess or not to possess some characteristic of interest. 
In such cases measuring consists of categorizing. We refer to variables of this kind 
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as qualitative variables. Measurements made on qualitative variables convey informa-
tion regarding attribute. 

Although, in the case of qualitative variables, measurement  in the usual sense 
of the word is not achieved, we`can count the 'number of iiedsons, places, or things 
belonging to various categories. A hospital administrator, for example, can count 
the number, of patients admitted during a day under each of the various admitting 
diagnoses. These counts, or frequencies as they are called, are the numbers that we 
manipulate when our analysis involves qualitative variablels. 

Random Variable Whenever we determine the height, weight, or age of an 
individual, the result is frequently referred to as a value or the respective variable. 
When the values obtained arise as a result of Itatice factors, so that they cannot be 
exactly predicted in advance, the variable is called a randoth variable. An example of 
a random variable is adult height. When a child is born, we cannot predict exactly 
his or her height at maturity. Attained adult height is the result of numerous 
genetic and environmental factors. Values resulting from measurement procedures 
are often referred to as observations or measurements. 

Discrete Random Variable Variables may be characterized further as to 
whether they are discrete or continuous. Since mathematically rigorous definitions of 
discrete and continuous variables are beyond the level of this book, we offer, 
instead, nonrigorous definitions and give an example of each. 

A discrete variable is characterized by gaps or interruptions in the values that it can assume. 
These gaps or interruptions indicate the absence of values between particular 
values that the variable can assume. Some examples illustrate the point. The 
number of daily admissions to a general hospital is a discrete random variable since 
the number of admissions each day must be represented by a whole number, such 
as 0, 1, 2, or 3. The number of admissions on a given day cannot be a number such 
as 1.5, 2.997, or 3.333. The number of decayed, missing, or filled teeth per child in 
an elementary school is another example of a discrete variable. 

Continuous Random Variable A continuaus random, variable does not possess the 
gaps or interruptions characteristic of a discrete randam 	IA continuous random 
variable can assume any value within a specified relevant interval of values 
assumed by the variable. Examples of continuous variables include the various 
measurements that can be made on individuals such as height, weight, and skull 
circumference. No matter how close together the observed heights of two people, 
for example, we can, theoretically, find another person whose height falls some-
where in between. 

Because of the limitations of available measuring instruments, however, obser-
vations on variables that are inherently continuous are recorded as if they were 
discrete. Height, for example, is usually recorded to the nearest one-quarter, 
one-half, or whole inch, whereas, with a perfect measuring device, such a measure-
ment could be made as precise as desired. 
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Population The average person thinks of a population as a collection of 
entities, usually people. A population or collection of entities may, however, consist 
of animals, machines, planes, or cells. For our purposes, we define a population of 
entities as the largest collection of entities for which we have an interest at a particular time. If 
we take a measurement of some variable on each of the entities in a population, we 
generate a population of values of that variable. We may, therefore, define a 
population of values as the largest collection of values of a random variable for which we have an 
interest at a particular time. If, for example, we are interested in the weights of all the 
children enrolled in a certain county elementary school system, our population 
consists of all these weights. If our interest lies only in the weights of first grade 
students in the system, we have a different population—weights of first grade 
students enrolled in the school system. Hence, populations are determined or 
defined by our sphere of interest. Populations may be finite or infinite. If a 
population of values consists of a fixed number of these values, the population is 
said to be finite. If, on the other hand, a population consists of an endless 
succession of values, the population is an infinite one 

Sample A sample may be defined simply as a part of a population. Suppose our 
population consists of the weights of all the elementary school children enrolled in 
a certain county school system. If we collect for analysis the weights of only a 
fraction of these children, we have only a part of our population of weights, that is, 
we have a sample. 

1.3 
Measurement and 
Measurement Scales g 

In the preceding discussion we used the word measurement several times in its usual 
sense, and presumably the reader clearly understood the intended meaning. The 
word measurement, however, may be given a more scientific definition. In fact, there 
is a whole body of scientific literature devoted to the subject of measurement. Part 
of this literature is concerned also with the nature of the numbers that result from 
measurements. Authorities on the subject of measurement speak of measurement 
scales that result in the categorization of measurements according to their nature. 
In this section we define measurement and the four resulting measurement scales. 
A more detailed discussion of the subject is to be found in the writings of Stevens 
(1, 2). 

Measurement This may be defined as the assignment of numbers to objects 
or events according to a set of rules. The various measurement scales result from 
the fact that measurement may be carried out under different sets of rules. 
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The Nominal Scale The lowest measurement scale is the nominal scale. As 
the name implies it consists of "naming" observations or classifying them into 
various mutually exclusive and collectively exhaustive categories. The practice of 
using numbers to distinguish among the various medical diagnoses constitutes 
measurement on a nominal scale. Other examples include such dichotomies as 
male—female, well—sick, under 65 years of age-65 and over, child—adult, and 
married—not married. 

The Ordinal Scale Whenever observatinns are not only different from 
category to: category, but can be ranked according to some Criterion, they are said 
to be measured on an ordinal scale. Convalescing patients may be characterized as 
unimproved, improved, and much improved. Individuals may be classified according 
to socioeconomic status as low, medium, or high. The intelligence of children may 
be above average, average, or below average. In each of these examples the 
members of any one category are all considered equal, but the members of one 
category are considered lower, worse, or smaller than those in another category, 
which in turn bears a similar relationship to another category. For example, a 
much improved patient is in better health than one classified as improved, while a 
patient who has improved is in better condition than one who has not improved. It 
is usually impossible to infer that the difference between members of one category 
and the next adjacent category is equal to the difference between members of that 
category and the members of the category adjacent to it. The degree of improve-
ment between unimproved and improved is probably not the same as that between 
improved and much improved. The implication is that if a finer breakdown were 
made resulting in more categories, these, too, could be, ordered in a similar 
manner. The function of numbers assigned to ordinal data is to order (or rank) the 
observations from lowest to highest and, hence,1 the term ordinal. 

The Interval Scale The interval scale is a more sophisticated scale than the 
nominal or ordinal in that with this scale it is oot only possible to order measure-
ments, but also the distance between any two Measurements is known. We know, 
say, that the difference between a measurement of 20 and a measurement of 30 is 
equal to the difference between measurements of 30 and 40. The ability to do this 
implies the use of a unit distance and a zero point, both of which are arbitrary. The 
selected zero point is not a true zero in that it does not indicate a total absence of 
the quantity being measured. Perhaps the best example of an interval scale is 
provided by the way in which temperature is usually measured (degrees Fahrenheit 
or Celsius). The unit of measurement is the degree and the point of comparison is 
the arbitrarily chosen "zero degrees," which does not indicate a lack of heat. The 
interval scale unlike the nominal and ordinal sales is a trOly quantitative scale. 

The Ratio Scale The highest level of measurement is the ratio scale. This 
scale is characterized by the fact that equality of ratios, as well as equality of 
intervals may be determined. Fundamental to the ratio scale is a true zero point. 
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The measurement of such familiar traits as height, weight, and length makes use 
of the ratio scale. 

1.4 
The Simple Random Sample 

As noted earlier, one of the purposes of this book is to teach the concepts of 
statistical inference, which we may define as follows: 

DEFINITION 

Statistical inference is the procedure by which we reach a. conclusion about 
a population on the basis of the information contained in a sample that 
has been drawn from that population. 

There are many kinds of samples that may be drawn from a population. Not 
every kind of sample, however, can be used as a basis for making valid inferences 
about a population. In general, in order to make a valid inference about a 
population, we need a scientific sample from the population. There are also many 
kinds of scientific samples that may be drawn from a population. The simplest of 
these is the simple random sample. In this section we define a simple random sample 
and show you how to draw one from a population. 

If we use the letter N to designate the size of a finite population and the letter 
n to designate the size of a sample, we may define a simple random sample as 
follows. 

DEFINITION 

If a sample of size n is drawn from a population of size N in such a way 
that every possible sample of size n has the same chance of being selected, 
the sample is called a simple random sample. 

The mechanics of drawing a sample to satisfy the definition of a simple 
random sample is called simple random sampling. 

We will demonstrate the procedure of simple random sampling shortly, but 
first let us consider the problem of whether to sample with replacement or without 
replacement. When sampling with replacement is employed, every member of the 
population is available at each draw. For example, suppose that we are drawing a 
sample from a population of former hospital patients as part of a study of length of 
stay. Let us assume that the sampling involves selecting from the shelves in the 
medical record department a sample of charts of discharged patients. In sampling 
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with replacement we would proceed as follows: select a chart to be in the sample, 
record the length of stay, and return the chart to the shelf. The chart is back in the 
"population" and may be drawn again on some subsequent draw, in which case the 
length of stay will again be recorded. In sampling without replacement, we would 
not return a drawn chart to the shelf after recording the length of stay, but would 
lay it aside until the entire sample is drawn. Following this procedure, a given chart 
could appear in the sample only once. As a rule, in practice, sampling is always 
done without replacement. The significance arid consequnces of this will be 
explained later, but first let us see how one goes about selecting a simple random 
sample. To ensure true randomness of selection we will need to follow some 
objective procedure. We certainly will want to avoid using our own judgment to 
decide which members of the population constitute a random sample. The follow-
ing example illustrates one method of selecting a simple random sample from a 
population. 

Example 
1.4.1 

Clasen et al. (A-1) studied the oxidation of sparteine and mephenytoin in a group 
of subjects living in Greenland. Two populations were represented in their study: 
inhabitants of East Greenland and West Greenlanders. The investigators were 
interested in comparing the two groups with respect to the variables of interest. 
Table 1.4.1 shows the ages of 169 of the subjects from West Greenland. For 
illustrative purposes, let us consider these subjects to be a population of size 
N = 169. We wish to select a simple random sample of size 10 from this popula-
tion. 

Solution: One way of selecting a simple random sample is to use a table of 
random numbers like that shown in Appendix II Table A. As the first step we locate 
a random starting point in the table. This can be done in a number of ways, one of 
which is to look away from the page while touching it with the point of a pencil. 
The random starting point is the digit closest to where the pencil touched the 
page. Let us assume that following this procedure led to a random starting point in 
Table A at the intersection of row 21 and column 28. The digit at this point is 5. 
Since we have 169 values to choose from, we can use only the random numbers 1 
through 169. It will be convenient to pick three-digit numbers so that the numbers 
001 through 169 will be the only eligible numbers. The first three-digit number, 
beginning at our random starting point, is 532, a number we cannot use. Let us 
move down past 196, 372, 654, and 928 until we come to 137, a number we can use. 
The age of the 137th subject from Table 1.4.1 is 42, the first value in our sample. 
We record the random number and the corresponding age in Table 1.4.2. We 
record the random number to keep track of the random numbers selected. Since 
we want to sample without replacement, we do not want to include the same 
individual's age twice. Proceeding in the manner just described leads us to the 
remaining nine random numbers and their corresponding ages shown in Table 
1.4.2. Notice that when we get to the end of the column we simply move over three 
digits to 028 and proceed up the column. We could have started at the top with the 
number 369. 



1.4 The Simple Random Sample 	 9 

TABLE 1.4.1 Ages of 169 Subjects Who Participated in a Study of Sparteine and 
Mephenytoin Oxidation 

Subject No. Age Subject No. Age Subject No. Age 

1 27 57 29 113 45 
2 27 58 26 114 28 
3 42 59 52 115 42 
4 23 60 20 116 40 
5 37 61 37 117 26 
6 47 62 27 118 29 
7 30 63 63 119 48 
8 27 64 44 120 53 
9 47 65 22 121 27 

10 41 66 44 122 38 
11 19 67 45 123 53 
12 52 68 40 124 33 
13 48 69 48 125 24 
14 48 70 36 126 25 
15 32 71 51 127 43 
16 35 72 31 128 39 
17 22 73 28 129 40 
18 23 74 44 130 22 
19 37 75 63 131 25 
20 33 76 30 132 21 
21 26 77 21 133 26 
22 22 78 50 134 41 
23 48 79 30 135 47 
24 43 80 31 136 30 
25 34 81 30 137 42 
26 28 82 24 138 33 
27 23 83 26 139 31 
28 61 84 56 140 29 
29 24 85 31 141 37 
30 29 86 26 142 40 
31 32 87 23 143 31 
32 38 88 18 144 26 
33 62 89 38 145 30 
34 25 90 53 146 27 
35 34 91 40 147 26 
36 46 92 23 148 36 
37 24 93 24 149 24 
38 45 94 18 150 50 
39 26 95 49 151 31 
40 29 96 49 152 42 
41 48 97 39 153 34 
42 34 98 32 154 27 
43 41 99 25 155 28 
44 53 100 32 156 31 
45 30 101 23 157 40 
46 27 102 47 158 28 
47 22 103 34 159 29 
48 27 104 26 160 29 
49 38 105 46 161 24 
50 26 106 21 162 28 
51 27 107 19 163 22 
52 30 108 37 164 50 
53 32 109 36 165 30 
54 43 110 24 166 38 
55 29 Ill 51 167 28 
56 24 112 30 168 23 

169 39 

SOURCE: Kim Bresen, M. D. Used with permission. 
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TABLE 1.4.2 Sample of 10 Ages Drawn from 
the Ages in Table 1.4.1 

Random 	Sample 
Number 	Subject Number 	Age 

137 1 42 

114 2 28 

155 3 28 

028 4 61 

085 5 31 

018 6 23 
164 7 50 

042 8 34 
053 9 32 

108 10 37 

Thus we have drawn a simple random sample of size 10 from a population of 
size 169. In future discussion, whenever the term simple random sample is used, it 
will be understood that the sample has been drawn in this or an equivalent 
manner. 

EXERCISES 

1.4.1 Using the table of random numbers, select a new random starting point, and draw 
another simple random sample of size 10 from the data in Table 1.4.1. Record the 
ages of the subjects in this new sample. Save your data for future use. What is the 
variable of interest is this exercise? What measurement scale was used to obtain the 
measurements? 

1.4.2 Select another simple random sample of size 10 from the population represented in 
Table 1.4.1. Compare the subjects in this sample with those in the sample drawn in 
Exercise 1.4.1. Are there any subjects who showed up in both samples? How many? 
Compare the ages of the subjects in the two samples. How many ages in the first 
sample were duplicated in the second sample? 

1.5 
Com•uters and Biostatistical Anal sis 

The relatively recent widespread use of computers has had a tremendous impact on 
health sciences research in general and biostatistical analysis in particular. The 
necessity to perform long and tedious arithmetic computations as part of the 
statistical analysis of data lives only in the memory of those researchers and 
practitioners whose careers antedate the so-called computer revolution. Computers 
can perform more calculations faster and far more accurately than can human 
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technicians. The use of computers makes it possible for investigators to devote 
more time to the improvement of the quality of raw data and the interpretation of 
the results. 

The current prevalence of microcomputers and the abundance of available 
statistical software programs have further revolutionized statistical computing. 
The reader in search of a statistical software package will find the book by 
Woodward et al. (3) extremely helpful. This book describes approximately 
140 packages. Each entry contains detailed facts such as hardware and additional 
software requirements, ordering and price information, available documentation 
and telephone support, statistical functions, graphic capabilities, and listings of 
published reviews. An article by Carpenter et al. (4) also provides help in choosing 
a statistical software program. The authors propose and define comparative fea-
tures that are important in the selection of a package. They also describe general 
characteristics of the hardware and operating-system requirements, documenta-
tion, ease of use, and the statistical options that one may expect to find. The article 
examines and compares 24 packages. An article by Berk (5) focuses on important 
aspects of microcomputer statistical software such as documentation, control 
language, data entry, data listing and editing, data manipulation, graphics, statisti-
cal procedures, output, customizing, system environment, and support. Berk's 
primary concern is that a package encourage good statistical practice. A person 
about to use a computer for the first time will find the article on basic computer 
concepts by Sadler (6) useful. Reviews of available statistical software packages are 
a regular feature of The American Statistician, a quarterly publication of the 
American Statistical Association. 

Many of the computers currently on the market are equipped with random 
number generating capabilities. As an alternative to using printed tables of 
random numbers, investigators may use computers to generate the random num-
bers they need. Actually, the "random" numbers generated by most computers are 
in reality pseudorandom numbers because they are the result of a deterministic 
formula. However, as Fishman (7) points out, the numbers appear to serve 
satisfactorily for many practical purposes. 

The usefulness of the computer in the health sciences is not limited to 
statistical analysis. The reader interested in learning more about the use of 
computers in biology, medicine, and the other health sciences will find the books by 
Krasnoff (8), Ledley (9), Lindberg (10), Sterling and Pollack (11), and Taylor (12) 
helpful. 

Current developments in the use of computers in biology, medicine, and 
related fields are reported in several periodicals devoted to the subject. A few such 
periodicals are Computers in Biology and Medicine, Computers and Biomedical Research, 
International Journal of Bio-Medical Computing, Computer Methods and Programs in 
Biomedicine, Computers and Medicine, Computers in Healthcare, and Computers in Nursing. 

Computer printouts are used throughout this book to illustrate the use of 
computers in biostatistical analysis. The MINITAB and SAS®  statistical software 
packages for the personal computer have been used for this purpose. Appendix I at 
the end of the book contains a list of some basic MINITAB commands for handling 
data. 
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1.6 
Summar 

In this chapter we introduced the reader to the basic concepts of statistics. We 
defined statistics as an area of study concerned with collecting and describing data 
and with making statistical inferences. We defined statistical inference as the 
procedure by which we reach a conclusion about a population on the basis of 
information contained in a sample drawn from that population. We learned that a 
basic type of sample that will allow us to make valid inferences is the simple 
random sample. We learned how to use a table of random numbers to draw a 
simple random sample from a population. 

The reader is provided with the definitions of some basic terms, such as 
variable and sample, that are used in the study of statistics. We also discussed 
measurement and defined four measurement scales—nominal, ordinal, interval, 
and ratio. 

Finally we discussed the importance of computers in the performance of the 
activities involved in statistics. 

REVIEW QUESTIONS AND EXERCISES 

1. Explain what is meant by descriptive statistics. 

2. Explain what is meant by inferential statistics. 

3. Define: 

a. Statistics 	 b. Biostatistics 
c. Variable 	 d. Quantitative variable 
e. Qualitative variable 	 f. Random variable 
g. Population 	 h. Finite population 
i. Infinite population 	 j. Sample 
k. Discrete variable 	 1. Continuous variable 
m. Simple random sample. 	 n. Sampling with replacement. 
o. Sampling without replacement. 

4. Define the word measurement. 

5. List in order of sophistication and describe the four measurement scales. 

6. For each of the following variables indicate whether it is quantitative or qualitative and 
specify the measurement scale that is employed when taking measurements on each: 

a. Class standing of the members of this class relative to each other. 
b. Admitting diagnosis of patients admitted to a mental health clinic. 
c. Weights of babies born in a hospital during a year. 
d. Gender of babies born in a hospital during a year. 
e. Range of motion of elbow joint of students enrolled in a university health sciences 

curriculum. 
f. Under-arm temperature of day-old infants born in a hospital. 
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7. For each of the following situations, answer questions a through e: 
a. What is the sample in the study? 
b. What is the population? 
c. What is the variable of interest? 
d. How many measurements were used in calculating the reported results? 
e. What measurement scale was used? 

Situation A. A study of 300 households in a small southern town revealed that 20 
percent had at least one school-age child present. 
Situation B. A study of 250 patients admitted to a hospital during the past year 
revealed that, on the average, the patients lived 15 miles from the hospital. 
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2.1 
Introduction 

In Chapter 1 we stated that the taking of a measurement and the process of 

counting yield numbers that contain information. The objective of the person 

applying the tools of statistics to these numbers is to determine the nature of this 

information. This task is made much easier if the numbers are organized and 

summarized. When measurements of a random variable are taken on the entities 

of a population or sample, the resulting values are made available to the researcher 

or statistician as a mass of unordered data. Measurements that have not been 

organized, summarized, or otherwise manipulated are called raw data. Unless the 
number of observations is extremely small, it will be unlikely that these raw data 

will impart much information until they have been put in some kind of order. 

In this chapter we learn several techniques for organizing and summarizing 

data so that we may more easily determine what information they contain. The 

15 
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ultimate in summarization of data is the calculation of a single number that in 

some way conveys important information about the data from which it was 

calculated. Such single numbers that are used to describe datLi are called descriptive 

measures. After studying this chapter you will be able to compute several descriptive 

measures for both populations and samples of data. 

2.2 
The Ordered Array 

A first step in organizing data is the preparation of an ordered array. An ordered array 

is a listing of the values of a collection (either population or sample) in order of 
magnitude from the smallest value to the largesi value. If the number of measure-
ments to be ordered is of any appreciable size, the use of a computer to prepare 
the ordered array is highly desirable. 

An ordered array enables one to determine quickly the value of the smallest 
measurement, the value of the largest measurement, and other facts about the 
arrayed data that might be needed in a hurry. We illustrate the construction of an 
ordered array with the data discussed in Example 1.4.1. 

Example 
2.2.1 

Table 1.4.1 contains a list of the ages of subjects who participated in the study of 
Greenland residents discussed in Example 1.4.1. As can be seen, this unordered 
table requires considerable searching for us to ascertain such elementary informa-
tion as the age of the youngest and oldest subjects. 

Solution: Table 2.2.1 presents the data of Table 1.4.1 in the form of an ordered 
array. By referring to Table 2.2.1 we are able to determine quickly the age of the 

TABLE 2.2.1 Ordered Array of Ages of Subjects from Table 1.4.1 

18 18 19 19 20 21 21 21 22 22 22 22 22 
22 23 23 23 23 23 23 23 24 24 24 24 24 
24 24 24 24 25 25 25 25 26 26 26 26 26 
26 26 26 26 26 26 27 27 27 27 27 27 27 
27 27 27 28 28 28 28 28 28 28 29 29 29 
29 29 29 29 29 30 30 30 30 30 30 30 30 
30 30 31 31 31 31 31 31 31 32 32 32 32 
32 33 33 33 34 34 34 34 34 35 36 36 36 
37 37 37 37 37 38 38 38 38 38 39 39 39 
40 40 40 40 40 40 41 41 41 42 42 42 42 
43 43 43 44 44 44 45 45 45 46 46 47 47 
47 47 48 48 48 48 48 48 49 49 50 50 50 
51 51 52 52 53 53 53 53 56 61 62 63 63 
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youngest subject (18), and the age of the oldest subject (63). We also readily note 
that about three-fourths of the subjects are under 40 years of age. 

Computer Analysis If additional computations and organization of a data 
set have to be done by hand, the work may be facilitated by working from an 
ordered array. If the data are to be analyzed by a computer, it may be undesirable 
to prepare an ordered array, unless one is needed for reference purposes or for 
some other use. A computer does not need to first construct an ordered array 
before constructing frequency distributions and performing other analyses of the 
data. 

If an ordered array is desired, most computer software packages contain 
routines for its construction. Suppose, for example, that we are using MINITAB 
and that the ages in Table 1.4.1 exist in Column 1. The command SORT C 1 C2 
will sort the ages and put them in Column 2 as shown in Table 2.2.1. 

2.3 
Grouped Data— 
The Frequency Distribution 

Although a set of observations can be made more comprehensible and meaningful 
by means of an ordered array, further useful summarization may be achieved by 
grouping the data. Before the days of computers one of the main objectives in 
grouping large data sets was to facilitate the calculation of various descriptive 
measures such as percentages and averages. Because computers can perform these 
calculations on large data sets without first grouping the data, the main purpose in 
grouping data now is summarization. One must bear in mind that data contain 
information and that summarization is a way of making it easier to determine the 
nature of this information. 

To group a set of observations we select a set of contiguous, nonoverlapping 
intervals such that each value in the set of observations can be placed in one, and 
only one, of the intervals. These intervals are usually referred to as class intervals. 

One of the first considerations when data are to be grouped is how many 
intervals to include. Too few intervals are undesirable because of the resulting loss 
of information. On the other hand, if too many intervals are used, the objective of 
summarization will not be met. The best guide to this, as well as to other decisions 
to be made in grouping data, is your knowledge of the data. It may be that class 
intervals have been determined by precedent, as in the case of annual tabulations, 
when the class intervals of previous years are maintained for comparative purposes. 
A commonly followed rule of thumb states that there should be no fewer than six 
intervals and no more than 15. If there are fewer than six intervals the data have 
been summarized too much and the information they contain has been lost. If 
there are more than 15 intervals the data have not been summarized enough. 
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Those who wish more specific guidance in the matter of deciding how many 
class intervals are needed may use a formula given by Sturges (1). This formula 
gives k = 1 + 3.322(10g /0  n), where k stands for the number of class intervals and 
n is the number of values in the data set under consideration. The answer obtained 
by applying Sturges' rule should not be regarded as final, but should be considered 
as a guide only. The number of class intervals specified by the rule should be 
increased or decreased for convenience and clear presentation. 

Suppose, for example, that we have a sample of 275 observations that we want 
to group. The logarithm to the base 10 of 275 is 2.4393. Applying Sturges' formula 
gives k = 1 + 3.322(2.4393) = 9. In practice, other considerations might cause us 
to use 8 or fewer or perhaps 10 or more class intervals. 

Another question that must be decided regards the width of the class intervals. 
Although this is sometimes impossible, class intervals generally should be of the 
same width. This width may be determined by dividing the range by k, the number 
of class intervals. Symbolically, the class interval (width is given by 

R 
W = 7  (2.3.1) 

where R (the range) is the difference between the smalest and the largest 
observation in the data set. As a rule this procedure yields a width that is 
inconvenient for use. Again, we may exercise our good judgment and select a width 
(usually close to the one given by Equation 2.3.1) that is more convenient. 

There are other rules of thumb that are helpful in setting up useful class 
intervals. When the nature of the data make them appropriate, class interval 
widths of 5 units, 10 units, and widths that are multiples of 10 tend to make the 
summarization more comprehensible. When these widths are employed it is 
generally good practice to have the lower limit of each interval end in a zero or 5. 
Usually class intervals are ordered from smallest to largest;i that is, the first class 
interval contains the smaller measurements and the last clasis interval contains the 
larger measurements. When this is the case, the lower limit of the first class 
interval should be equal to or smaller than the smallest measurement in the data 
set, and the upper limit of the last class interval should be equal to or greater than 
the largest measurement. 

Although most microcomputer software packages contain routines for con-
structing class intervals, they frequently require user input regarding interval 
widths and the number of intervals desired. Let us use the 169 ages shown in Table 
1.4.1 and arrayed in Table 2.2.1 to illustrate the construction of a frequency 
distribution. 

Example 	We wish to know how many class intervals to have in the frequency distribution of 
2.3.1 	the data. We also want to know how wide the intervals should be. 



2.3 Grouped Data—The Frequency Distribution 	 19 

Solution: To get an idea as to the number of class intervals to use, we can apply 
Sturges' rule to obtain 

k = 1 + 3.322(log 169) 

= 1 + 3.322(2.227886705) 

8 

Now let us divide the range by 8 to get some idea about the class interval 
width. We have 

R 	63 — 18 	45 
	 — 	= 5.625 

k 	8 	8 

It is apparent that a class interval width of 5 or 10 will be more convenient to 
use, as well as more meaningful to the reader. Suppose we decide on 10. We may 
now construct our intervals. Since the smallest value in Table 2.2.1 is 18 and the 
largest value is 63, we may begin our intervals with 10 and end with 69. This gives 
the following intervals: 

10-19 

20-29 

30-39 

40-49 

50-59 

60-69 

We see that there are six of these intervals, two fewer than the number 
suggested by Sturges' rule. 

When we group data manually, determining the number of values falling into each 
class interval is merely a matter of looking at the ordered array and counting the 
number of observations falling in the various intervals. When we do this for our 
example, we have Table 2.2.2. 

A table such as Table 2.2.2 is called a frequency distribution. This table shows the 
way in which the values of the variable are distributed among the specified class 
intervals. By consulting it, we can determine the frequency of occurrence of values 
within any one of the class intervals shown. 

Relative Frequencies It may be useful at times to know the proportion, 
rather than the number, of values falling within a particular class interval We 
obtain this information by dividing the number of values in the particular class 
interval by the total number of values. If, in our example, we wish to know the 
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TABLE 2.2.2 Frequency Distribution of Ages of 
169 Subjects Shown in Tables 1.4.1 and 2.2.1 

Class Interval Frequency 

10-19 4 
20-29 66 
30-39 47 
40-49 36 
50-59 12 
60-69 4 

Total 169 

proportion of values between 30 and 39, inclusive, we divide 47 by 169, obtaining 
.2781. Thus we say that 47 out of 169, or 47/169ths, or .2781, of the values 
are between 30 and 39. Multiplying .2781 by 100 gives us the percentage of values 
between 30 and 39. We can say, then, that 27.81 percent of the subjects 
are between 30 and 39 years of age. We may refer to the proportion of values 
falling within a class interval as the relative frequency of occurrence of values in that 
interval. 

In determining the frequency of values falling within two or more class 
intervals, we obtain the sum of the number of values falling within the class 
intervals of interest. Similarly, if we want to know the relative frequency of 
occurrence of values falling within two or more class intervals, we add the 
respective relative frequencies. We may sum, or cumulate, the frequencies and 
relative frequencies to facilitate obtaining information regarding the frequency or 
relative frequency of values within two or more contiguous class intervals. Table 
2.2.3 shows the data of Table 2.2.2 along with the cumulative frequencies, the relative 
frequencies, and cumulative relative frequencies. 

Suppose that we are interested in the relative frequency of values between 30 
and 59. We use the cumulative relative freqnency colinnn of Table 2.2.3 and 
subtract .4142 from .9763, obtaining .5621. 

TABLE 2.2.3 Frequency, Cumulative Frequency, Relative Frequency, and Cumulative 
Relative Frequency Distributions of the Ages of Subjects Described in Example 1.4.1 

Class 
Interval Frequency 

Cumulative 
Frequency 

Relative 
Frequency 

Cumulative 
Relative 

Frequency 

10-19 4 4 .0237 .0237 
20-29 66 70 .3905 .4142 
30-39 47 117 .2781 .6923 
40-49 36 153 .2130 .9053 
50-59 12 165 .0710 .9763 
60-69 4 169 .0237 1.0000 

Total 169 1.0000 
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The Histogram We may display a frequency distribution (or a relative 
frequency distribution) graphically in the form of a histogram, which is a special 
type of bar graph. Figure 2.3.1 is the histcgram of the ages of the subjects shown in 
Table 2.2.2. 

When we construct a histogram the values of the variable under consideration 
are represented by the horizontal axis, while the verticat axis has as its scale tlk 
frequency (or relative frequency if desired) of occurrence. Above each class interval 
on the horizontal axis a rectangular bar, or cell, as it is sometimes called, is erected 
so that the height corresponds to the respective frequency. The cells of a histogram 
must be joined and, to accomplish this, we must take into account the true 
boundaries of the class intervals to prevent gaps from occurring between the cells 
of our graph. 

The level of precision observed in reported data that are measured on a 
continuous scale indicates some order of rounding. The order of rounding reflect 
either the reporter's personal preference or the limitations of the measuring 
instrument employed. When a frequency distribution is constructed from the data, 
the class interval limits usually reflect the degree of precision of the raw data. This 
has been done in our illustrative example. We know, however, that some of the 
values falling in the second class interval, for example, when measured precisely, 
would probably be a little less than 20 and some would be a little greater than 29. 
Considering the underlying continuity of our variable, and assuming that the data 
were rounded to the nearest whole number, we find it convenient to think of 19.5 
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Figure 2.3.1 Histogram of ages of 169 subjects from 
Table 2.2.2. 
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TABLE 2.2.4 The Data of Table 2.2.2 Showing True Class Limits 

True Class Limits Frequency 

9.5-19.5 4 
19.5-29.5 66 
29.5-39.5 47 
39.5-49.5 36 
49.5-59.5 12 
59.5-69.5 4 

Total 169 

and 29.5 as the true limits of this second interval. The true limits for each of the 
class intervals, then, we take to be as shown in Table 2.2.4. 

If we draw a graph using these class limits as the base of our rectangles, no 
gaps will result, and we will have the histogram shown in Figure 2.3.1. Consider 
the space enclosed by the horizontal axis and the exterior boundary formed by the 
bars in Figure 2.3.1. We refer to this space as the area of the histogram. 

Each observation is allotted one unit of this area. Since we have 169 observa-
tions, the histogram consists of a total of 169 units. Each cell contains a certain 
proportion of the total area, depending on the frequency. The second cell, for 
example, contains 66/169 of the area. This, as we have learned, is the relative 
frequency of occurrence of values between 19.5 and 29.5. From this we see that 
subareas of the histogram defined by the Cells correspond to the frequencies of 
occurrence of values between the horizontal scale boundaries of the areas. The 
ratio of a particular subarea to the total area of the histogram is equal to the 
relative frequency of occurrence of values between the corresponding points on the 
horizontal axis. 

Computer Analysis Many computer software packages contain programs for 
the construction of histograms. One such package is MINITAB. Figure 2.3.2 shows 
the histogram constructed from the age data in Table 2.2.1 by the MINITAB 
program. After the data were entered into the computer, the computer was 
instructed to construct a histogram with a first midpoint of 14.5 and an interval 

Midpoint Count 

14.5 4 ** 

24.5 66 ********************************* 

34.5 47 ************************ 

44.5 36 ****************** 

54.5 12 ****** 

64.5 4 * * 

Figure 2.3.2 Computer-constructed histogram using the ages from Table 2.2.1 and 
the MINITAB software package. 
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width of 10. With the data stored in column 1, the MINITAB commands are as 
follows: 

HISTOGRAM C1; 

INCREMENT 10; 

START AT 14.5. 

The Frequency Polygon A frequency distribution can be portrayed graphi-
cally in yet another way by means of a frequency polygon, which is a special kind of 
line graph. To draw a frequency polygon we first place a dot above the midpoint of 
each class interval represented on the horizontal axis of a graph like the one shown 
in Figure 2.3.1. The height of a given dot above the horizontal axis corresponds to 
the frequency of the relevant class interval. Connecting the dots by straight lines 
produces the frequency polygon. Figure 2.3.3 is the frequency polygon for the ages 
data in Table 2.2.1. 

Note that the polygon is brought down to the horizontal axis at the ends at 
points that would be the midpoints if there were an additional cell at each end of 
the corresponding histogram. This allows for the total area to be enclosed. The 
total area under the frequency polygon is equal to the area under the histogram. 
Figure 2.3.4 shows the frequency polygon of Figure 2.3.3 superimposed on the 
histogram of Figure 2.3.1. This figure allows you to see, for the same set of data, 
the relationship between the two graphic forms. 

9.5 	19.5 	29.5 	39.5 	49.5 	59.5 	69.5 

Age 

Figure 2.3.3 Frequency polygon for the ages of 169 subjects 
shown in Table 2.2.1. 
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Figure 2.3.4 Histogram and frequency polygon for the ages of 
169 subjects shown in Table 2.2.1. 

Stem-and-Leaf Displays Another graphical device that is useful for repre-
senting relatively small quantitative data sets is the stem-and-leaf display. A stem-
and-leaf display bears a strong resemblance to a histogram and serves the same 
purpose. A properly constructed stem-and-leaf display, like a histogram, provides 
information regarding the range of the data set, shows the location of the highest 
concentration of measurements, and reveals the presence or absence of symmetry. 
An advantage of the stem-and-leaf display over the histogram is the fact that it 
preserves the information contained in the individual measurements. Such infor-
mation is lost when measurements are assigned to the class intervals of a his-
togram. As will become apparent, another advantage of stem-and-leaf displays is 
the fact that they can be constructed during the tallying process, so the intermedi-
ate step of preparing an ordered array is eliminated. 

To construct a stem-and-leaf display we partition each measurement into two 
parts. The first part is called the stem, and the second part is called the leaf. The 
stem consists of one or more of the initial digits of the measurement, and the leaf 
is composed of one or more of the remaining digits. All partitioned numbers are 
shown together in a single display; the stems form an ordered column with the 
smallest stem at the top and the largest at the bottom. We include in the stem 
column all stems within the range of the data even when a measurement with that 
stem is not in the data set. The rows of the display contain the leaves, ordered and 
listed to the right of their respective stems. When leaves consist of more than one 
digit, all digits after the first may be deleted. Decimals when present in the original 
data are omitted in the stem-and-leaf display. The stems are separated from their 
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leaves by a vertical line. Thus we see that a stem-and-leaf display is also an ordered 
array of the data. 

Stem-and-leaf displays are most effective with relatively small data sets. As a 
rule they are not suitable for use in annual reports or other communications aimed 
at the general public. They are primarily of value in helping researchers and 
decision makers understand the nature of their data. Histograms are more 
appropriate for externally circulated publications. The following example illus-
trates the construction of a stem-and-leaf display. 

Example 	Let us use the age data shown in Table 2.2.1 to construct a stem-and-leaf display. 
2.3.2 

Solution: Since the measurements are all two-digit numbers, we will have one-
digit stems and one-digit leaves. For example, the measurement 18 has a stem of 1 
and a leaf of 8. Figure 2.3.5 shows the stem-and-leaf display for the data. 

The MINITAB statistical software package may be used to construct stem-
and-leaf displays. Figure 2.3.6 shows, for the age data in Table 2.2.1, the stem-and-
leaf display constructed by MINITAB. 

Stem Leaf 

1 8899 

2 011122222233333334444444445555666666666667777777777888888899999999 

3 00000000001111111222223334444456667777788888999 

4 000000111222233344455566777788888899 

5 000112233336 

6 1233 

Figure 2.3.5 Stem-and-leaf display of ages of 169 subjects shown in Table 2.2.1 (stem 
unit = 10, leaf unit = 1). 

Stem- and- leaf of c1 N = 169 

Leaf unit=1.0 

4 1 8899 

70 2 01112222223333333444444444555566666666666777777777788888889999999+ 

(47) 3 00000000001111111222223334444456667777788888999 

52 4 000000111222233344455566777788888899 

16 5 000112233336 

4 6 1233 

Figure 2.3.6 Stem-and-leaf display prepared by MINITAB from the data on subjects' ages shown in 
Table 2.2.1. 
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With the data in column 1, the MINITAB commands are as follows: 

STEM AND LEAF C1; 

INCREMENT 10. 

The increment subcommand specifies the distance from one stem to the next. The 
numbers in the leftmost column of Figure 2.3.6 provide information regarding the 
number of observations (leaves) on a given line and above or the number of 
observations on a given line and below. For example, the number 70 on the second 
line shows that there are 70 observations (or leaves) on that line and the one above 
it. The number 52 on the fourth line from the top tells us that there are 52 
observations on that line and all the ones below. The number in parentheses tells 
us that there are 47 observations on that line. The parentheses mark the line 
containing the middle observation if the total number of observations is odd or the 
two middle observations if the total number of observations is even. 

The + at the end of the second line in Figure 2.3.6 indicates that the 
frequency for that line (age group 20 through 29) exceeds the line capacity, and 
that there is at least one additional leaf that is not shown. In this case, the 
frequency for the 20-29 age group was 66. The line contains only 65 leaves, so the 
+ indicates that there is one more leaf, a 9, that is not shown. 

One way to avoid exceeding the capacity of a line is to have more lines. This is 
accomplished by making the distance between lines shorter; that is, by decreasing 
the widths of the class intervals. For the present example, we may use class interval 
widths of 5, so that the distance between lines is 5. Figure 2.3.7 shows the result 
when MINITAB is used to produce the stem-and-leaf display. 

Stem-and-leaf of c1 N = 169 

Leaf unit=1.0 

	

4 	1 8899 

	

30 	2 01112222223333333444444444 

	

70 	2 5555666666666667777777777888888899999999 

	

(30) 	3 000000000011111112222233344444 

	

69 	3 56667777788888999 

	

52 	4 0000001112222333444 

	

33 	4 55566777788888899 

	

16 	5 00011223333 

	

5 	5 6 

	

4 	6 1233 

Figure 2.3.7 Stem-and-leaf display prepared by MINITAB from the data on 
subjects' ages shown in Table 2.2.1, class interval width =5.. 

EXERCISES 

2.3.1 In a study of the proliferative activity of breast cancers, Veronese and Gambacorta 
(A-l) used the Ki-67 monoclonal antibody and immunohistochemical methods. The 
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investigators obtained tumor tissues from 203 patients with breast carcinoma. The 
patients ranged in age from 26 to 82 years. The following table shows the Ki-67 
values (expressed as percents) for these patients. 

10.12 10.80 10.54 27.30 8.38 
10.15 5.48 23.50 32.60 42.70 
19.30 16.40 4.40 26.80 16.60 
33.00 11.65 26.30 1.73 35.90 
9.63 9.31 7.40 9.35 14.78 

21.42 25.11 12.60 17.96 41.12 
28.30 19.50 15.92 19.40 7.19 
4.65 73.00 17.84 10.90 2.74 

21.09 11.95 33.30 4.53 19.40 
1.00 27.00 9.03 51.20 6.40 

13.72 32.90 9.80 2.43 2.00 
8.77 9.40 35.40 51.70 43.50 
3.00 4.70 14.00 15.00 3.60 
4.09 9.20 6.20 5.00 15.00 

17.60 50.00 10.00 20.00 30.00 
5.22 5.00 15.00 25.00 10.00 

12.70 30.00 10.00 15.00 20.00 
7.39 4.00 25.00 20.00 30.00 

21.36 49.85 29.70 19.95 5.00 
11.36 24.89 29.55 10.00 38.90 
8.12 28.85 19.80 4.99 6.00 
3.14 5.00 44.20 30.00 9.88 
4.33 9.20 4.87 10.00 29.10 
5.07 2.00 3.00 2.00 2.96 
8.10 4.84 9.79 5.00 9.50 
4.23 10.00 19.83 20.00 4.77 

13.11 75.00 20.00 5.00 4.55 
4.07 14.79 8.99 3.97 30.00 
6.07 15.00 40.00 18.79 13.76 

45.82 4.32 5.69 1.42 18.57 
5.58 12.82 4.50 4.41 1.88 
5.00 10.00 4.12 14.24 9.11 
9.69 8.37 6.20 2.07 3.12 
4.14 2.03 2.69 3.69 5.42 
4.59 10.00 6.27 6.37 13.78 

27.55 9.83 6.55 8.21 3.42 
3.51 9.10 11.20 6.88 7.53 
8.58 5.00 29.50 9.60 6.03 

14.70 5.60 28.10 5.48 7.00 
6.72 3.32 13.52 5.70 17.80 

13.10 9.75 7.37 

SOURCE: Silvio M. Veronese, Ph.D. Used with permission. 
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Use these data to prepare: 
a. A frequency distribution. 
b. A relative frequency distribution. 
c. A cumulative frequency distribution. 
d. A cumulative relative frequency distribution. 
e. A histogram. 
f. A frequency polygon. 

2.3.2 Jarjour et al (A-2) conducted a study in which they measured bronchoalveolar lavage 
(BAL) fluid histamine levels in subjects with allergic rhinitis, subjects with asthma, 
and normal volunteers. One of the measurements obtained was the total protein 
(µg/ml) in BAL samples. The following are the results for the 61 samples they 
analyzed. 

76.33 57.73 74.78 100.36 73.50 
77.63 88.78 77.40 51.16 62.20 

149.49 86.24 57.90 72.10 67.20 
54.38 54.07 91.47 62.32 44.73 
55.47 95.06 71.50 73.53 57.68 
51.70 114.79 61.70 47.23 
78.15 53.07 106.00 35.90 
85.40 72.30 61.10 72.20 
41.98 59.36 63.96 66.60 
69.91 59.20 54.41 59.76 

128.40 67.10 83.82 95.33 
88.17 109.30 79.55 
58.50 82.60 153.56 
84.70 62.80 70.17 
44.40 61.90 55.05 

SOURCE: Nizar N. Jarjour, M.D. Used with permission. 

Use these data to prepare: 
a. A frequency distribution. 
b. A relative frequency distribution. 
c. A cumulative frequency distribution. 
d. A cumulative relative frequency distribution. 
e. A histogram. 
f. A frequency polygon. 

2.3.3 Ellis et al. (A-3) conducted a study to explore the platelet imipramine binding 
characteristics in manic patients and to compare the results with equivalent data for 
healthy controls and depressed patients. As part of the study the investigators 
obtained maximal receptor binding (Bmax ) values on their subjects. The following 
are the values for the 57 subjects in the study who had a diagnosis of unipolar 
depression. 

1074 392 286 179 
372 475 511 530 
473 319 147 446 
797 301 476 328 
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385 556 416 348 

769 300 528 773 
797 339 419 697 
485 488 328 520 

334 1114 1220 341 

670 761 438 604 
510 571 238 420 

299 306 867 397 

333 80 1657 

303 607 790 
768 1017 479 

SOURCE: Peter E. Ellis. Used with permis-

sion. 

Use these data to construct: 
a. A frequency distribution. 
b. A relative frequency distribution. 
c. A cumulative frequency distribution. 
d. A cumulative relative frequency distribution. 
e. A histogram. 
f. A frequency polygon. 

2.3.4 The objective of a study by Herrman et al. (A-4) was to estimate the prevalence of 
severe mental disorders in a representative sample of prisoners in three metropoli-
tan prisons in Melbourne, Australia. Three groups of prisoners were identified: 
those who agreed to be interviewed, those who refused to be interviewed, and those 
who agreed to serve as replacements for the subjects who initially refused to be 
interviewed. In addition to assessing the prevalence of mental disorders among the 
subjects, the investigators obtained data on length of sentence and length of 
incarceration at the time of the study. The following data are the lengths of 
minimum sentence (in days) for the subjects who refused to be interviewed. 

18 4380 0 360 
4955 720 1095 727 

2190 730 365 1275 

450 455 180 344 

3650 0 2340 2555 
2920 540 360 545 
270 545 180 90 

1000 0 2005 60 
270 150 717 540 
180 1825 3710 90 
910 2920 180 660 
90 270 2555 365 

253 284 4015 3100 
450 330 2885 1050 
360 0 730 90 

1460 1000 3160 450 
1095 1460 910 1200 
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635 360 360 120 
1953 0 466 1460 
844 120 2920 409 
360 1095 240 910 
570 330 4745 0 
951 540 88 1125 
540 730 545 
450 90 
450 1670 
730 

SOURCE: Helen Herrman, M.D. Used with 
permission. 

Use these data to construct: 
a. A frequency distribution. 
b. A relative frequency distribution. 
c. A cumulative frequency distribution. 
d. A cumulative relative frequency distribution. 
e. A histogram. 
f. A frequency polygon. 

2.3.5 The following table shows the number of hours 45 hospital patients slept following 
the administration of a certain anesthetic. 

7 10 12 4 8 7 3 8 5 
12 11 3 8 1 1 13 10 4 
4 5 5 8 7 7 3 2 3 
8 13 1 7 17 3 4 5 5 
3 1 17 10 4 7 7 11 8 

From these data construct: 

a. A frequency distribution. 
c. A histogram. 

2.3.6 The following are the number 
hospitals. 

b. A relative frequency distribution. 
d. A frequency polygon. 

of babies born during a year in 60 community 

30 55 27 45 56 48 45 49 32 57 47 56 

37 55 52 34 54 42 32 59 35 46 24 57 

32 26 40 28 53 54 29 42 42 54 53 59 

39 56 59 58 49 53 30 53 21 34 28 50 

52 57 43 46 54 31 22 31 24 24 57 29 

From these data construct: 

a. A frequency distribution. 	b. A relative frequency distribution. 
c. A frequency polygon. 
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2.3.7 In a study of physical endurance levels of male college freshmen the following 
composite endurance scores based on several exercise routines were collected. 

254 281 192 260 212 179 225 179 181 149 

182 210 235 239 258 166 159 223 186 190 
180 188 135 233 220 204 219 211 245 151 
198 190 151 157 204 238 205 229 191 200 
222 187 134 193 264 312 214 227 190 212 
165 194 206 193 218 198 241 149 164 225 
265 222 264 249 175 205 252 210 178 159 

220 201 203 172 234 198 173 187 189 237 

272 195 227 230 168 232 217 249 196 223 
232 191 175 236 152 258 155 215 197 210 

214 278 252 283 205 184 172 228 193 130 

218 213 172 159 203 212 117 197 206 198 
169 187 204 180 261 236 217 205 212 218 

191 124 199 235 139 231 116 182 243 217 

251 206 173 236 215 228 183 204 186 134 
188 195 240 163 208 

From these data construct: 

a. A frequency distribution. 	b. A relative frequency distribution. 
c. A frequency polygon. 	d. A histogram. 

2.3.8 The following are the ages of 30 patients seen in the emergency room of a hospital 
on a Friday night. Construct a stem-and-leaf display from these data. 

35 32 21 43 39 60 
36 12 54 45 37 53 
45 23 64 10 34 22 
36 45 55 44 55 46 
22 38 35 56 45 57 

2.3.9 The following are the emergency room charges made to a sample of 25 patients at 
two city hospitals. Construct a stem-and-leaf display for each set of data. What does 
a comparison of the two displays suggest regarding the two hospitals? 

Hospital A 

249.10 202.50 222.20 214.40 205.90 
214.30 195.10 213.30 225.50 191.40 
201.20 239.80 245.70 213.00 238.80 
171.10 222.00 212.50 201.70 184.90 
248.30 209.70 233.90 229.80 217.90 
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Hospital B 

199.50 184.00 173.20 186.00 214.10 
125.50 143.50 190.40 152.00 165.70 
154.70 145.30 154.60 190.30 135.40 
167.70 203.40 186.70 155.30 195.90 
168.90 166.70 178.60 150.20 212.40 

2.3.10 Refer to the ages of Greenland residents discussed in Example 1.4.1 and displayed 
in Table 1.4.1. Use class interval widths of 5 and construct: 
a. A frequency distribution. 
b. A relative frequency distribution. 
c. A cumulative frequency distribution. 
d. A cumulative relative frequency distribution. 
e. A histogram. 
f. A frequency polygon. 

2.4 
Descriptive Statistics - 
Measures of Central Tendency 

Although frequency distributions serve useful purposes, there are many situations 
that require other types of data summarization.1 What we need in many instances is 
the ability to summarize the data by means of a single number called a descriptive 
measure. Descriptive measures may be computed from the data of a sample or the 
data of a population. To distinguish between them we have the following defini-
tions. 

DEFINITIONS 

1. A descriptive measure computed from the data of a sample is called a 
statistic. 

2. A descriptive measure computed from the data of a population is called 
a parameter. 

Several types of descriptive measures can be computed from a set of data. In 
this chapter, however, we limit discussion to measures of central tendency and measures 
of dispersion. We consider measures of central tendency in this section and measures 
of dispersion in the following one. 

In each of the measures of central tendency, of which we discuss three, we have 
a single value that is considered to be typical of the set of data as a whole. 
Measures of central tendency convey information regarding the average value of a 
set of values. As we will see, the word average can be defined in different ways. 

The three most commonly used measures of central tendency are the mean, the 
median, and the mode. 
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Arithmetic Mean The most familiar measure of central tendency is the 
arithmetic mean. It is the descriptive measure most people have in mind when they 
speak of the "average." The adjective arithmetic distinguishes this mean from other 
means that can be computed. Since we are not covering these other means in this 
book, we shall refer to the arithmetic mean simply as the mean. The mean is 
obtained by adding all the values in a population or sample and dividing by the 
number of4values that are added. 

Example 	We wish to obtain the mean age of the population of 169 subjects represented in 
2.4.1 	Table 1.4.1. 

Solution: We proceed as follows: 

27 + 27 + • • • +23 + 39 	5797 
mean age =     = 34.302 

169 	 169 

The three dots in the numerator represent the values we did not show in order to 
save space. 

General Formula for the Mean It will be convenient if we can generalize 
the procedure for obtaining the mean and, also, represent the procedure in a more 
compact notational form. Let us begin by designating the random variable of 
interest by the capital letter X. In our present illustration we let X represent the 
random variable, age. Specific values of a random variable will be designated by the 
lowercase letter x. To distinguish one value from another we attach a subscript to 
the x and let the subscript refer to the first, the second, the third value, and so on. 
For example, from Table 1.4.1 we have 

x i  = 27, 	x2  = 27,..., 	and 	x169  = 39 

In general, a typical value of a random variable will be designated by x, and the 
final value, in a finite population of values, by x N  where N is the number of values 
in the population. Finally, we will use the Greek letterµ to stand for the 
population mean. We may now write the general formula for a finite population 
mean as follows: 

N 

E x i  

N 
	 (2.4.1) 

The symbol EN„ instructs us to add all values of the variable from the first to the 
last. This symbol, E, called the summation sign, will be used extensively in this book. 
When from the context it is obvious which values are to be added, the symbols 
above and below E will be omitted. 
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The Sample Mean When we compute the mean for a sample of values, the 
procedure just outlined is followed with some modifications in notation. We use 
to designate the sample mean and n to indicate the number of values in the 
sample. The sample mean then is expressed as 

(2.4.2) 
n 

Example 
	

In Chapter 1 we selected a simple random sample of 10 subjects from the 
2.4.2 	population of subjects represented in Table 1.4.1. Let us now compute the mean 

age of the 10 subjects in our sample. 

Solution: We recall (see Table 1.4.2) that the ages of the 10 subjects in our 
sample were x, = 42, x2  = 28, x3  = 28, x4  = 61, x5  = 31, x6  = 23, x, = 50, x8  = 
34, x9  = 32, x10  = 37. Substitution of our sample data into Equation 2.4.2 gives 

— 	 =—=36.6 

E xi  

	

i =1 	42 + 28 + • • • +37 	366 

	

n 	 10 	 10 

Properties of the Mean The arithmetic mean possesses certain properties, 
some desirable and some not so desirable. These properties include the following. 

1. Uniqueness. For a given set of data there is one and only one arithmetic mean. 

2. Simplicity. The arithmetic mean is easily understood and easy to compute. 

3. Since each and every value in a set of data enters into the computation of the 
mean, it is affected by each value. Extreme values, therefore, have an influence 
on the mean and, in some cases, can so distort it that it becomes undesirable 
as a measure of central tendency. 

As an example of how extreme values may affect the mean, consider the 
following situation. Suppose the five physicians who practice in an area are 
surveyed to determine their charges for a certain procedure. Assume that they 
report these charges: $75, $75, $80, $80, and $280. The mean charge for the five 
physicians is found to be $118, a value that is not very representative of the set of 
data as a whole. The single atypical value had the effect of inflating the mean. 

Median The median of a finite set of lvalues is thatvalue which divides the 
set into two equal parts such that the numlier of values] equal to or greater than 
the median is equal to the number of values equal to ot less than the median. If 
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the number of values is odd, the median will be the middle value when all values 
have been arranged in order of magnitude. When the number of values is even, 
there is no single middle value. Instead there are two middle values. In this case 
the median is taken to be the mean of these two middle values, when all values 
have been arranged in the order of their magnitude. In other words, the median 
observation of a data set is the (n + 1)/2th one when the observations have been 
ordered. If, for example, we have 11 observations, the median is the (11 + 1)/2 = 
6th ordered observation. If we have 12 observations the median is the (12 + 1)/2 
= 6.5th ordered observation, and is a value halfway between the 6th and 7th 
ordered observation. 

Example 	Let us illustrate by finding the median of the data in Table 2.2.1. 
2.4.3 

Solution: The values are already ordered so we need only to find the two middle 
values. The middle value is the (n + 1)/2 = (169 + 1)/2 = 170/2 = 85th one. 
Counting from the smallest up to the 85th value we see that it is 31. Thus the 
median age of the 169 subjects is 31 years. 

Example 	We wish to find the median age of the subjects represented in the sample described 
2.4.4 	in Example 2.4.2. 

Solution: Arraying the 10 ages in order of magnitude from smallest to largest 
gives 23, 28, 28, 31, 32, 34, 37, 42, 50, 61. Since we have an even number of ages, 
there is no middle value. The two middle values, however, are 32 and 34. The 
median, then, is (32 + 34)/2 = 33. 

Properties of the Median Properties of the median include the following: 

1. Uniqueness. As is true with the mean, there is only one median for a given set 
of data. 

2. Simplicity. The median is easy to calculate. 

3. It is not as drastically affected by extreme values as is the mean. 

The Mode The mode of a set of values is that value which occurs most 
frequently. If all the values are different there is no mode; on the other hand, a set 
of values may have more than one mode. 

Example 	Find the modal age of the subjects whose ages are given in Table 2.2.1. 
2.4.5 

Solution: A count of the ages in Table 2.2.1 reveals that the age 26 occurs most 
frequently (11 times). The mode for this population of ages is 26. 

For an example of a set of values that has more than one mode, let us consider 
a laboratory with 10 employees whose ages are 20, 21, 20, 20, 34, 22, 24, 27, 27, and 



Population A 

..population B 

'N\  
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Figure 2.5.1 Two frequency distributions with equal means 
but different amounts of dispersion. 

27. We could say that these data have two modes, 20 and 27. The sample consisting 
of the values 10, 21, 33, 53, and 54 has no mode since all the values are different. 

The mode may be used for describing qualitative data. For example, suppose 
the patients seen in a mental health clinic during a given year received one of the 
following diagnoses: mental retardation, organic brain syndrome, psychosis, neuro-
sis, and personality disorder. The diagnosis occurring most frequently in the group 
of patients would be called the modal diagnosis. 

2.5 
Descriptive Statistics -
Measures of Dispersion 

The dispersion of a set of observations refers t the variety that they exhibit. A 
measure of dispersion conveys information 'regarding the amount of variabiltiy 
present in a set of data. If all the values are the same, there is no dispersion; if they 
are not all the same, dispersion is present in the data. The amount of dispersion 
may be small, when the values, though different, are close together. Figure 2.5.1 
shows the frequency polygons for two populations that have equal means but 
different amounts of variability. Population B, which is more variable than popula-
tion A, is more spread out. If the values are widely scattered, the dispersion is 
greater. Other terms used synonymously with dispersion include variation, spread, 
and scatter. 

The Range One way to measure the variation in a set of values is to 
compute the range. The range is the difference between the smallest and largest 
value in a set of observations. If we denote the range by R, the largest value by x L, 
and the smallest value by xs, we compute the range as follows: 

R = xL  — x s 	 (2.5.1) 
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Example 	We wish to compute the range of the ages of the sample subjects discussed in 
2.5.1 	Example 2.4.2. 

Solution: Since the youngest subject in the sample is 23 years old and the oldest 
is 61, we compute the range to be 

R = 61 — 23 = 38 

The usefulness of the range is limited. The fact that it takes into account only two 
values causes it to be a poor measure of dispersion. The main advantage in using 
the range is the simplicity of its computation. 

The Variance When the values of a set of observations lie close to their 
mean, the dispersion is less than when they are scattered over a wide range. Since 
this is true, it would be intuitively appealing if we could measure dispersion relative 
to the scatter of the values about their mean. Such a measure is realized in what is 
known as the variance. In computing the variance of a sample of values, for 
example, we subtract the mean from each of the values, square the resulting 
differences, and then add up the squared differences. This sum of the squared 
deviations of the values from their mean is divided by the sample size, minus 1, to 
obtain the sample variance. Letting s2  stand for the sample variance, the proce-
dure may be written in notational form as follows: 

S = 

n 
( 

i=1  

n — 1 
(2.5.2) 

Example 	Let us illustrate by computing the variance of the ages of the subjects discussed in 
2.5.2 	Example 2.4.2. 

Solution: 

2 	(42 — 36.6)2  + (28 — 36.6)2  •--- (37 — 36.6)2  
s = 	  

9 

1196.399997 
	  = 132.933333 

9 

Degrees of Freedom The reason for dividing by n — 1 rather than n, as we 
might have expected, is the theoretical consideration referred to as degrees of 
freedom. In computing the variance, we say that we have n — 1 degrees of freedom. We 
reason as follows. The sum of the deviations of the values from their mean is equal 



38 	Chapter 2 • Descriptive Statistics 

to zero, as can be shown. If, then, we know the values of n — 1 of the deviations 
from the mean, we know the nth one, since it is automatically determined because 
of the necessity for all n values to add to zero. From a practical point of view, 
dividing the squared differences by n — 1 rather than n isln4cessary in order to use 
the sample variance in the inference procedut4s discussed later. The concept of 
degrees of freedom will be discussed again later. Students interested in pursuing 
the matter further at this time should refer to the article by Walker (2). 

Alternative Variance Formula When, the number of observations is large, 
the use of Equation 2.5.2 can be tedious. The following formula may prove to be 
less troublesome. 

s 2  = 

n 

n E - (E x)  
i=1 	i=1  

n(n — 1) 
(2.5.3) 

When we cpmpute the variance from a finite i:Kpulation of ivalues, the procedures 
outlined abbve are followed except that we divide by N rather than N — 1. If we let 
u2  stand for the finite population variance, the definitional and computational 
formulas, respectively, are as follows: 

0' 2 

u  2 

E (xi — 11)
2 

=i 
(2.5.4) 

2 

= 
N 

N 

NE4 - 
_ 	i=I 

N  

x j1 
i = I 

N • N 
(2.5.5) 

Standard Deviation The variance represents squared units and, therefore, 
is not an appropriate measure of dispersion when we wish to express this concept 
in terms of the original units. To obtain a measure of dispersion in original units, 
we merely take the square root of the variance. The result is called the standard 
deviation. In general, the standard deviation of a sample is given by 

S =FS = 
E (x, - 
=1 

n — 1 
(2.5.6) 

The standard deviation of a finite population is obtained by taking the square root 
of the quantity obtained by Equation 2.5.4. 
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The Coefficient of Variation The standard deviation is useful as a meeasure 
of variation within a given set of data. When one desires to compare the dispersion 
in two sets of data, however, comparing the two standard deviations may lead to 
fallacious results. It may be that the two variables involved are measured in 
different units. For example, we may wish to know, for a certain population, 
whether serum cholesterol levels, measured in milligrams per 100 ml, are more 
variable than body weight, measured in pounds. 

Furthermore, although the same unit of measurement is used, the two means 
may be quite different. If we compare the standard deviation of weights of first 
grade children with the standard deviation of weights of high school freshmen, we 
may find that the latter standard deviation is numerically larger than the former, 
because the weights themselves are larger, not because the dispersion is greater. 

What is needed in situations like these is a measure of relative variation rather 
than absolute variation. Such a measure is found in the coefficient of variation, which 
expresses the standard deviation as a percentage of the mean. The formula is given 
by 

CV. = (100) 
x 

(2.5.7) 

We see that, since the mean and standard deviations are expressed in the same 
unit of measurement, the unit of measurement cancels out in computing the 
coefficient of variation. What we have, then, is a measure that is independent of 
the unit of measurement. 

Example 	Suppose two samples of human males yield the following results. 
2.5.3 

Sample 1 	Sample 2 

Age 	 25 years 	11 years 
Mean weight 	 145 pounds 	80 pounds 
Standard deviation 	10 pounds 	10 pounds 

We wish to know which is more variable, the weights of the 25-year-olds or the weights of 
the 11-year-olds. 

Solution: A comparison of the standard deviations might lead one to conclude 
that the two samples possess equal variability. If we compute the coefficients of 
variation, however, we have for the 25-year-olds 

C .V. =100) = 6.9 

and for the 11-year olds 

c.v.= a(100)  = 12.5 

If we compare these results we get quite a different impression. 

The coefficient of variation is also useful in comparing the results obtained by 
different persons who are conducting investigations involving the same variable. 
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N 	MEAN 	MEDIAN 	TRMEAN 	STDEV 	SEMEAN 

	

10 	36.60 	33.00 	35.25 	11.53 	3.65 

	

MIN 	MAX 	 Q1 	 Q3 

	

23.00 	61.00 
	

28.00 	44.00 

Figure 2.5.2 Printout of descriptive measures computed from the sample of ages in 
Example 2.4.2, MINITAB software package. 

Since the coefficient of variation is independent of the scale of measurement, it is a 
useful statistic for comparing the variability of two or more variables measured on 
different scales. We could, for example, use the coefficient of variation to compare 
the variability in weights of one sample of subjects whose weights are expressed in 
pounds with the variability in weights of another sample of subjects whose weights 
are expressed in kilograms. 

Computer Analysis Computer software packages provide a variety of possi-
bilities in the calculation of descriptive measures. Figure 2.5.2 shows a printout of 
the descriptive measures available from the MINITAB package. The data consists 
of the ages from Example 2.4.2. With the data in column 1, the MINITAB 
command is 

DESCRIBE C1 

In the printout Ql and Q3 are the first and third quartiles, respectively. These 
measures are described later in this chapter. 

TRMEAN stands for trimmed mean. The trimmed mean instead of the arith-
metic mean is sometimes used as a measure of central tendency. It is computed 
after some of the extreme values have been discarded. The trimmed mean, 
therefore, does not possess the disadvantage of being influenced unduly by extreme 
values as is the case with the arithmetic mean. The tern SEMEAN stands for 
standard error of the mean. This measure, as well as the trimmed mean, will be 
discussed in detail in a later chapter. Figure 2.5.3 shows, for the same data, the 
SAS®  printout obtained by using the PROC MEANS statement. 

VARIABLE N 	 MEAN STANDARD MINIMUM MAXIMUM 

	

DEVIATION 	VALUE 	VALUE 

AGES 	10 36.60000000 11.52967187 23.00000000 61.00000000 

STD ERROR 	 SUM 	 VARIANCE 	 C.V. 

OF MEAN 

	

3.64600238 366.00000000 132.93333333 	31.502 

Figure 2.5.3 Printout of descriptive measures computed from the sample of ages in 
Example 2.4.2, SAS®  software package. 
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EXERCISES 

For each of the data sets in the following exercises compute (a) the mean, (b) the median, 
(c) the mode, (d) the range, (e) the variance, (f) the standard deviation, and (g) the 
coefficient of variation. Treat each data set as a sample. 

2.5.1 Thirteen patients with severe chronic airflow limitation were the subjects of a study 
by Fernandez et al. (A-5), who investigated the effectiveness of a treatment to 
improve gas exchange in such subjects. The following are the body surface areas (m2) 
of the patients. 

2.10 	1.74 
	

1.68 	1.83 
	

1.57 	1.71 
	

1.73 

1.65 	1.74 
	

1.57 	2.76 
	

1.90 	1.77 

SOURCE: Enrique Fernandez, Paltiel Weiner, Ephraim Meltzer, Mary M. Lutz, 
David B. Badish, and Reuben M. Cherniack, "Sustained Improvement in Gas 
Exchange After Negative Pressure Ventilation for 8 Hours Per Day on 2 
Successive Days in Chronic Airflow Limitation," American Review of Respiratory 
Disease, 144 (1991), 390-394. 

2.5.2 The results of a study by Dosman et al. (A-6) allowed them to conclude that 
breathing cold air increases the bronchial reactivity to inhaled histamine in asthmatic 
patients. The study subjects were seven asthmatic patients aged 19 to 33 years. The 
baseline forced expiratory values (in liters per minute) for the subjects in their 
sample were as follows: 

3.94 	1.47 	2.06 	2.36 	3.74 	3.43 	3.78 

SOURCE: J. A. Dosman, W. C. Hodgson, and D. W. Cockcroft, "Effect of Cold 
Air on the Bronchial Response to Inhaled Histamine in Patients with Asthma," 
American Review of Respiratory Disease, 144 (1991), 45-50. 

2.5.3 Seventeen patients admitted to the Aberdeen Teaching Hospitals in Scotland be-
tween 1980 and mid-1988 were diagnosed as having pyogenic liver abscess. Nine of 
the patients died. In an article in the journal Age and Ageing, Sridharan et al. (A-7) 
state that "The high fatality of pyogenic liver abscess seems to be at least in part due 
to a lack of clinical suspicion." The following are the ages of the subjects in the study: 

63 	72 	62 	69 	71 	84 	81 	78 	61 	76 	84 	67 	86 
69 64 87 76 

SOURCE: G. V. Sridharan, S. P. Wilkinson, and W. R. Primrose, "Pyogenic Liver Abscess in the 
Elderly," Age and Ageing, 19 (1990), 199-203. Used by permission of Oxford University Press. 

2.5.4 Arinami et al. (A-8) analyzed the auditory brain-stem responses in a sample of 12 
mentally retarded males with the fragile X syndrome. The IQs of the subjects were 
as follows: 

17 	22 	17 	18 	17 	19 	34 	26 	14 	33 	21 	29 

SOURCE: Tadao Arinami, Miki Sato, Susumu Nakajima, and Ikuko Kondo, "Auditory 
Brain-Stem Responses in the Fragile X Syndrome," American Journal of Human Genetics, 
43 (1988), 46-51. © 1988 by The American Society of Human Genetics. All rights 
reserved. Published by the University of Chicago. 
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2.5.5 In an article in the American Journal of Obstetrics and Gynecology, Dr. Giancarlo Mari 
(A-9) discusses his study of arterial blood flow velocity waveforms of the pelvis and 
lower extremities in normal and growth-retarded fetuses. He states that his prelimi-
nary data suggest that "the femoral artery pulsatility index cannot be used as an 
indicator of adverse fetal outcome, whereas absent or reverse flow of the umbilical 
artery seems to be better correlated with adverse fetal outcome." The following are 
the gestational ages (in weeks) of 20 growth-retarded fetuses that he studied: 

24 	26 	27 	28 	28 	28 	29 	30 	30 	31 	32 	32 	33 

33 	34 	34 	35 	35 	35 	36 

SOURC:E: Giancarlo Mari, "Arterial Bood Flow Velocity Waveforms of the Pelvis and Lower 
Extremities in Normal and Growth-Retarded Fetuses," American Journal of Obstetrics and 
Gynecology, 165 (1991), 143-151. 

2.5.6 The objective of a study by Kuhnz et al (A-10) was to analyze certain basic 
pharmacokinetic parameters in women who were treated with a triphasic oral 
contraceptive. The weights (in kilograms) of the 10 women who participated in the 
study were: 

62 	53 	57 	55 	69 	64 	60 	59 	60 	60 

SOURCE: Wilhelm Kuhnz, Durda Sostarek, Christiane Gansau, Tom Louton, and Marianne 
Mahler, "Single and Multiple Administration of a New Triphasic Oral Contraceptive to Women: 
Pharmacokinetics of Ethinyl Estradiol and Free and Total Testosterone Levels in Serum," 
American Journal of Obstetrics and Gynecology, 165 (1991), 596-602. 

2.6 
Measures of Central Tendency 
Computed from Grouped Data 

After data have been grouped into a frequency distribution it may be desirable to 
compute some of the descriptive measures, such as the mean and variance. 

Frequently an investigator does not have access to the raw data in which he or she 
is interested, but does have a frequency distribution. Data frequently are published 
in the form of a frequency distribution without an accompanying list of individual 

values or descriptive measures. Readers interested in a measure of central ten-
dency or a measure of dispersion for these data must compute their own. 

When data are grouped the individual observations lose their identity. By 

looking at a frequency distribution we are able to determine the number of 

observations falling into the various class intervals, but the actual values cannot be 
determined. Because of this we must make certain assumptions about the values 
when we compute a descriptive measure from grouped data. As a consequence of 
making these assumptions our results are only approximations to the true values. 
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The Mean Computed from Grouped Data In calculating the mean from 
grouped data, we assume that all values falling into a particular class interval are 
located at the midpoint of the interval. The midpoint of a class interval is obtained 
by computing the mean of the upper and lower limits of the interval. The midpoint 
of the first class interval of the distribution shown in Table 2.2.2, for example, is 
equal to (10 + 19)/2 = 29/2 = 14.5. The midpoints of successive class intervals 
may be found by adding the class interval width to the previous midpoint. The 
midpoint of the second class interval in Table 2.2.2 is equal to 14.5 + 10 = 24.5. 

To find the mean we multiply each midpoint by the corresponding frequency, 
sum these products, and divide by the sum of the frequencies. If the data represent 
a sample of observations, the computation of the mean may be shown symbolically 
as 

— 

k 

E mifi 
i=1  

k 

EJi  
i =1 

(2.6.1) 

where k = the number of class intervals, m i  = the midpoint of the ith class 
interval, and f = the frequency of the ith class interval. 

Example 	Let us use the frequency distribution of Table 2.2.2 to compute the mean age of 
2.6.1 	 the 169 subjects, which we now treat as a sample. 

Solution: When we compute the mean from grouped data, it is convenient to 
prepare a work table such as Table 2.6.1, which has been prepared for the data of 
Table 2.2.2. 

TABLE 2.6.1 Work Table for Computing the Mean Age from 

the Grouped Data of Table 2.2.2 

Class 
Interval 

Class 
Midpoint 

mi  

Class 
Frequency 

"id/ 

10-19 14.5 4 58.0 
20-29 24.5 66 1617.0 
30-39 34.5 47 1621.5 
40-49 44.5 36 1602.0 
50-59 54.5 12 654.0 
60-69 64.5 4 258.0 

Total 169 5810.5 
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We may now compute the mean. 

E mzf 	5810.5 
k 	 169 = 34.48 

i=1 

We get an idea of the accuracy of the mean computed from grouped data by 
noting that, for our sample, the mean computed from the individual observations is 
34.302. 

*The computation of a mean from a population of values grouped into a finite 
number of classes is performed in exactly the same manner. 

The Median — Grouped Data When computing a mean from grouped 
data, we assume that the values within a class interval are located at the midpoint; 
however, in computing the median, we assume that they are evenly distributed 
through the interval. 

The first step in computing the median from grouped data is to locate the class 
interval in which it is located. We do this by finding the interval containing the n/2 
value. 

The median then may be computed by the following formula: 

median = L + —(U — Li ) 
	

(2.6.2) 

where L, = the true lower limit of the interval containing the median, U = the 
true upper limit of the interval containing the median, j = the number of 
observations still lacking to reach the median, aer the lower limit of the interval 
containing the median has been reached, and j = the frequency of the interval 
containing the median. 

Example 	Again, let us use the frequency distribution of Table 2.2.2 to compute the median 
2.6.2 	age of the 169 subjects. 

Solution: The n/2 value is 169/2 = 84.5. Looking at Table 2.2.2 we see that the 
first two class intervals account for 70 of the observations and that 117 observations 
are accounted for by the first three class intervals. The median value, therefore, is 
in the third class interval. It is somewhere between 29.5 and 39.5 if we consider the 
true class limits. The question now is: How far must we proceed into this interval 
before reaching the median? Under the assumption that the values are evenly 

x = = 1 

Eli 
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distributed through the interval, it seems reasonable that we should move a 
distance equal to (84.5 — 70)/47 of the total distance of the class interval. After 
reaching the lower limit of the class interval containing the median we need 14.5 
more observations, and there are a total of 47 observations in the interval. 
The value of the median then is equal to the value of the lower limit of the interval 
containing the median plus 14.5/47 of the interval width. For the data of 
Table 2.2.2 we compute the median to be 29.5 + (14.5/47X10) = 32.6 33. 

The median computed from the individual ages is 31. Note that when we locate 
the median value for grouped data we use n/2 rather than (n + 1)/2, which we 
used with ungrouped data. 

The Mode — Grouped Data We have defined the mode of a set of values as 
the value that occurs most frequently. When designating the mode of grouped 
data, we usually refer to the modal class where the modal class is the class interval 
with the highest frequency. In Table 2.2.2 the modal class would be the second 
class, 20-29, or 19.5-29.5, using the true class limits. If a single value for the mode 
of grouped data must be specified, it is taken as the midpoint of the modal class. In 
the present example this is 24.5. The assumption is made that all values in the 
interval fall at the midpoint. 

Percentiles and Quartiles The mean and median are special cases of a 
family of parameters known as location parameters. These descriptive measures are 
called location parameters because they can be used to designate certain positions 
on the horizontal axis when the distribution of a variable is graphed. In that sense 
the so-called location parameters "locate" the distribution on the horizontal axis. 
For example, a distribution with a median of 100 is located to the right of a 
distribution with a median of 50 when the two distributions are graphed. Other 
location parameters include percentiles and quartiles. We may define a percentile 
as follows: 

DEFINITION 
MiN5AMMWMOMMAMMVARM'eS,VMA.16MWOM&M$0.  

Given a set of n observations x i , x2, 	, x n , the pth percentile P is the 
value of X such that p percent or less of the observations are less than P 
and (100 — p) percent or less of the observations are greater than P. 

Subscripts on P serve to distinguish one percentile from another. The 10th 
percentile, for example, is designated P10, the 70th is designated P70, and so on. 
The 50th percentile is the median and is designated P50. All percentiles are 
computed by the method described earlier for computing the median. Usually one 
calculates percentiles only for large data sets. 
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For grouped data the location of the kth percentile Pk  is given by 

k 

* Pk  = 100 n 

	
(2.6.3) 

Example 	Let us find the 80th percentile of the ages shown in Table 2.2.2. 
2.6.3 

*Solution: By Equation 2.6.3 we find that P80  = (80/100X169) = 135.2. By Equa-
tion 2.6.2, then, we compute 

(135.2 — 117) 
P80 = 39.5 + 	36 	

(49.5 — 39.5) 

= 44.56 

We see that 80 percent of the subjects are younger than 44.56 years. 

Percentiles for Ungrouped Data The 25th percentile is often referred to 
as the first quartile and denoted Q1. The 50th percentile (the median) is referred to 
as the second or middle quartile and written Q2, and the 75th percentile is referred 
to as the third quartile, Q3. 

When we wish to find the quartiles of ungrouped data, the following formulas 
are used: 

n + 1 
Qi 	4 
	th 	ordered observation 

2(n + 1) 	n + 1 
Q2   	th 

4 	2 
ordered observation 

3(n + 1) 
Q3 	th 	ordered observation 

4 

Box-and-Whisker Plots A useful visual device for communicating the infor-
mation contained in a data set is the box-and-whisker plot. The construction of a 
box-and-whisker plot (sometimes called, simply, a boxplot) makes use of the 
quartiles of a data set and may be accomplished by following these five steps: 

1. Represent the variable of interest on the horizontal axis. 

2. Draw a box in the space above the horizontal axis in such a way that the left 
end of the box aligns with the first quartile Q1  and the right end of the box 
aligns with the third quartile Q3. 
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3. Divide the box into two parts by a vertical line that aligns with the median Q2. 

4. Draw a horizontal line called a whisker from the left end of the box to a point 
that aligns with the smallest measurement in the data set. 

5. Draw another horizontal line, or whisker, from the right end of the box to a 
point that aligns with the largest measurement in the data set. 

Examination of a box-and-whisker plot for a set of data reveals information 
regarding the amount of spread, location of concentration, and symmetry of the 
data. 

The following example illustrates the construction of a box-and-whisker plot. 

Example 
2.6.4 

In a medical journal article, Pitts et al. (A-11) state that "Carcinomas with 
metaplasia and sarcomas arising within the breast are difficult to accurately 
diagnose and classify because of their varied histologic patterns and rarity." The 
authors investigated a series of pure sarcomas and carcinomas exhibiting metapla-
sia in an attempt to further study their biologic characteristics. Table 2.6.2 
contains the ordered diameters in centimeters of the neoplasms removed from the 
breasts of 20 subjects with pure sarcomas. 

TABLE 2.6.2 Diameters (cm) of Pure Sarcomas Removed from the Breasts of 

20 Women 

	

.5 	1.2 	2.1 	2.5 	2.5 	3.0 	3.8 	4.0 	4.2 	4.5 	5.0 

	

5.0 	5.0 	5.0 	6.0 	6.5 	7.0 	8.0 	9.5 	13.0 

SOURCE: William C. Pitts, Virginia A. Rojas, Michael J. Gaffey, Robert V. Rouse, Jose 
Esteban, Henry F. Frierson, Richard L. Kempson, and Lawrence M. Weiss, "Carcinomas 
With Metaplasia and Sarcomas of the Breast," American Journal of Clinical Pathology, 95 

(1991), 623-632. 

Solution: The smallest and largest measures are .5 and 13.0, respectively. The 
first quartile is the Q1  = (20 + 1)/4 = 5.25th measurement, which is 2.5 + 
(.25X3.0 - 2.5) = 2.625. The median is the Q2  = (20 + 1)/2 = 10.5th measure-
ment or 4.5 + (.5X5.0 - 4.5) = 4.75, and the third quartile is the Q3  = 3(20 + 
1)/4 = 15.75th measurement, which is equal to 6.0 + (.75X6.5 - 6.0) = 6.375. 
The resulting box-and-whisker plot is shown in Figure 2.6.1. 

I  

I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 
0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12 	13 	14 

Diameter (cm) 

Figure 2.6.1 Box-and-whisker plot for Example 2.6.4. 
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I 	+ 	I 	  

Tumsize 
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 

Figure 2.6.2 Box-and-whisker plot constructed by MINITAB from the data of 
Table 2.6.2. 

Examination of Figure 2.6.1 reveals that 50 percent of the measurements are 
between about 2.6 and 6.4, the approximate values of the first and third quartiles, 
respectively. The vertical bar inside the box shows that the median is about 4.75. 
The longer right-hand whisker indicates that the distribution of diameters is 
skewed to the right. 

Many statistical software packages have the capability of constructing box-
and-whisker plots. Figure 2.6.2 shows one constructed by MINITAB from the 
patient age data of Table 2.2.2. We put the data into column 1 and issue the 
MINITAB command 

Boxplot Cl 

The asterisk in Figure 2.6.2 alerts us to the fact that the data set contains an 
unusually large value, called an outlier. It is the melanoma that was 13 cm in 
diameter. The right whisker in Figure 2.6.2, therefore, stops at 9.5, the largest 
value not considered to be an outlier. 

The SAS®  statement PROC UNIVARIATE may be used to obtain a box-and-
whisker plot. The statement also produces other descriptive measures and displays, 
including stem-and-leaf plots, means, variances, and quartiles. 

Exploratory Data Analysis Box-and-whisker plots and stem-and-leaf dis-
plays are examples of what are known as exploratory data analysis techniques. These 
techniques, made popular as a result of the work of Tukey (3), allow the inves-
tigator to examine data in ways that reveal trends and relationships, identify 
unique features of data sets, and facilitate their description and summarization. 
Breckenridge (4) uses exploratory data analysis in the study of change in the age 
pattern of fertility. A book by Du Toit et al. (5) provides an overview of most of the 
well-known and widely used methods of analyzing and portraying data graphically 
with emphasis on exploratory techniques. 

2.7 
The Variance and Standard 
Deviation — Grouped Data 

In calculating the variance and standard deviation from grouped data we assume 
that all values falling into a particular class interval are located at the midpoint of 
the interval. This, it will be recalled, is the assumption made in computing the 
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mean and the mode. The variance of a sample, then, is given by 

* s 2  = 

E (m. — x) 2fi  
i=1 (2.7.1) k 

Efi  — 1 
i =1 

where the symbols to the right of the equal sign have the definitions given in 
Equation 2.6.1. 

The following computing formula for the sample variance on occasion may be 
preferred: 

n E niU — 	m 1 2  

S
2 = 

=1 	i=1 

n(n — 1) 

 

(2.7.2) 

 

where 

k 

n = 
- 1 

The definitional formula for u2  is the same as for 52  except that /..t replaces X. 
and the denominator is Ek,=i ft . The computational formula for cr 2  has N • N in 
the denominator rather than n(n — 1). 

Example 	Let us now illustrate the computation of the variance and standard deviation, by 
2.7.1 	both the definitional and the computational formula, using the data of Table 2.2.2. 

Solution: Another work table such as Table 2.7.1 will be useful. 
Dividing the total of column 6 by the total of column 3, less 1, we have 

s2  = 
20197.6336 

= 120.224 
168 

The standard deviation is 

s = V120.224 = 10.9647 
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TABLE 2.7.1 Work Table for Computing the Variance and Standard Deviation from the Data in Table 2.2.2 

Calculations for Equation 2.7.1 Calculations for Equation 2.7.2 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
Class Class Class 

Interval Midpoint Frequency 
m, f, (m , - 	) (m , - i.)2  (m , - al, rtz mU: m Jc 

10-19 14.5 4 - 19.88 395.2144 1,580.8576 210.25 841.00 58.0 
20-29 24.5 66 - 9.88 97.6144 6,442.5504 600.25 39,616.50 1617.0 
30-39 34.5 47 .12 .0144 .6768 1190.25 55,941.75 1621.5 
40-49 44.5 36 10.18 102.4144 3,686.9184 1980.25 71,289.00 1602.0 
50-59 54.5 12 20.12 404.2144 4,857.7728 2970.25 35,643.00 654.0 
60-69 64.5 4 30.12 907.2144 3,628.8576 4160.25 16,641.00 258.0 

Total 169 1907.2864 20,197.6336 219,972.25 5810.5 
:Cc = 34.48 

If we use the computing formula of Equation 2.7.2, we have 

169(219972.25) - (5810.5)2  
s 2   = 120.224 

169( 168) 

For comparative purposes, we note that the standard deviation is 10.328 when 
computed from the 169 ages and the formula for ungrouped data is used. 

EXERCISES 

In the following exercises, treat the data sets as samples. 

2.7.1 See Exercise 2.3.1. Find: 

a. The mean. 	 b. The median. 
c. The modal class. 	 d. The variance. 
e. The standard deviation. 

2.7.2 See Exercise 2.3.2. Find: 

a. The mean. 
c. The modal class. 
e. The standard deviation. 

2.7.3 See Exercise 2.3.3. Find: 

a. The mean. 
c. The modal class. 
e. The standard deviation. 

b. The median. 
d. The variance. 

b. The median. 
d. The variance. 
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2.7.4 See Exercise 2.3.4. Find: 

a. The mean. 	 b. The median. 
c. The modal class. 	 d. The variance. 
e. The standard deviation. 

2.7.5 See Exercises 2.3.5. Find: 

a. The mean. 	b. The median. 
c. The variance. 	d. The standard deviation. 

2.7.6 See Exercise 2.3.6. Find: 

a. The mean. 	b. The median. 
c. The variance. 	d. The standard deviation. 

2.7.7 See Exercise 2.3.7. Find: 

a. The mean. 	b. The median. 
c. The variance. 	d. The standard deviation. 

2.7.8 Stein and Uhde (A-12) examined the dynamic status of the hypothalamic-
pituitary—thyroid axis in panic disorder by studying the neuroendocrine responses to 
protirelin in a sample of patients with panic disorder and a sample of normal 
controls. Among the data collected on the subjects were behavioral ratings as 
measured by the Zung Anxiety scale (ZAS). The following are the ZAS scores of the 
26 subjects who had a diagnosis of panic disorder: 

53 59 45 36 69 51 51 38 40 41 46 45 53 41 46 45 60 43 41 38 40 

35 31 38 36 35 

SOURCE: Thomas W. Uhde, M.D. Used with permission. 

Construct a box-and-whisker plot for these data. 

2.8 
Summary 

In this chapter various descriptive statistical procedures are explained. These 
include the organization of data by means of the ordered array, the frequency 
distribution, the relative frequency distribution, the histogram, and the frequency 
polygon. The concepts of central tendency and variation are described, along with 
methods for computing their more common measures: the mean, median, mode, 
range, variance, and standard deviation. The concepts and methods are presented 
in a way that makes possible the handling of both grouped and ungrouped data. 
The reader is introduced to exploratory data analysis through a description of 
stem-and-leaf displays and box-and-whisker plots. 

We emphasize the use of the computer as a tool for calculating descriptive 
measures and constructing various distributions from large data sets. 



52 	 Chapter 2 • Descriptive Statistics 

REVIEW QUESTIONS AND EXERCISES 

1. Define: 

a. Stem-and-leaf display 
c. Percentile 
e. Location parameter 

g. Ordered array 
i. Relative frequency distribution 
k. Parameter 
m. True class limits  

b. Box-and-whisker plot 
d. Quartile 
f. Exploratory data analysis 
h. Frequency distribution 
j. Statistic 
1. Frequency polygon 
n. Histogram 

2. Define and compare the characteristics of the mean, the median, and the mode. 

3. What are the advantages and limitations of the range as a measure of dispersion? 

4. Explain the rationale for using n — 1 to compute the sample variance. 

5. What is the purpose of the coefficient of variation? 

6. What is the purpose of Sturges' rule? 

7. What assumptions does one make when computing the mean from grouped data? The 
median? The variance? 

8. Describe from your field of study a population of data where knowledge of the central 
tendency and dispersion would be useful. Obtain real or realistic synthetic values from 
this population and compute the mean, median, mode, variance, and standard deviation, 
using the techniques for ungrouped data. 

9. Collect a set of real, or realistic, data from your field of study and construct a frequency 
distribution, a relative frequency distribution, a histogram, and a frequency polygon. 

10. Compute the mean, median, modal class, variance, and standard deviation for the data 
in Exercise 9, using the techniques for grouped data. 

11. Find an article in a journal from your field of study in which some measure of central 
tendency and dispersion have been computed. 

12. Exercise 2.7.8 uses Zung Anxiety Scale (ZAS) scores of 26 subjects with panic disorder 
who participated in a study conducted by Stein and Uhde (A-12). In their study these 
investigators also used 22 healthy control subjects (that is, subjects who did not have 
panic disorder). The following are the ZAS scores of 21 of these healthy controls: 

26 28 34 26 25 26 26 30 34 28 25 26 31 25 25 25 25 28 25 25 25 

SOURCE: Thomas W. Uhde, M.D. Used with permission. 

a. Combine these scores with the scores for the 26 patients with panic disorder and 
construct a stem-and-leaf plot. 

b. Based on the stem-and-leaf plot, what one word would you use to describe the nature 
of the data? 

c. Why do you think the stem-and-leaf plot looks the way it does? 

d. For the combined ZAS data, and using formulas for ungrouped data, compute the 
mean, median, variance, and standard deviation. 

13. Refer to Exercise 12. Compute, for the 21 healthy controls alone, the mean, median, 
variance, and standard deviation. 
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14. Refer to Exercise 12. Compute the mean, median, variance, and standard deviation for 
the 26 patients with panic disorder. 

15. Which set of ZAS scores are more variable: Those for the combined subjects, those for 
the healthy controls, or those for the patients with panic disorder? How do you justify 
your answer? 

16. Refer to Exercise 12. Which measure of central tendency do you think is more 
appropriate to use to describe the ZAS scores, the mean or the median? Why? 

17. Swift et al. (A-13) conducted a study concerned with the presence of significant 
psychiatric illness in heterozygous carriers of the gene for the Wolfram syndrome. 
According to the investigators, the Wolfram syndrome is an autosomal recessive neu-
rodegenerative syndrome in which 25 percent of the individuals who are homozygous for 
the condition have severe psychiatric symptoms that lead to suicide attempts or 
psychiatric hospitalizations. Among the subjects studied were 543 blood relatives of 
patients with Wolfram syndrome. The following is a frequency distribution of the ages of 
these blood relatives: 

Age Number 

20-29 55 
30-39 93 
40-49 113 
50-59 90 
60-69 85 
70-79 73 
80-89 29 
90-99 5 

Total 543 

SOURCE: Ronnie Gorman Swift, Diane 0. Perkins, Charles L. Chase, Debra B. Sadler, and Michael 
Swift, "Psychiatric Disorders in 36 Families With Wolfram Syndrome," American Journal of 

Psychiatry, 148 (1991), 775-779. 

a. For these data construct a relative frequency distribution, a cumulative frequency 
distribution, and a cumulative relative frequency distribution. 

b. Compute the mean, median, variance, and standard deviation. Use formulas for 
computing sample descriptive measures. 

18. A concern that current recommendations on dietary energy requirements may underes-
timate the total energy needs of young adult men was the motivation for a study by 
Roberts et al, (A-14). Subjects for the study were 14 young, healthy adult men of normal 
body weight who were employed full-time in sedentary occupations as students or 
laboratory technicians. The following are the body mass index values (kg/m2) for the 14 
subjects in the sample: 

24.4 30.4 21.4 25.1 21.3 23.8 20.8 22.9 20.9 23.2 21.1 

23.0 20.6 26.0 

SOURCE: Susan B. Roberts, Melvin B. Heyman, William J. Evans, Paul Fuss, 
Rita Tsay, and Vernon R. Young, "Dietary Energy Requirements of Young 
Adult Men, Determined by Using the Doubly Labeled Water Method," 
American Journal of Clinical Nutrition, 54 (1991), 499-505. 
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a. Compute the mean, median, variance, standard deviation, and coefficient of varia-
tion. 

b. Construct a stem-and-leaf display. 

c. Construct a box-and-whisker plot. 

d. What percentage of the measurements are within one standard deviation of the 
mean? Within two standard deviations? Three standard deviations? 

19. Refer to Exercise 18. The following are the weights (kg) and heights (cm) of the 14 
subjects in the sample studied by Roberts et al. (A-14): 

Weight: 83.9 99.0 63.8 71.3 65.3 79.6 70.3 69.2 56.4 
66.2 88.7 59.7 64.6 78.8 

Height: 185 180 173 168 175 183 184 174 164 169 205 
161 177 174 

SouacE: Susan B. Roberts, Melvin B. Heyman, William J. Evans, Paul Fuss, Rita Tsay, 
and Vernon R. Young, "Dietary Energy Requirements of Young Adult Men, 
Determined by Using the Doubly Labeled Water Method," American Journal of Clinical 
Nutrition, 54 (1991), 499-505. 

a. For each variable, compute the mean, median, variance, standard deviation, and 
coefficient of variation. 

b. For each variable, construct a stem-and-leaf display and a box-and-whisker plot. 

c. Which set of measurements is more variable, weight or height? On what do you base 
your answer? 

20. The following table shows the age distribution of cases of a certain disease reported 
during a year in a particular state. 

Age Number of Cases 

5-14 5 
15-24 10 
25-34 20 
35-44 22 
45-54 13 
55-64 5 

Total 75 

Compute the sample mean, median, variance, and standard deviation. 

21. Give three synonyms for variation (variability). 

22. As part of a research project, investigators obtained the following data on serum lipid 
peroxide (SLP) levels from laboratory reports of a sample of 10 adult subjects undergo-
ing treatment for diabetes mellitus: 5.85, 6.17, 6.09, 7.70, 3.17, 3.83, 5.17, 4.31, 3.09, 
5.24. Compute the mean, median, variance, and standard deviation. 

23. The following are the SLP values obtained from a sample of 10 apparently healthy 
adults: 4.07, 2.71, 3.64, 3.37, 3.84, 3.83, 3.82, 4.21, 4.04, 4.50. For these data compute the 
mean, the variance, and the standard deviation. 



Review Questions and Exercises 	 55 

24. The following are the ages of 48 patients admitted to the emergency room of a hospital. 
Construct a stem-and-leaf display from these data. 

32 63 33 57 35 54 38 53 42 51 42 48 
43 46 61 53 12 13 16 16 31 30 28 28 
25 23 23 22 21 17 13 30 14 29 16 28 
17 27 21 24 22 23 61 55 34 42 13 26 

25. Researchers compared two methods of collecting blood for coagulation studies. The 
following are the arterial activated partial thromboplastin time (APTT) values recorded 
for 30 patients in each of the two groups. Construct a box-and-whisker plot from each 
set of measurements. Compare the two plots. Do they indicate a difference in the 
distributions of APTT times for the two methods? 

Method 1: 

20.7 29.6 34.4 56.6 22.5 29.7 
31.2 38.3 28.5 22.8 44.8 41.6 
24.9 29.0 30.1 33.9 39.7 45.3 
22.9 20.3 28.4 35.5 22.8 54.7 
52.4 20.9 46.1 35.0 46.1 22.1 

Method 2: 

23.9 23.2 56.2 30.2 27.2 21.8 
53.7 31.6 24.6 49.8 22.6 48.9 
23.1 34.6 41.3 34.1 26.7 20.1 
38.9 24.2 21.1 40.7 39.8 21.4 
41.3 23.7 35.7 29.2 27.4 23.2 

26. Express in words the following properties of the sample mean: 

a. ax - Tx)2  = a minimum 

b. ai = Ex 

c. - = 0 

27. Your statistics instructor tells you on the first day of class that there will be five tests 
during the term. From the scores on these tests for each student he will compute a 
measure of central tendency that will serve as the student's final course grade. Before 
taking the first test you must choose whether you want your final grade to be the mean 
or the median of the five test scores. Which would you choose? Why? 

28. Consider the following possible class intervals for use in constructing a frequency 
distribution of serum cholesterol levels of subjects who participated in a mass screening: 

a. 50-74 b. 50-74 c. 50-75 
75-99 75-99 75-100 
100-149 100-124 100-125 
150-174 125-149 125-150 
175-199 150-174 150-175 
200-249 175-199 175-200 
250-274 200-224 200-225 
etc. 225-249 225-250 

etc. etc. 
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Which set of class intervals do you think is most appropriate for the purpose? Why? 
State specifically for each one why you think the other two are less desirable. 

29. On a statistics test students were asked to construct a frequency distribution of the 
blood creatine levels (Units/liter) for a sample of 300 healthy subjects. The mean was 95 
and the standard deviation was 40. The following class interval widths were used by the 
students: 

a. 1 	b. 5 
c. 10 	d. 15 
e. 20 	f. 25 

Comment on the appropriateness of these choices of widths. 

30. Give a health sciences related example of a population of measurements for which the 
mean would be a better measure of central tendency than the median. 

31. Give a health sciences related example of a population of measurements for which the 
median would be a better measure of central tendency than the mean. 

32. Indicate for the following variables which you think would be a better measure of central 
tendency, the mean, the median, or mode and justify your choice: 

a. Annual incomes of licensed practical nurses in the Southeast. 

b. Diagnoses of patients seen in the emergency department of a large city hospital. 

c. Weights of high-school male basketball players. 
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3.1 
Introduction 

The theory of probability provides the foundation for statistical inference. How-

ever, this theory, which is a branch of mathematics, is not the main concern of this 

book, and, consequently, only its fundamental concepts are discussed here. Stu-

dents who desire to pursue this subject should refer to the books on probability by 

Bates (1), Dixon (2), Mosteller et al. (3), Earl et al. (4), Berman (5), Hausner (6), 

and Mullins and Rosen (7). They will also find helpful the books on mathematical 

statistics by Freund and Walpole (8), Hogg and Craig (9), and Mood et al. (10). For 

those interested in the history of probability, the books by Todhunter (11) and 

David (12) are recommended. From the latter, for example, we learn that the first 

mathematician to calculate a theoretical probability correctly was Girolamo Car-

dano, an Italian who lived from 1501 to 1576. The objectives of this chapter are to 

help students gain some mathematical ability in the area of probability and to 

assist them in developing an understanding of the more important concepts. 

59 
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Progress along these lines will contribute immensely to their success in understand-

ing the statistical inference procedures presented later in this book. 

The concept of probability is not foreign to health workers and is frequently 

encountered in everyday communication. For example, we may hear a physician say 

that a patient has a 50-50 chance of surviving a certain operation. Another 

physician may say that she is 95 percent certain that a patient has a particular 

disease. A public health nurse may say that nine times out of ten a certain client 

will break an appointment. As these examples suggest, most people express 

probabilities in terms of percentages. In dealing with probabilities mathematically 

it is more convenient to express probabilities as fractions. (Percentages result from 

multiplying the fractions by 100.) Thus we measure the probability of the occur-

rence of some event by a number between zero and one. The more likely the event, 

the closer the number is to one; and the more unlikely the elvent, the closer the 

number is to zero. An event that cannot occur has a probability of zero, and an 

event that is certain to occur has a probability of one. 

3.2 
Two Views of Probability 
Ob'ective and Subjective 

Until fairly recently, probability was thought of by statisticians and mathematicians 
only as an objective phenomenon derived from objective processes. 

The concept of objective probability may be categorized further under the 
headings of (1) classical, or a priori, probability and (2) the relative frequency, or a 
posteriori, concept of probability. 

Classical Probability The classical treatment of probability dates back to 
the 17th century and the work of two mathematicians, Pascal and Fermat (11, 12). 
Much of this theory developed out of attempts to solve problems related to games 
of chance, such as those involving the rolling of dice. Examples from games of 
chance illustrate very well the principles involved in classical probability. For 
example, if a fair six-sided die is rolled, the probability that a 1 will be observed is 
equal to 1/6 and is the same for the other five faces. If a card is picked at random 
from a well-shuffled deck of ordinary playing cards, the probability of picking a 
heart is 13/52. Probabilities such as these are calculated by the processes of 
abstract reasoning. It is not necessary to roll a die or draw a card to compute these 
probabilities. In the rolling of the die we say that each of the six sides is equally 

likely to be observed if there is no reason to favor any one of the six sides. Similarly, 
if there is no reason to favor the drawing of a particular card from a deck of cards 
we say that each of the 52 cards is equally likely to be drawn. We may define 
probability in the classical sense as follows. 
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DEFINITION 
M MOM M 

If an event can occur in N mutually exclusive and equally likely ways, and 
if m of these possess a characteristic, E, the probability of the occurrence 
of E is equal to m/N. 

If we read P(E) as "the probability of E," we may express this definition as 

m 
P(E) = --N- 	 (3.2.1) 

Relative Frequency Probability The relative frequency approach to proba-
bility depends on the repeatability of some process and the ability to count the 
number of repetitions, as well as the number of times that some event of interest 
occurs. In this context we may define the probability of observing some characteris-
tic, E, of an event as follows. 

DEFINITION 

If some process is repeated a large number of times n, and if some 
resulting event with the characteristic E occurs m times, the relative 
frequency of occurrence of E, m/n, will be approximately equal to the 
probability of E. 

To express this definition in compact form we write 

m 
P(E) = —

n 
	 (3.2.2) 

We must keep in mind, however, that strictly speaking, m/n is only an estimate of 
P(E). 

Subjective Probability In the early 1950s, L. J. Savage (13) gave consider-
able impetus to what is called the "personalistic" or subjective concept of probabil-
ity. This view holds that probability measures the confidence that a particular 
individual has in the truth of a particular proposition. This concept does not rely on 
the repeatability of any process. In fact, by applying this concept of probability, one 
may evaluate the probability of an event that can only happen once, for example, 
the probability that a cure for cancer will be discovered within the next 10 years. 

Although the subjective view of probability has enjoyed increased attention 
over the years, it has not been fully accepted by statisticians who have traditional 
orientations. 
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3.3 
Elementary Properties of Probability 

In 1933 the axiomatic approach to probability was formalized by the Russian 
mathematician A. N. Kolmogorov (14). The basis of this approach is embodied in 
three properties from which a whole system of probability theory is constructed 
through the use of mathematical logic. The three properties are as follows. 

1. Given some process (or experiment) with, n mutually exclusive outcomes:.  
(called events), E1, E2, 	, En, the probability of any eVent E. is assigned a 
nonnegative number. That is, 

P(E,) 0 	 (3.3.1) 

In other words, all events must have a probability greater than or equal to 
zero, a reasonable requirement in view of the difficulty of conceiving of negative 
probability. A key concept in the statement of this property is the concept of 

t mutually exclusive outcomes. Two events are said to be mutually exclusive if they 
cannot occur simultaneously. 

• 2. The sum of the probabilities of all mutually exclusive outcomes is equal to 1. 

P(E,) + P(E2) + • • • +P(En ) = 1 	 (3.3.2) 

This is the property of exhaustiveness and refers to the fact that the observer of 
a probabilistic process must allow for all possible events, and when all are taken 
together, their total probability is 1. The requirement that tlhe events be mutually 
exclusive is specifying that the events E„ E2, . j, En  do not overlap. 

3. Consider any two mutually exclusive events, Ez  and E1. The probability of the 
occurrence of either Et  or Ej  is equal to the sum of their individual probabili-
ties. 

P(E, or EE ) = P(E; ) + P(Ei ) 	 (3.3.3) 

Suppose the two events were not mutually exclusive; that is, suppose they 
could occur at the same time. In attempting to compute the probability of the 
occurrence of either Et  or E the problem of overlapping would be discovered, and 
the procedure could become quite complicated. 
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3.4 
Calculating the Probability 
of an Event 

We now make use of the concepts and techniques of the previous sections in 
calculating the probabilities of specific events. Additional ideas will be introduced 
as needed. 

Example 
3.4.1 

In an article in The American Journal of Drug and Alcohol Abuse, Erickson and Murray 
(A-1) state that women have been identified as a group at particular risk for 
cocaine addiction and that it has been suggested that their problems with cocaine 
are greater than those of men. Based on their review of the scientific literature and 
their analysis of the results of an original research study, the authors argue that 
there is no evidence that women's cocaine use exceeds that of men, that women's 
rates of use are growing faster than men's, or that female cocaine users experience 
more problems than male cocaine users. The subjects in the study by Erickson and 
Murray consisted of a sample of 75 men and 36 women. The authors state that the 
subjects are a fairly representative sample of "typical" adult users who were 
neither in treatment nor in jail. Table 3.4.1 shows the lifetime frequency of cocaine 
use and the gender of these subjects. Suppose we pick a person at random from 
this sample. What is the probability that this person will be a male? 

TABLE 3.4.1 Frequency of Cocaine Use by Gender Among Adult Cocaine Users 

Lifetime Frequency 
of Cocaine Use Male (M) Female (F) Total 

1-19 times (A) 32 7 39 
20-99 times (B) 18 20 38 
100 + times (C) 25 9 34 

Total 75 36 111 

SOURCE: Reprinted from Patricia G. Erickson and Glenn F. Murray, "Sex Differences in 
Cocaine Use and Experiences: A Double Standard?" American Journal of Drug and Alcohol 

Abuse, 15 (1989), 135-152, by courtesy of Marcel Dekker, Inc. 

Solution: We assume that male and female are mutually exclusive categories and 
that the likelihood of selecting any one person is equal to the likelihood of selecting 
any other person. We define the desired probability as the number of subjects with 
the characteristic of interest (male) divided by the total number of subjects. We 
may write the result in probability notation as follows: 

P(M) = Number of males/Total number of subjects 

= 75/111 = .6757 
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Conditional Probability On occasion, the set of "all possible outcomes" 
may constitute a subset of the total group. In other words, the size of the group of 
interest may be reduced by conditions not applicable to the total group. When 
probabilities are calculated with a subset of the total group as the denominator, 
the result is a conditional probability. 

The probability computed in Example 3.4.1, for example, may be thought of as 
an unconditional probability, since the size of the total group served as the 
denominator. No conditions were imposed to restrict the size of the denominator. 
We may also think of this probability as a marginal probability since one of the 
marginal totals was used as the numerator. 

We may illustrate the concept of conditional probability by referring again to 
Table 3.4.1. 

Example 
	

Suppose we pick a subject at random from the 1 1 1 subjects and find that he is a 
3.4.2 	male (M). What is the probability that this male will be one who has used cocaine 

100 times or more during his lifetime (C)? 

*Solution: The total number of subjects is no longer of interest, since, with the 
selection of a male, the females are eliminated. We may define the desired 
probability, then, as follows: Given that the selected subject is a male (M), what is 
the probability that the subject has used cocaine 100 times or more (C) during his 
lifetime? This is a conditional probability and is written as P(CIM) in which the 
vertical line is read "given". The 75 males become the denominator of this 
conditional probability, and 25, the number of males who have used cocaine 100 
times or more during their lifetime, becomes the numerator. Our desired probabil-
ity, then, is 

P(CIM) = 25/75 = .33 

Joint Probability Sometimes we want ito find the probability that a subject 
picked at random from a group of subjects' pdssesses two1  characteristics at the 
same time. Such a probability is referred to as a joint probability. We illustrate the 
calculation of a joint probability with the following example. 

Example 
3.4.3 

Let us refer again to Table 3.4.1. What is the probability that a person picked at 
random from the 1 1 1 subjects will be a male (M) and be a person who has used 
cocaine 100 times or more during his lifetime (C)? 

Solution: The probability we are seeking may be written in symbolic notation as 
P(M fl C) in which the symbol fl is read either as "intersection" or "and." The 
statement M fl C indicates the joint occurrence of conditions M and C. The 
number of subjects satisfying both of the desired conditions is found in Table 3.4.1 
at the intersection of the column labeled M and the row labeled C and is seen to 
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be 25. Since the selection will be made from the total set of subjects, the 
denominator is 111. Thus, we may write the joint probability as 

P(M n C) = 25/111 = .2252 

The Multiplication Rule A probability may be computed from other proba-
bilities. For example, a joint probability may be computed as the product of an 
appropriate marginal probability and an appropriate conditional probability. This 
relationship is known as the multiplication rule of probability. We illustrate with the 
following example. 

Example 
3.4.4 

We wish to compute the joint probability of male (M) and a lifetime frequency of 
cocaine use of 100 times or more (C) from a knowledge of an appropriate marginal 
probability and an appropriate conditional probability. 

Solution: The probability we seek is P(M n C). We have already computed a 
marginal probability, P(M) = 75/111 = .6757, and a conditional probability, 
P(CIM) = 25/75 = .3333. It so happens that these are appropriate marginal and 

4,  conditional probabilities for computing the desired joint probability. We may now 
compute P(M n C) = P(m)P(C1m) = (.6757)(.3333) = .2252. This, we note, is, as 
expected, the same result we obtained earlier for P(M n C). 

  

We may state the multiplication rule in general terms as follows: 
For any two events A and B, 

 

P(A n B) = P(B)P(AIB), 	if P(B) * 0 	(3.4.1) 

For the same two events A and B, the multiplication rule may also be written as 
P(A n B) = P(A)P(BIA), if P(A) * 0. 

We see that through algebraic manipulation the multiplication rule as stated 
in Equation 3.4.1 may be used to find any one of the three probabilities in its 
statement if the other two are known. We may, for example, find the conditional 
probability P(A IB) by dividing P(A n B) by P(B). This relationship allows us to 
formally define conditional probability as follows. 

DEFINITION 

The conditional probability of A given B is equal to the probability of A n B 
divided by the probability of B, provided the probability of B is not zero. 

That is, 

P(A n B) 
P(AIB) = 	

P(B) , 
	P(B) * 0 	 (3.4.2) 
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We illustrate the use of the multiplication rule to compute a conditional probabil-
ity with the following example. 

Example 	We wish to use Equation 3.4.2 and the data in Table 3.4.1 to find the conditional 
3.4.5 
	

probability, P(CIM). 

Solution: According to Equation 3.4.2 

P(CIM) = P(C n M)/P(M) 

Earlier we found P(C n M) = P(M n C) = 25/111 = .2252. We have also 
determined that P(M) = 75/111 = .6757. Using these results we are able to 
compute P(CIM) = .2252/.6757 = .3333 which, as expected, is the same result we 
obtained by using the frequencies directly from Table 3.4.1. 

The Addition Rule The third property of probability given previously states 
that the probability of the occurrence of either one or the other of two mutually 
exclusive events is equal to the sum of their individual probabilities. Suppose, for 
example, that we pick a person at random from the 111 represented in Table 3.4.1. 
What is the probability that this person will be a male (M) or a female (F)? We 
state this probability in symbols as P(M U F)lw ere the symbol U is read either as 
"union" or 'or." Since the two genders are mut ally exclusiVe, P(M U F) = P(M) 
+ P(F)= (75/111) + (36/111) = .6757 + .324 = 1. 

What if two events are not mutually exclusive? This case is covered by what is 
known as the addition rule, which may be stated as follows. 

DEFINITION 

Given two events A and B, the probability that event A, or event B, or 
both occur is equal to the probability that event A occurs, plus the 
probability that event B occurs, minus the probability that the events 
occur simultaneously. 

The addition rule may be written 

* P(A U B) = P(A) + P(B) — P(A n B) 	 (3.4.3) 

Let us illustrate the use of the addition rule by means of an example. 

Example 
	

If we select a person at random from the 111 subjects represented in Table 3.4.1, 
3.4.6 	what is the probability that this person will be a male (M) or will have used cocaine 

100 times or more during his lifetime (C) or both? 
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fik Solution: The probability we seek is P(M U C). By the addition rule as expressed 
by Equation 3.4.3, this probability may be written as P(M U 	= P(M) + P(C) - 
P(M n C). We have already found that P(M) = 75/111 = .6757 and P(M n C) 
= 25/111 = .2252. From the information in Table 3.4.1 we calculate P(C) = 
34/111 = .3063. Substituting these results into the equation for P(M U C) we 
have P(M U C) = .6757 + .3063 — .2252 = .7568 

Note that the 25 subjects who are both male and have used cocaine 100 times or 
more are included in the 75 who are male as well as in the 34 who have used 
cocaine 100 times or more. Since, in computing the probability, these 25 have been 
added into the numerator twice, they have to be subtracted out once to overcome 
the effect of duplication, or overlapping. 

Independent Events Suppose that, in Equation 3.4.1, we are told that event 
B has occurred, but that this fact has no effect on the probability of A. That is, 
suppose that the probability of event A is the same regardless of whether or not B 
occurs. In this situation, P(A IB) = P(A). In such cases we say that A and B are 
independent events. The multiplication rule for two independent events, then, may be 
written as 

P(A n B) = P(B)P(A); 	P(A) 0, P(B) 0 0 	(3.4.4) 

Thus, we see that if two events are independent, the probability of their joint 
occurrence is equal to the product of the probabilities of their individual occur-
rences. 

Note that when two events with nonzero probabilities are independent, each of 
the following statements is true: 

P(AIB) = P(A), 	P(BIA) = P(B), 	P(A n B) = P(A)P(B) 

Two events are not independent unless all these statements are true. 
Let us illustrate the concept of independence by means of the following 

example. 

Example 
3.4.7 

In a certain high school class, consisting of 60 girls and 40 boys, it is observed that 
24 girls and 16 boys wear eyeglasses. If a student is picked at random from this 
class, the probability that the student wears eyeglasses, P(E), is 40/100, or .4. 

a. What is the probability that a student picked at random wears eyeglasses, 
given that the student is a boy? 

Solution: By using the formula for computing a conditional probability we find 
this to be 

P(E n B) 	16/100 	4  
P(EIB) — 	

P(B) — 
	 
40/100 — 
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Thus the additional information that a student is a boy does not alter the 
probability that the student wears eyeglasses, and P(E) = P(EIB). We say that the 
events being a boy and wearing eyeglasses for this group are independent. We may 
also show that the event of wearing eyeglasses, E, and not being a boy, B, are also 
independent as follows: 

P(E n /3) 	24/100 	24  
P(EIB) 	

P(B) = 60/100 — 60 	

.4 

b. What is the probability of the joint occurrence of the events of wearing 
eyeglasses and being a boy? 

Solution: Using the rule given in Equation 3.4.1, we have 

P(E n B) = P(B)P(EIB) 

but, since we have shown that events E and B are independent we may replace 
P(EIB) by P(E) to obtain, by Equation 3.4.4 

P(E n 13) = P(B)P(E) 

( 14000 ) ( 14000  ) 

= .16 

Complementary Events Earlier, using the data in Table 3.4.1, we computed 
the probability that a person picked at random from the 111 subjects will be a male 
as P(M) = 75/111 = .6757. We found the probability of a female to be P(F) = 
36/111 = .3243. The sum of these two probabilities we found to be equal to 1. This 
is true because the events being male and being female are complementary events. In 
general, we may make the following statement about complementary events. The 
probability of an event A is equal to 1 minus the probability of its complement, 
which is written A, and 

P(A) = 1 — P(A) 	 (3.4.5) 

This follows from the third property of probability since the event, A, and its 
complement, A, are mutually exclusive. 

Example 	Suppose that of 1200 admissions to a general hospital during a certain period of 
3.4.8 	time, 750 are private admissions. If we designate these as set A, then A is equal to 



3.4 Calculating the Probability of an Event 
	

69 

1200 minus 750, or 450. We may compute 

P(A) = 750/1200 = .625 

and 

P(A) = 450/1200 = .375 

and see that 

P(A) = 1 — P(A) 

.375 = 1 — .625 

.375 = .375 

Marginal Probability Earlier we used the term marginal probability to refer 
to a probability in which the numerator of the probability is a marginal total from 
a table such as Table 3.4.1. For example, when we compute the probability that a 
person picked at random from the 111 persons represented in Table 3.4.1 is a male, 
the numerator of the probability is the total number of males, 75. Thus P(M) = 
75/111 = .6757. We may define marginal probability more generally as follows. 

DEFINITION 

Given some variable that can be broken down into m categories designated 
by A1 , A2, 	, 	, A. and another jointly occurring variable that is 
broken down into n categories designated by B1, B2, 	, BJ, . , B„, the 
marginal probability of A, P(A,), is equal to the sum of the joint probabilities 
of A, with all the categories of B. That is, 

P(Az ) = EP(A, fl B,), 	for all values of j 	(3.4.6) 

The following example illustrates the use of Equation 3.4.6 in the calculation of a 
marginal probability. 

Example 	We wish to use Equation 3.4.6 and the data in Table 3.4.1 to compute the marginal 
3.4.9 	probability P(M). 

Solution: The variable gender is broken down into two categories, male (M) and 
female (F). The variable frequency of cocaine use is broken down into three 
categories, 1-19 times (A), 20-99 times (B), and 100+ times (C). The category 
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male occurs jointly with all three categories of the variable frequency of cocaine 
use. The three joint probabilities that may be computed are P(M n A) = 32/111 
= .2883, P(M n B) = 18/111 = .1622, and P(M fl C) = 25/111 = .2252. We ob-
tain the marginal probability P(M) by adding these three joint probabilities as 
follows: 

P(M) = P(M n A) + P(M n B) + P(M n 

= .2883 + .1622 + .2252 

= .6757 

The result, as expected, is the same as the one obtained by using the marginal 
total for male as the numerator and the total number of subjects as the denomina-
tor. 

EXERCISES 

3.4.1 In a study of the influence of social and political violence on the risk of pregnancy 

complications, Zapata et al. (A-2) collected extensive information on a sample of 161 
pregnant women between the ages of 19 and 40 years who were enrolled for prenatal 
care in six health centers in Santiago, Chile. The following table shows the sample 
subjects cross-classified according to education level and number of pregnancy com-
plications: 

Education (years) 
Number of Pregnancy Complications 

2 0-1 Total 

1-3 22 53 75 
4-8 9 23 32 
9-10 10 27 37 
> 11 5 12 17 

Total 46 115 161 

SouRcE: B. Cecilia Zapata, Annabella Rebolledo, Eduardo Atalah, Beth 
Newman, and Mary-Clair King, "The Influence of Social and Political 
Violence on the Risk of Pregnancy Complications," American Journal of 
Public Health, 82 (1992), 685-690. © 1992 American Public Health 
Association. 

a. Suppose we pick a woman at random from this group. What is the probability that 
this woman will be one with two or more pregnancy complications? 

b. What do we call the probability calculated in part a? 
c. Show how to calculate the probability asked for in part a by two additional 

methods. 
d. If we pick a woman at random, what is the probability that she will be one with 

two or more pregnancy complications and have four to eight years of education? 
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e. What do we call the probability calculated in part d? 
f. Suppose we pick a woman at random and find that she has zero or one pregnancy 

complication. What is the probability that she has 11 years or more of education? 
g. What do we call the probability calculated in part f? 
h. Suppose we pick a woman at random. What is the probability that she is one with 

two or more pregnancy complications or has less than four years of education or 
both? 

i. What do we call the method by which you obtained the probability in part h? 

3.4.2 In an article in the Canadian Journal of Public Health, Hammoud and Grindstaff (A-3) 
state that it is estimated that approximately 15 percent of the adult Canadian 
population is physically disabled to some degree. The authors reviewed a national 
sample of Canadian adults to determine the characteristics of the physically disabled, 
compared to a random sample of able-bodied in the same age groups. The following 
table shows the sample subjects cross-classified according to disability status and 

occupation: 

Disability Status 

Occupation Disabled 	Able-bodied 	Total 

Management 	 333 	 451 	 784 
Clerical 	 260 	 281 	 541 
Services 	 320 	 316 	 636 
Primary 	 68 	 62 	 130 
Manufacturing 	297 	 317 	 614 

Total 	 1278 	 1427 	 2705 

SOURCE: Ali M. Hammoud and Carl F. Grindstaff, "Sociodemographic 
Characteristics of the Physically Disabled in Canada," Canadian Journal of 

Public Health, 83 (1992), 57-60. 

a. How many marginal probabilities can be calculated from these data? State each in 
probability notation and do the calculations. 

b. How many joint probabilities can be calculated? State each in probability notation 
and do the calculations. 

c. How many conditional probabilities can be calculated? State each in probability 
notation and do the calculations. 

d. Use the multiplication rule to find the probability that a person picked at random 
is able-bodied and is employed in a clerical occupation. 

e. What do we call the probability calculated in part d? 
f. Use the multiplication rule to find the probability that a person picked at random 

is disabled, given that he/she is employed in manufacturing. 
g. What do we call the probability calculated in part f? 
h. Use the concept of complementary events to find the probability that a person 

picked at random is employed in management. 

3.4.3 Refer to the data in Exercise 3.4.2. State the following probabilities in words: 

a. P(Clerical fl Able-bodied) 
b. P(Clerical U Able-bodied) 
c. P(ClericallAble-bodied) 
d. P(Clerical) 
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3.4.4 Sninsky et al. (A-4) conducted a study to evaluate the efficacy and safety of a 
pH-sensitive, polymer-coated oral preparation of mesalamine in patients with mildly 
to moderately active ulcerative colitis. The following table shows the results of 
treatment at the end of six weeks by treatment received: 

Outcome 
Treatment Group 

Placebo Mesalamine, 1.6 g / d Mesalamine, 2.4 g / d 

In remission 
Improved 
Maintained 
Worsened 

2 
8 

12 
22 

6 
13 
11 
14 

6 
15 
14 
8 

SOURCE: Reproduced with permission from Charles A. Sninsky, David H. Cort, Fergus 
Shanahan, Bernard J. Powers, John T. Sessions, Ronald E. Pruitt, Walter H. Jacobs, Simon K. 
Lo, Stephan R. Targan, James J. Cerda, Daniel E. Gremillion, William J. Snape, John Sabel, 
Horacio Jinich, James M. Swinehart, and Michael P. DeMicco, "Oral Mesalamine (Asacol) for 
Mildly to Moderately Active Ulcerative Colitis," Annals of Internal Medicine, 115 (1991), 350-355. 

a. What is the probability that a randomly selected patient will be in remission at the 
end of six weeks? 

b. What is the probability that a patient placed on placebo will be in remission at the 
end of six weeks? 

c. What is the probability that a randomly selected patient will be in remission and 
one who received the placebo? 

d. What is the probability that a patient selected at random will be one who received 
a dose of 2.4 g/d or was listed as improved or both? 

3.4.5 If the probability of left-handedness in a certain group of people is .05, what is the 
probability of right-handedness (assuming no ambidexterity)? 

3.4.6 The probability is .6 that a patient selected at random from the current residents of a 
certain hospital will be a male. The probability that the patient will be a male who is 
in for surgery is .2. A patient randomly selected from current residents is found to be 
a male; what is the probability that the patient is in the hospital for surgery? 

3.4.7 In a certain population of hospital patients the probability is .35 that a randomly 
selected patient will have heart disease. The probability is .86 that a patient with 
heart disease is a smoker. What is the probability that a patient randomly selected 
from the population will be a smoker and have heart disease? 

3.5 
Summa 

In this chapter some of the basic ideas and concepts of probability were presented. 
The objective has been to provide enough of a "feel" for the subject so that the 
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probabilistic aspects of statistical inference can be more readily understood and 
appreciated when this topic is presented later. 

We defined probability as a number between 0 and 1 that measures the 
likelihood of the occurrence of some event. We distinguished between subjective 
probability and objective probability. Objective probability can be categorized 
further as either classical or relative frequency probability. After stating the three 
properties of probability, we defined and illustrated the calculation of the following 
kinds of probabilities: marginal, joint, and conditional. We also learned how to 
apply the addition and multiplication rules to find certain probabilities. Finally we 
learned the meaning of independent, mutually exclusive, and complementary 
events. 

REVIEW QUESTIONS AND EXERCISES 

1. Define the following: 

a. Probability 
c. Subjective probability 
e. The relative frequency 

concept of probability 
g. Independence 
i. Joint probability 
k. The addition rule 
m. Complementary events 

b. Objective probability 
d. Classical probability 
f. Mutually exclusive events 

h. Marginal probability 
j. Conditional probability 
1. The multiplication rule 

2. Name and explain the three properties of probability. 

3. Des Jarlais et al. (A-5) examined the failure to maintain AIDS risk reduction in a study 
of intravenous drug users from New York City. The following table shows the study 
subjects cross-classified according to risk reduction status and number of sexual partners 
in an average month: 

Number of Sexual 
Partners / Month 

Risk Reduction Status 

None Not Maintained Maintained Total 

None 
1 
> 1 

20 
37 
20 

17 
45 
54 

43 
95 
67 

80 
177 
141 

Total 77 116 205 398 

SOURCE: Reprinted from Don C. Des Jarlais, Abu Abdul-Quader, and Susan Tross, "The Next 
Problem: Maintenance of AIDS Risk Reduction Among Intravenous Drug Users," The 

International Journal of the Addictions, 26 (1991), 1279-1292, by courtesy of Marcel Dekker, Inc. 

a. We select a subject at random. What is the probability that he/she did not initiate 
any risk reduction? 
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b. We select a subject at random and find that he/she had more than one sexual 
partner. What is the probability that he/she maintained risk reduction? 

c. We select a subject at random. What is the probability that he/she had no sexual 
partners and did not maintain risk reduction? 

d. We select a subject at random. What is the probability that he/she had one sexual 
partner or initiated no risk reduction? 

4. The purpose of a study by Gehan et al. (A-6) was to define the optimum dose of 
lignocaine required to reduce pain on injection of propofol. According to these re-
searchers, propofol is a rapidly acting intravenous agent used for induction of anesthe-
sia. Despite its many advantages, however, pain induced by its injection limits its use. 
Other studies have shown that intravenous lignocaine given before or with propofol 
reduced the frequency of pain. Subjects used in the study by Gehan et al. (A-6) were 310 
patients undergoing anesthesia. Patients were allocated to four categories according to 
lignocaine dosage. Group A received no lignocaine, while Groups B, C, and D received 
.1, .2, and .4 mg kg- I, respectively mixed with propofol. The degree of pain experienced 
by patients was scored from 0 to 3, with patients experiencing no pain receiving a score 
of 0. The following table shows the patients cross-classified by dose level group and pain 
score: 

Pain 	Group 

Score 	A 	B 	C 	D 	Total 

0 49 73 58 62 242 
1 16 7 7 8 38 
2 8 5 6 6 25 
3 4 1 0 0 5 

Total 77 86 71 76 310 

SOURCE: G. Gehan, P. Karoubi, F. Quinet, A. Leroy, C. Rathat, and 
J. L. Pourriat, "Optimal Dose of Lignocaine for Preventing Pain on 
Injection of Propofol," British Journal of Anaesthesia, 66 (1991), 
324-326. 

a. Find the following probabilities and explain their meaning: 

1. P(0 n D) 
2. P(B U 2) 
3. P(3 A)  
4. P(C) 

b. Explain why each of the following equations is or is not a true statement: 

1. P(0 n D) = P(D n 0) 
2. P(2 U C) = P(C U 2) 
3. P(A) = P(A n 0) + P(A n 1) + P(A n 2) + P(A n 3) 
4. P(B U 2) = P(B) + P(2) 
5. PO 10) = P(D) 
6. P(C n 1) = P(c)P(1) 
7. P(A n B) = 0 
8. P(2 n D) = P(D)P(21D) 
9. P(B n = P(B)P(B10) 
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5. One hundred married women were asked to specify which type of birth control method 
they preferred. The following table shows the 100 responses cross-classified by educa-
tional level of the respondent. 

Educational Level 

Birth Graduate 
Control High School College School 
Method (A) (B) (C) Total 

S 15 8 7 30 
T 3 7 20 30 
V 5 5 15 25 
W 10 3 2 15 

Total 33 23 44 100 

Specify the number of members of each of the following sets: 

a. S 
	

b. V U C 
	

c. A 
	

d. W 

e. U 
	

f. 	 g. T n B 
	

h. (T n C) 

6. A certain county health department has received 25 applications for an opening that 
exists for a public health nurse. Of these applicants ten are over 30 and fifteen are 
under 30. Seventeen hold bachelor's degrees only, and eight have master's degrees. Of 
those under 30, six have master's degrees. If a selection from among these 25 applicants 
is made at random, what is the probability that a person over 30 or a person with a 
master's degree will be selected? 

7. The following table shows 1000 nursing school applicants classified according to scores 
made on a college entrance examination and the quality of the high school from which 
they graduated, as rated by a group of educators. 

Quality of High Schools 

Poor Average Superior 

Total Score (P) (A) (S) 

Low (L) 
Medium (M) 
High (H) 

105 
70 
25 

60 
175 
65 

55 
145 
300 

220 
390 
390 

Total 200 300 500 1000 

a. Calculate the probability that an applicant picked at random from this group: 
1. Made a low score on the examination. 
2. Graduated from a superior high school. 
3. Made a low score on the examination and graduated from a superior high school. 
4. Made a low score on the examination given that he or she graduated from a 

superior high school. 
5. Made a high score or graduated from a superior high school. 

b. Calculate the following probabilities: 

1. P(A) 	2. P(H) 	 3. P(M) 
4. P(A IH) 	5. P(m n P) 	6. P(HIS) 
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8. If the probability that a public health nurse will find a client at home is .7, what is the 

probability (assuming independence) that on two home visits made in a day both clients 
will be home? 

9. The following table shows the outcome of 500 interviews completed during a survey to 
study the opinions of residents of a certain city about legalized abortion. The data are 
also classified by the area of the city in which the questionnaire was attempted. 

Outcome 

Area of 
City 

For 
(F) 

Against 
(Q) 

Undecided 
(R) Total 

A 100 20 5 125 
B 115 5 5 125 
D 50 60 15 125 
E 35 50 40 125 

Total 300 135 65 500 

a. If a questionnaire is selected at random from the 500, what is the probability that: 
1. The respondent was for legalized abortion? 
2. The respondent was against legalized abortion? 
3. The respondent was undecided? 
4. The respondent lived in area A? B? D? E? 
5. The respondent was for legalized abortion, given that he/she resided in area B? 
6. The respondent was undecided or resided in area D? 

b. Calculate the following probabilities: 

1. P(A n R) 	2. P(Q U /3) 	3. P(D) 
4. P(Q1D) 	5. MIR) 	6. P(F) 

10. In a certain population the probability that a randomly selected subject will have been 
exposed to a certain allergen and experience a reaction to the allergen is .60. The 
probability is .8 that a subject exposed to the allergen will experience an allergic 
reaction. If a subject is selected at random from this population, what is the probability 
that he/she will have been exposed to the allergen? 

11. Suppose that 3 percent of the people in a population of adults have attempted suicide. It 
is also known that 20 percent of the population are living below the poverty level. If 

these two events are independent, what is the probability that a person selected at 
random from the population will have attempted suicide and be living below the poverty 
level? 

12. In a certain population of women 4 percent have had breast cancer, 20 percent are 
smokers, and 3 percent are smokers and have had breast cancer. A woman is selected at 
random from the population. What is the probability that she has had breast cancer or 
smokes or both? 

13. The probability that a person selected at random from a population will exhibit the 
classic symptom of a certain disease is .2, and the probability that a person selected at 
random has the disease is .23. The probability that a person who has the symptom also 
has the disease is .18. A person selected at random from the population does not have 
the symptom; what is the probability that the person has the disease? 
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14. For a certain population we define the following events for mother's age at time of 
giving birth: A = under 20 years; B = 20-24 years; C = 25-29 years; D = 30-44 years. 
Are the events A, B, C, and D pairwise mutually exclusive? 

15. Refer to Exercise 14. State in words the event E = (A U B). 

16. Refer to Exercise 14. State in words the event F = 	C). 

17. Refer to Exercise 14. Comment on the event G = (A n B). 

18. For a certain population we define the following events with respect to plasma lipopro- 
tein levels (mg/dl): A = (10-15); B = 	30); C = 	20). Are the events A and B 
mutually exclusive? A and C? B and C? Explain your answer to each question. 

19. Refer to Exercise 18. State in words the meaning of the following events: 

a. A U B b. A n B 	c. A n c d. A U C 

20. Refer to Exercise 18. State in words the meaning of the following events: 

a. iT 	b. B 	c. C 
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4.1 
Introduction 

In the preceding chapter we introduced the basic concepts of probability as well as 

methods for calculating the probability of an event. We build on these concepts in 

the present chapter and explore ways of calculating the probability of an event 

under somewhat more complex conditions. 

4.2 
Probability Distributions 
of Discrete Variables 
	 V6 

Let us begin our discussion of probability distributions by considering the probabil-
ity distribution of a discrete variable, which we shall define as follows: 

79 
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DEFINITION 
SMS,!...aX 	 VMSMO 	 MIC.M 

The probability distribution of a discrete random variable is a table, graph, 
formula, or other device used to specify all possible 4Iues of a discrete 
random variable along with their respective probabilitis. 

Example 
4.2.1 

In an article in the American Journal of Obstetrics and Gynecology, Buitendijk and 
Bracken (A-1) state that during the previous 25 years there had been an increasing 
awareness of the potentially harmful effects of drugs and chemicals on the 
developing fetus. The authors assessed the use of medication in a population of 
women who were delivered of infants at a large Eastern hospital between 1980 and 
1982, and studied the association of medication use with various maternal charac-
teristics such as alcohol, tobacco, and illegal drug use. Their findings suggest that 
women who engage in risk-taking behavior during pregnancy are also more likely 
to use medications while pregnant. Table 4.2.1 shows the prevalence of prescription 
and nonprescription drug use in pregnancy among the study subjects. 

We wish to construct the probability distribution of the discrete variable 
X = number of prescription and nonprescription drugs used by the study subjects. 

Solution: The values of X are x1  = 0, x21 =II , 	x11 = 10, and x12  = 12. We 
compute the probabilities for these values by dividing their respective frequencies 

TABLE 4.2.1 Prevalence of Prescription and Nonprescription 
Drug Use in Pregnancy Among Women Delivered of Infants 
at a Large Eastern Hospital 

Number of Drugs Frequency 

0 1425 
1 1351 
2 793 
3 348 
4 156 
5 58 
6 28 
7 15 
8 6 
9 3 

10 1 
12 1 

Total 4185 

SouRcE: Simone Buitendijk and Michael B. Bracken, "Medication in 
Early Pregnancy: Prevalence of Use and Relationship to Maternal 
Characteristics," American Journal of Obstetrics and Gynecology, 165 (1991), 
33-40. 
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TABLE 4.2.2 Probability Distribution of Number of Prescription 
and Nonprescription Drugs Used During Pregnancy Among the 
Subjects Described in Example 4.2.1 

Number of Drugs (x) 	 P(X = x) 

0 	 .3405 
1 	 .3228 
2 	 .1895 
3 	 .0832 
4 	 .0373 
5 	 .0139 
6 	 .0067 
7 	 .0036 
8 	 .0014 
9 	 .0007 

10 	 .0002 
12 	 .0002 

Total 	 1.0000 

by the total, 4185. Thus, for example, P(X = x1) = 1425/4185 = .3405. We display 
the results in Table 4.2.2, which is the desired probability distribution. 

Alternatively, we can present this probability distribution in the form of a 
graph, as in Figure 4.2.1. In Figure 4.2.1 the length of each vertical bar indicates 
the probability for the corresponding value of x. 

It will be observed in Table 4.2.2 that the values of P(X = x) are all positive, 
they are all less than 1, and their sum is equal to 1. These are not phenomena 
peculiar to this particular example, but are characteristics of all probability 
distributions of discrete variables. We may then give the following two essential 
properties of a probability distribution of a discrete variable: 

4(1) 0 P(X = x) < 1 

(2) E P(X = x) = 1 

The reader will also note that each of the probabilities in Table 4.2.2 is the 
relative frequency of occurrence of the corresponding value of X. 

With its probability distribution available to us, we can make probability 
statements regarding the random variable X. We illustrate with some examples. 
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Figure 4.2.1 Graphical representation of the probability distribution shown in 
Table 4.2.1. 

Example 	What is the probability that a randomly selected woman will be one who used three 
4.2.2 	prescription and nonprescription drugs? 

Solution: We may write the desired probability as P(X = 3). We see in Table 
4.2.2 that the answer is .0832. 
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Example 	What is the probability that a randomly selected woman used either one or two 
4.2.3 	drugs? 

Solution: To answer this question, we use the addition rule for mutually exclusive 
events. Using probability notation and the results in Table 4.2.2, we write the 
answer as P(1 U 2) = P(1) + P(2) = .3228 + .1895 = .5123. 

Cumulative Distributions Sometimes it will be more convenient to work 
with the cumulative probability distribution of a random variable. The cumulative 
probability distribution for the discrete variable whose probability distribution is 
given in Table 4.2.2 may be obtained by successively adding the probabilities, 
P(X = x), given in the last column. The cumulative probability for x z  is written as 
F(x) = P(X < x z ). It gives the probability that X is less than or equal to a specified 
value, x i . 

The resulting cumulative probability distribution is shown in Table 4.2.3 The 
graph of the cumulative probability distribution is shown in Figure 4.2.2. The graph 
of a cumulative probability distribution is called an ogive. In Figure 4.2.2 the graph 
of F(x) consists solely of the horizontal lines. The vertical lines only give the graph 
a connected appearance. The length of each vertical line represents the same 
probability as that of the corresponding line in Figure 4.2.1. For example, the 
length of the vertical line at X = 3 in Figure 4.2.2 represents the same probability 
as the length of the line erected at X = 3 in Figure 4.2.1, or .0832 on the vertical 
scale. 

By consulting the cumulative probability distribution we may answer quickly 
questions like those in the following examples. 

TABLE 4.2.3 Cumulative Probability Distribution of Number 
of Prescription and Nonprescription Drugs Used During Pregnancy 
Among the Subjects Described in Example 4.2.1 

Number of Drugs (x) Cumulative Frequency P(X < 2) 

0 .3405 
1 .6633 
2 .8528 
3 .9360 
4 .9733 
5 .9872 
6 .9939 
7 .9975 
8 .9989 
9 .9996 

10 .9998 
12 1.0000 
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Figure 4.2.2 Cumulative probability distribution of number of prescription and 
nonprescription drugs used during pregnancy among the subjects described in 
Example 4.2.1. 

Example 	What is the probability that a woman picked at random will be one who used two 
4.2.4 	or fewer drugs? 

Solution: The probability we seek may be found directly in Table 4.2.3 by reading 
the cumulative probability opposite x = 2, and we see that it is .8528. That is, 
P(x < 2) = .8528. We also may find the answer by inspecting Figure 4.2.2 and 
determining the height of the graph (as measured on the vertical axis) above the 
value x = 2. 

Example 	What is the probability that a randomly selected woman will be one who used fewer 
4.2.5 	than two drugs? 

Solution: Since a woman who used fewer than two drugs used either one or no 
drugs, the answer is the cumulative probability for 1. That is, P(x < 2) = P(x < 1) 
= .6633. 
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Example 	What is the probability that a randomly selected woman used five or more drugs? 
4.2.6 

Solution: To find the answer we make use of the concept of complementary 
probabilities. The set of women who used five or more drugs is the complement of 
the set of women who used fewer than five (that is, four or fewer) drugs. The 
sum of the two probabilities associated with these sets is equal to 1. We write 
this relationship in probability notation as P(x 	5) + P(x 5 4) = 1. Therefore, 
P(x 5) = 1 — P(x < 4) = 1 — .9733 = .0267. 

Example 	What is the probability that a randomly selected woman is one who used between 
4.2.7 	three and five drugs, inclusive? 

Solution: P(x < 5) = .9872 is the probability that a woman used between zero 
and five drugs, inclusive. To get the probability of between three and five drugs, we 
subtract from .9872, the probability of two or fewer. Using probability notation we 
write the answer as P(3 < x 5 5) = P(x < 5) — P(x < 2) = .9872 — .8528 = .1344. 

The probability distribution given in Table 4.2.1 was developed out of actual 
experience, so to find another variable following this distribution would be coinci-
dental. The probability distributions of many variables of interest, however, can be 
determined or assumed on the basis of theoretical considerations. In the following 
sections, we study in detail three of these theoretical probability distributions, the 
binomial, the Poisson, and the normal. 

4.3 
The Binomial Distribution 

The binomial distribution is one of the most widely encountered probability distribu-
tions in applied statistics. The distribution is derived from a process known as a 
Bernoulli trial, named in honor of the Swiss mathematician James Bernoulli 
(1654-1705), who made significant contributions in the field of probability, includ-
ing, in particular, the binomial distribution. When a process or experiment, called 
a trial, can result in only one of two mutually exclusive outcomes, such as dead or 
alive, sick or well, male or female, the trial is called a Bernoulli trial. 

The Bernoulli Process A sequence of Bernoulli trials forms a Bernoulli process 
under the following conditions. 

1. Each trial results in one of two possible, mutually exclusive, outcomes. One of 
the possible outcomes is denoted (arbitrarily) as a success, and the other is 
denoted a failure. 
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• 2. The probability of a success, denoted by p, remains constant from trial to trial. 
The probability of a failure, 1 — p, is denoted by q. 

3. The trials are independent; that is, the outcome of any particular trial is not 
affected by the outcome of any other trial. 

Example 
4.3.1 

We are interested in being able to compute the probability of x successes in n 

Bernoulli trials. For example, suppose that in a certain population 52 percent of all 
recorded births are males. We interpret this to mean that the probability of a 
recorded male birth is .52. If we randomly select five birth records from this 
population, what is the probability that exactly three of the records will be for male 
births? 

Solution: Let us designate the occurrence of a record for a male birth as a 
"success," and hasten to add that this is an arbitrary designation for purposes of 
clarity and convenience and does not reflect an opinion regarding the relative 
merits of male versus female births. The occurrence of a birth record for a male 
will be designated a success, since we are looking for birth records of males. If we 
are looking for birth records of females, these would be designated successes, and 
birth records of males would be designated failures. 

It will also be convenient to assign the number 1 to a success (record for a male 
birth) and the number 0 to a failure (record of a female birth). 

The process that eventually results in a birth record we consider to be a 
Bernoulli process. 

Suppose the five birth records selected resulted in this sequence of sexes: 

MFMMF 

In coded form we would write this as 

10110 

Since the probability of a success is denoted by p and the probability of a 
failure is denoted by q, the probability of the above sequence of outcomes is found 
by means of the multiplication rule to be 

P(1,0,1,1,0) = pqppq = q2P3  

The multiplication rule is appropriate for computing this probability since we are 
seeking the probability of a male, and a fethale, and a mkle, and a male, and a 
female, in that order or, in other words, the joint probability of the five events. For 
simplicity, commas, rather than intersection notation, have been used to separate 
the outcomes of the events in the probability statement. 

The resulting probability is that of obtaining the specific sequence of outcomes 
in the order shown. We are not, however, interested in the order of occurrence of 
records for male and female births but, instead, as has been stated already, the 
probability of the occurrence of exactly three records of male births out of five 
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randomly selected records. Instead of occurring in the sequence shown above (call 
it sequence number 1), three successes and two failures could occur in any one of 
the following additional sequences as well: 

Number Sequence 

2 11100 
3 10011 
4 11010 
5 11001 
6 10101 
7 01110 
8 00111 
9 01011 

10 01101 

Each of these sequences has the same probability of occurring, and this 
probability is equal to q2P3, the probability computed for the first sequence 
mentioned. 

When we draw a single sample of size five from the population specified, we 
obtain only one sequence of successes and failures. The question now becomes, 
what is the probability of getting sequence number 1 or sequence number 2 ... or 
sequence number 10? From the addition rule we know that this probability is equal 
to the sum of the individual probabilities. In the present example we need to sum 
the 10 q 2P3'S or, equivalently, multiply q 2P3  by 10. We may now answer our original 
question: What is the probability, in a random sample of size 5, drawn from the 
specified population, of observing three successes (record of a male birth) and two 
failures (record of a female birth)? Since in the population, p = .52, q = (1 — p) 
(1 - .52) = .48, the answer to the question is 

10(.48)2(.52)3  = 10(.2304)(.140608) = .32 

Large Sample Procedure We can easily anticipate that, as the size of the 
sample increases, listing the number of sequences becomes more and more difficult 
and tedious. What is needed is an easy method of counting the number of 
sequences. Such a method is provided by means of a counting formula that allows 
us to determine quickly how many subsets of objects can be formed when we use in 

the subsets different numbers of the objects that make up the set from which the 
objects are selected. When the order of the objects in a subset is immaterial, the 
subset is called a combination of objects. If a set consists of n objects, and we wish 
to form a subset of x objects from these n objects, without regard to the order of 
the objects in the subset, the result is called a combination. For emphasis, we define 
a combination as follows when the combination is formed by taking x objects from 
a set of n objects. 
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DEFINITION 
MBRWWWWSMIF 

A combination of n objects taken x at a time is an unordered subset of x 
of the n objects. 

The number of combinations of n objects that can be formed by taking x of 

them at a time is given by 

n! 

nC x 	x!(n — x)! 
	 (4.3.1) 

where x!, read x factorial, is the product of all the whole numbers from x down to 

1. That is, x! = x(x — 1Xx — 2)... (1). We note that, by definition, 0! = 1. 
Let us return to our example in which we have a sample of n = 5 birth 

records, and we are interested in finding the probability that three of them will be 
for male births. 

The number of sequences in our example is found by Equation 4.3.1 to be 

5.4.3.2.1 
5C2 	  = 120/12 = 10 

2 • 1 • 3 • 2 • 1 

In our example we may let x = 3, the number of successes, so that n — x = 2, 
the number of failures. We then may write the probability of obtaining exactly x 

successes in n trials as 

	

f(x ) =ncxqn-xpx _ ncx pxqn-x 	for x = 0, 1, 2,... ,n 

= 0, elsewhere 	 (4.3.2) 

This expression is called the binomial distribution. In Equation 4.3.2 f(x) = 
P(X = x) where X is the random variable, number of successes in n trials. We use 
f(x) rather than P(X = x) because of its compactness and because of its almost 
universal use. 

We may present the binomial distribution in tabular form as in Table 4.3.1. 
We establish the fact that Equation 4.3.2 is a probability distribution by 

showing that 

#1. f(x) > 0 for all real values of x. This follows from the fact that n and p are 
both nonnegative and, hence, „Cx, px, and (1 — p)n —  are all nonnegative and, 
therefore, their product is greater than or equal to zero. 

2. Ef(x) = 1. This is seen to be true if we recognize that E,,C,q' -'px is equal to 
[(1 — p) + pr = In = 1, the familiar binomial expansion. If the binomial (q + 

p)n is expanded we have 

n(n — 1) 
( q 	 = q n nq n 	 2  	qn-2p2 + 	+nq lpn-1 + pn 

If we compare the terms in the expansion, term for term, with the f(x) in 
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TABLE 4.3.1 The Binomial Distribution 

Number of 
Successes, x 	Probability, f (x) 

0 	 n con—Op0 

n Ciq n—Ip1  

2 	 nc2q n-2p2 

x 	 nCxq n—xP x  

nCn qn—nPn  

Total 	 1 

Table 4.3.1 we see that

{ 

 they are, term for term, equivalent, since 

o) =ncoqn-opo = q. 

f(1) =nciqn-ipi = 

n(n — 1) 9n 2p2
JO) =nC2qn-2P2 	2 

f(n) = n Cn qn npn = pn 

Example 
4.3.2 

As another example of the use of the binomial distribution, suppose that it is 
known that 30 percent of a certain population are immune to some disease. If a 
random sample of size 10 is selected from this population, what is the probability 
that it will contain exactly four immune persons? 

Solution: We take the probability of an immune person to be .3. Using Equation 
4.3.1 we find 

  

f(4) = loC4(.7)6(.3)4  

10! 
= T6T(.117649)(.0081) 

= .2001 

  

Binomial Table The calculation of a probability using Equation 4.3.1 can be 
a tedious undertaking if the sample size is large. Fortunately, probabilities for 
different values of n, p, and x have been tabulated, so that we need only to consult 
an appropriate table to obtain the desired probability. Table B of Appendix II is 
one of many such tables available. It gives the probability that x is less than or 
equal to some specified value. That is, the table gives the cumulative probabilities 
from x = 0 up through some specified value. 
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Let us illustrate the use of the table by using Example 4.3.2 where it was 
desired to find the probability that x = 4 when n = 10 and p = .3. Drawing on our 
knowledge of cumulative probability distributiqns from the previous section, we 
know that P(x = 4) may be found by subtracting P(X 5 3) from P(X 5 4). If in 
Table B we locate p = .3 for n = 10, we find that P(X < 4) = .8497 and P(X < 3) 
= .6496. Subtracting the latter from the former gives .8497 — .6496 = .2001, 
which agrees with our hand calculation. 

Frequently we are interested in determining probabilities, not for specific 
values of X, but for intervals such as the probability that X is between, say, 5 and 
10. Let us illustrate with an example. 

Example 
4.3.3 

Suppose it is known that in a certain population 10 percent of the population is 
color blind. If a random sample of 25 people is drawn from this population, use 
Table B in Appendix II to find the probability that: 

 

  

a. Five or fewer will be color blind. 

 

 

Solution: This probability is an entry in the table. No addition or subtraction is 
necessary. P(X < 5) = .9666. 

b. Six or more will be color blind. 

it Solution: This set is the complement of the set specified in part a; therefore, 

P(X 6) = 1 — P(X < 5) = 1 — .9666 = .0334 

c. Between six and nine inclusive will be color blind. 

• Solution: We find this by subtracting the probability that X is less than or equal 
to 5 from the probability that X is less than or equal to 9. That is, 

P(6 X 9) = P(X 9) — P(X 5) = .9999 — .9666 = .0333 

d. Two, three, or four will be color blind. 

Solution: This is the probability that X is between 2 and 4 inclusive. 

P(2 X 4) = P(X 4) — P(X 1) = .9020 — .2712 = .6308 

 

  

Using Table B When p > .5 Table B does not give probabilities for values 
of p greater than .5. We may obtain probabilities from Table B, however, by 
restating the problem in terms of the probability of a failure, 1 — p, rather than in 
terms of the probability of a success, p. As part of the restatement, we must also 
think in terms of the number of failures, n — x, rather than the number of 
successes, x. We ma- summarize this idea as follows: 

P(X = 	p > .50) =P(X = n — xln,1 — p) 	(4.3.3) 
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In words, Equation 4.3.3 says, "The probability that X is equal to some specified 
value given the sample size and a probability of success greater than .5 is equal to 
the probability that X is equal to n — x given the sample size and the probability 
of a failure of 1 — p." For purposes of using the binomial table we treat the 
probability of a failure as though it were the probability of a success. When p is 
greater than .5, we may obtain cumulative probabilities from Table B by using the 
following relationship: 

P(X < xin, p > .5) = P(X n — xin, 1 - p) 	(4.3.4) 

Finally, to use Table B to find the probability that X is greater than or equal to 
some x when p > .5, we use the following relationship: 

P(X xin, p > .5) = P(X < n — xin, 1 — p) 
	

(4.3.5) 

Example 
4.3.4 

In a certain community, on a given evening, someone is at home in 85 percent of 
the households. A health research team conducting a telephone survey selects a 
random sample of 12 households. Use Table B to find the probability that: 

 

a. The team will find someone at home in exactly 7 households. 

 

 

Solution: We restate the problem as follows: What is the probability that the 
team conducting the survey gets no answer from exactly 5 calls out of 12, if no one 
is at home in 15 percent of the households? We find the answer as follows: 

 

P(X = 51n = 12, p = .15) = P(X 5) — P(X 4) 

= .9954 — .9761 = .0193 

b. The team will find someone at home in 5 or fewer households. 

Solution: The probability we want is 

P(X 51n = 12, p = .85) = P(X 12 — 51n = 12,p = .15) 

= P(X 71n = 12, p 	.15) 

= 1 — P(X < 61n = 12, p = .15) 

= 1 — .9993 = .0007 

c. The team will find someone at home in 8 or more households. 

Solution: The probability we desire is 

P(X 81n =-- 12, p = .85) = P(X 41n = 12, p = .15) = .9761 

 

   

Figure 4.3.1 provides a visual representation of the solution to the three parts of 
Example 4.3.4. 
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Figure 4.3.1 Schematic representation of solutions to Example 4.3.4 (the relevant number of successes and failures in each case 
are circled). 
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The Binomial Parameters The binomial distribution has two parameters, n 

and p. They are parameters in the sense that they are sufficient to specify a 
binomial distribution. The binomial distribution is really a family of distributions 
with each possible value of n and p designating a different member of the family. 
The mean and variance of the binomial distribution are tt, = np and cr 2  = np(1 — p), 
respectively. 

Strictly speaking, the binomial distribution is applicable in situations where 
sampling is from an infinite population or from a finite population with replace-
ment. Since in actual practice samples are usually drawn without replacement from 
finite populations, the question naturally arises as to the appropriateness of the 
binomial distribution under these circumstances. Whether or not the binomial is 
appropriate depends on how drastic is the effect of these conditions on the 
constancy of p from trial to trial. It is generally agreed that when n is small* 

relative to N, the binomial model is appropriate. Some writers say that n is small 
relative to N if N is at least 10 times as large as n. 

EXERCISES 

In each of the following exercises, assume that N is sufficiently large relative to n that the 
binomial distribution may be used to find the desired probabilities. 

4.3.1 Based on their analysis of data collected by the National Center for Health Statistics, 
Najjar and Rowland (A-2) report that 25.7 percent of U. S. adults are overweight. If 
we select a simple random sample of 20 U. S. adults, find the probability that the 
number of overweight people in the sample will be (round the percentage to 26 for 
computation purposes): 

a. Exactly three. 	b. Three or more. 
c. Fewer than three. 	d. Between three and seven, inclusive. 

4.3.2 Refer to Exercise 4.3.1. How many overweight adults would you expect to find in a 
sample of 20? 

4.3.3 Refer to Exercise 4.3.1. Suppose we select a simple random sample of five adults. Use 
Equation 4.3.2 to find the probability that the number of overweight people in the 
sample will be: 

a. Zero. 	 b. More than one. 
c. Between one and three, inclusive. 	 d. Two or fewer. 
e. Five. 

4.3.4 A National Center for Health Statistics report based on 1985 data states that 30 
percent of American adults smoke (A-3). Consider a simple random sample of 15 
adults selected at that time. Find the probability that the number of smokers in the 
sample would be: 

a. Three. 	 b. Less than five. 
c. Between five and nine, inclusive. 	d. More than five, but less than 10. 
e. Six or more. 

4.3.5 Refer to Exercise 4.3.4. Find the mean and variance of the number of smokers in 
samples of size 15. 
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4.3.6 Refer to Exercise 4.3.4. Suppose we were to take a simple random sample of 25 adults 
today and find that two are smokers. Would these results cause you to suspect that 
the percentage of adults who smoke has decreased since 1985? Why or why not? 

4.3.7 The probability that a person suffering from migraine headache will obtain relief 
with a particular drug is .9. Three randomly selected sufferers from migraine 
headache are given the drug. Find the probability that the number obtaining relief 
will be: 

a. Exactly zero. 	b. Exactly one. 
c. More than one. 	d. Two or fewer. 
e. Two or three. 	f. Exactly three. 

4.3.8. In a survey of nursing students pursuing a master's degree, 75 percent stated that 
they expect to be promoted to a higher position within one month after receiving 
their degree. If this percentage holds for the entire population, find, for a sample of 
15, the probability that the number expecting a promotion within a month after 
receiving their degree is: 

a. Six 	 b. At least seven 
c. No more than five 	d. Between six and nine, inclusive 

4.4 
The Poisson Distribution 

The next discrete distribution that we consider is the Poisson distribution, named for 
the French mathematician Simeon Denis Poisson (1781-1840), who is generally 
credited for publishing its derivation in 1837 (1, 2). This distribution has been used 
extensively, as a probability model in biology and medicine. Haight (2) presents a 
fairly extensive catalog of such applications in Chapter 7 of his book. 

If x is the number of occurrences of some random event in an interval of time 
or space (ot some volume of matter), the probability that X will occur is given by 

e-AA' 
f(x) = 

 

x = 0, 1, 2, ... 	 (4.4.1) 
x! 

The Greek letter A (lambda) is called the parameter of the distribution and is the 
average nuinber of occurrences of the randotn event in the interval (or volume). 
The symbol e is the constant (to four decimals) 2.7183. 

It can be shown that f(x) 0 for every x and that Ex f(x) = 1, so that the 
distribution satisfies the requirements for a probability distribution. 

The Poisson Process We have seen that the binomial distribution results 
from a set of assumptions about an underlying process yielding a set of numerical 
observations. Such, also, is the case with the Poisson distribution. The following 
statements describe what is known as the Poisson process. 
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1. The occurrences of the events are independent. The occurrence of an event in 
an interval' of space or time has no effect on the probability of a second 
occurrence of the event in the same, or any other, interval. 

* 2. Theoretically, an infinite number of occurrences of the event must be possible 
in the interval. 

$ 3. The probability of the single occurrence of the event in a given interval is 
proportional to the length of the interval. 

* 4. In any infinitesimally small portion of the interval, the probability of more than 
one occurrence of the event is negligible. 

*An interesting feature of the Poisson distribution is the fact that the mean and 
variance are equal. 

When to Use the Poisson Model The Poisson distribution is employed as a 
model when counts are made of events or entities that are distributed at random in 
space or time. One may suspect that a certain process obeys the Poisson law, and 
under this assumption probabilities of the occurrence of events or entities within 
some unit of space or time may be calculated. For example, under the assumption 
that the distribution of some parasite among individual host members follows the 
Poisson law, one may, with knowledge of the parameter A, calculate the probability 
that a randomly selected individual host will yield x number of parasites. In a later 
chapter we will learn how to decide whether the assumption that a specified 
process obeys the Poisson law is plausible. 

To illustrate the use of the Poisson distribution for computing probabilities, let 
us consider the following examples. 

Example 
4.4.1 

In a study of suicides, Gibbons et al. (A-4) found that the monthly distribution of 
adolescent suicides in Cook County, Illinois, between 1977 and 1987 closely fol-
lowed a Poisson distribution with parameter A = 2.75. Find the probability that a 
randomly selected month will be one in which three adolescent suicides occurred. 

Solution: By Equation 4.4.1, we find the answer to be 

P(X = 3) — 
e -2752.753 	(.063928)(20.796875) 
	  — .221584 

3! 	 6 

Example 
	

Refer to Example 4.4.1. Assume that future adolescent suicides in the studied 
4.4.2 	population will follow a Poisson distribution. What is the probability that a 

randomly selected future month will be one in which either three or four suicides 
will occur? 

'For simplicity, the Poisson is discussed in terms of intervals, but other units, such as a volume of 
matter, are implied. 



96 	 Chapter 4 • Probability Distributions 

Solution: Since the two events are mutually exclusive, we use the addition rule to 
obtain 

P(X = 3) + P(X = 4) = .221584 + 
e -2.752.754 

4! 

= .221584 + .152338 = .373922 

In the foregoing examples the probabilities were evaluated directly from the 
equation. We may, however, use Appendix II Table C, which gives cumulative 
probabilities for various values of A and X. 

Example 
4.4.3 

In the study of a certain aquatic organism, a large number of samples were taken 
from a pond, and the number of organisms in each sample was counted. The 
average number of organisms per sample was found to be two. Assuming that the 
number of organisms follows a Poisson distribution, find the probability that the 
next sample taken will contain one or fewer organisms. 

Solution: In Table C we see that when A = 2, the probability that X < 1 is .406. 
That is, P(X < 112) = .406. 

S. Example 	Refer to Example 4.4.3. Find the probability that the next sample taken will 
4.4.4 	contain exactly three organisms. 

Solution: 

P(X = 312) = P(X 3) — P(X 2) = .857 — .677 = .180 

Example 	Refer to Example 4.4.3. Find the probability that the next sample taken will 
4.4.5 	contain more than five organisms. 

Solution: Since the set of more than five organisms does not include five, we are 
asking for the probability that six or more organisms will be observed. This is 
obtained by subtracting the probability of observing five or fewer from 1. That is, 

P(X > 512) = 1 — P(X 5) = 1 — .983 = .017 

EXERCISES 

4.4.1 Suppose it is known that in a certain area of a large city the average number of rats 
per quarter block is five. Assuming that the number of rats follows a Poisson 
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distribution, find the probability that in a randomly selected quarter block: 

a. There are exactly five rats. 
b. There are more than five rats. 
c. There are fewer than five rats. 
d. There are between five and seven rats, inclusive. 

4.4.2 Suppose that over a period of several years the average number of deaths from a 
certain noncontagious disease has been 10. If the number of deaths from this disease 
follows the Poisson distribution, what is the probability that during the current year: 

a. Exactly seven people will die from the disease? 
b. Ten or more people will die from the disease? 
c. There will be no deaths from the disease? 

4.4.3 If the mean number of serious accidents per year in a large factory (where the 
number of employees remains constant) is five, find the probability that in the 
current year there will be: 

a. Exactly seven accidents. 	b. Ten or more accidents. 
c. No accidents. 	 d. Fewer than five accidents. 

4.4.4 In a study of the effectiveness of an insecticide against a certain insect, a large area of 
land was sprayed. Later the area was examined for live insects by randomly selecting 
squares and counting the number of live insects per square. Past experience has 
shown the average number of live insects per square after spraying to be .5. If the 
number of live insects per square follows a Poisson distribution, what is the probabil-
ity that a selected square will contain: 

a. Exactly one live insect? 	b. No live insects? 
c. Exactly four live insects? 	d. One or more live insects? 

4.4.5 In a certain population an average of 13 new cases of esophageal cancer are 
diagnosed each year. If the annual incidence of esophageal cancer follows a Poisson 
distribution, find the probability that in a given year the number of newly diagnosed 
cases of esophageal cancer will be: 

a. Exactly 10. 	 b. At least 8. 
c. No more than 12. 	d. Between 9 and 15, inclusive. 
e. Fewer than 7. 

4.5 
Continuous Probabili Distributions 

The probability distributions considered thus far, the binomial and the Poisson, are 
distributions of discrete variables. Let us now consider distributions of continuous 
random variables. In Chapter 1 we stated that a continuous variable is one that can 
assume any value within a specified interval of values assumed by the variable. 
Consequently, between any two values assumed by a continuous variable, there 
exist an infinite number of values. 

To help us understand the nature of the distribution of a continuous random 
variable, let us consider the data presented in Table 1.4.1 and Figure 2.3.1. In the 
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table we have 169 values of the random variable, age. The histogram of Figure 
2.3.1 was constructed by locating specified points on a line representing the 
measurement of interest and erecting a series of rectangles, whose widths were the 
distances between two specified points on the line, and whose heights represented 
the number of values of the variable falling between the two specified points. The 
intervals defined by any two consecutive specified points we called class intervals. 
As was noted in Chapter 2, subareas of the histogram correspond to the frequen-
cies of occurrence of values of the variable between the horizontal scale boundaries 
of these subareas. This provides a way whereby the relative frequency of occurrence 
of values between any two specified points can be calculated: merely determine the 
proportion of the histogram's total area falling between the specified points. This 
can be done more conveniently by consulting the relative frequency or cumulative 
relative frequency columns of Table 2.2.3. 

Imagine now the situation where the number of values of our random variable 
is very large and the width of our class intervals is made very small. The resulting 
histogram could look like that shown in Figure 4.5.1. 

If we were to connect the midpoints of the cells of the histogram in Figure 
4.5.1 to form a frequency polygon, clearly we would have a much smoother figure 
than the frequency polygon of Figure 2.2.3. 

In general, as the number of observations, n, approaches infinity, and the width 
of the class intervals approaches zero, the frequency polygon approaches a smooth 
curve such as is shown in Figure 4.5.2. Such smooth curves are used to represent 
graphically the distributions of continuous random variables. This has some impor-
tant consequences when we deal with probability distributions. First, the total area 
under the curve is equal to one, as was true with the histogram, and the relative 

f(x) 

1■1 

x 

Figure 4.5.1 A histogram resulting from a large number of values and 

small class intervals. 
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f(x) 

x 

Figure 4.5.2 Graphical representation of a continuous distribution. 

f(x) 

Figure 4.5.3 Graph of a continuous distribution showing 
area between a and b. 

frequency of occurrence of values between any two points on the x-axis is equal to 
the total area bounded by the curve, the x-axis, and perpendicular lines erected 
at the two points on the x-axis. See Figure 4.5.3. The probability of any specific value 
of the random variable is zero. This seems logical, since a specific value is 
represented by a point on the x-axis and the area above a point is zero. 

Finding Area Under a Smooth Curve With a histogram, as we have seen, 
subareas of interest can be found by adding areas represented by the cells. We have 
no cells in the case of a smooth curve, so we must seek an alternate method of 
finding subareas. Such a method is provided by integral calculus. To find the area 
under a smooth curve between any two points a and b, the density function is 
integrated from a to b. A density function is a formula used to represent the 
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distribution of a continuous random variable. Integration is the limiting case of 
summation, but we will not perform any integrations, since the mathematics 
involved are beyond the scope of this book. As we will see later, for all the 
continuous distributions we will consider, there will be an easier way to find areas 
under their curves. 

Although the definition of a probability distribution for a continuous random 
variable has been implied in the foregoing discussion, by way of summary, we 
present it in a more compact form as follows. 

DEFINITION 
a,4 

A nonnegative function f(x) is called a probability distribution (sometimes 
called a probability density function) of the continuous random variable X 
if the total area bounded by its curve and the x-axis is equal to 1 and if the 
subarea under the curve bounded by the curve, the x-axis, and 
perpendiculars erected at any two points a and b gives the probability that 
X is between the points a and b. 

4.6 
The Normal Distribution 

We come now to the most important distribution in all of statistics—the normal 
distribution. The formula for this distribution was first published by Abraham De 
Moivre (1667-1754) on November 12, 1733 (3). Many other mathematicians figure 
prominently in the history of the normal distribution, including Carl Friedrich 
Gauss (1777-1855). The distribution is frequently called the Gaussian distribution in 
recognition of his contributions. 

The normal density is given by 

In Equation 4.6.1, -n- and e are the familiar constants, 3.14159 and 2.71828, 
respectively, which are frequently encountered in mathematics. The two parame-
ters of the distribution are A, the mean, and u, the standard deviation. For our 
purposes we may think ofµ and o of a normal distribittion, respectively, as 
measures of central tendency and dispersion as discussed in Chapter 2. Since, 
however, a normally distributed random variable is continuous and takes on values 
between –00 and +00, its mean and standard deviation may be more rigorously 
defined; but such definitions cannot be given without using calculus. The graph 
of the normal distribution produces the familiar bell-shaped curve shown in 
Figure 4.6.1. 
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Figure 4.6.1 Graph of a normal distribution. 

Characteristics of the Normal Distribution The following are some impor-
tant characteristics of the normal distribution. 

1. It is symmetrical about its mean, A. As is shown in Figure 4.6.1, the curve on 
either side ofµ is a mirror image of the other side. 

* 2. The mean, the median, and the mode are all equal. 

3. The total area under the curve above the x-axis is one square unit. This 
characteristic follows from the fact that the normal distribution is a probability 
distribution. Because of the symmetry already mentioned, 50 percent of the 
area is to the right of a perpendicular erected at the mean, and 50 percent is 
to the left. 

4. If we erect perpendiculars a distance of 1 standard deviation from the mean in 
both directions, the area enclosed by these perpendiculars, the x-axis, and the 
curve will be approximately 68 percent of the total area. If we extend these 
lateral boundaries a distance of 2 standard deviations on either side of the 
mean, approximately 95 percent of the area will be enclosed, and extending 
them a distance of 3 standard deviations will cause approximately 99.7 percent 
of the total area to be enclosed. These approximate areas are illustrated in 
Figure 4.6.2. 

5. The normal distribution is completely determined by the parameters bt, and a. 
In other words, a different normal distribution is specified for each different 
value of /.4, and o. Different values of 1.1, shift the graph of the distribution 
along the x-axis as is shown in Figure 4.6.3. Different values of o determine 
the degree of flatness or peakedness of the graph of the distribution as is 
shown in Figure 4.6.4. 

The Standard Normal Distribution The last-mentioned characteristic of 
the normal distribution implies that the normal distribution is really a family 
of distributions in which one member is distinguished from another on the basis of 

* the values ofµ and o. The most important member of this family is the standard 
normal distribution or unit normal distribution, as it is sometimes called, because it hats 
a mean of 0 and a standard deviation of 1. It may be obtained from Equation 4.6.1 
by creating a random variable z = (x — n)/a. The equation for the standard 
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Figure 4.6.2 Subdivision of the area under the normal 
curve (areas are approximate). 
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Figure 4.6.3 Three normal distributions with different means but the same amount 

of variability. 
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Figure 4.6.4 Three normal distributions with different standard deviations but the 
same mean. 

normal distribution is written 

1 
f(z) = 	e-z2/2, 

27r 
— cc < z < cc 	 (4.6.2) 

The graph of the standard normal distribution is shown in Figure 4.6.5. 
To find the probability that z takes on a value between any two points on the 

z-axis, say zo  and z1, we must find the area bounded by perpendiculars erected at 
these points, the curve, and the horizontal axis. As we mentioned previously, areas 
under the curve of a continuous distribution are found by integrating the function 
between two values of the variable. In the case of the standard normal, then, to 
find the area between zo  and z„ we need to evaluate the following integral: 

	

z, 	1 

	

za 	e
-z2 /2  dz I 

Fortunately, we do not have to concern ourselves with the mathematics, since there 

1 

0 

Figure 4.6.5 The standard normal distribution. 
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zo 

Figure 4.6.6 Area given by Appendix II Table D. 

are tables available that provide the results of all such integrations in which we 
might be interested. Table D of Appendix II is an example of these tables. In the 
body of Table D are found the areas under the curve between —00 and the values of 
z shown in the left-most column of the table. The shaded area of Figure 4.6.6 
represents the area listed in the table as being between —00 and zo  where z0  is the 
specified value of z. 

We now illustrate the use of Table D by several examples. 

Example 	Given the standard normal distribution, find the area under the curve, above the 
4.6.1 	z-axis between z = —00 and z = 2. 

Solution: It will be helpful to draw a picture of the standard normal distribution 
and shade the desired area, as in Figure 4.6.7. If we locate z = 2 in Table D and 
read the corresponding entry in the body of the table, we find the desired area to 
be .9772. We may interpret this area in several ways. We may interpret it as the 
probability that a z picked at random from the population of z's will have a value 
between —00 and 2. We may also interpret it as the relative frequency of 

A 
0 	2 

Figure 4.6.7 The standard normal distribution showing 
area between z = — (rand z =2. 
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occurrence (or proportion) of values of z between —00 and 2, or we may say that 
97.72 percent of the z's have a value between —00 and 2. 

Example 	What is the probability that a z picked at random from the population of z's will 
4.6.2 	have a value between —2.55 and + 2.55? 

Figure 4.6.8 Standard normal curve showing P(-2.55 < 
z < 2.55). 

Solution: Figure 4.6.8 shows the area desired. Table D gives us the area between 
—00 and 2.55, which is found by locating 2.5 in the left-most column of the table 
and then moving across until we come to the entry in the column headed by .05. 
We find this area to be .9946. If we look at the picture we draw, we see that this is 
more area than is desired. We need to subtract from .9946 the area to the left of 
—2.55. Reference to Table D shows that the area to the left of —2.55 is .0054. 
Thus the desired probability is 

P( —2.55 < z < 2.55) = .9946 — .0054 = .9892. 

Suppose we had been asked to find the probability that z is between —2.55 and 
2.55 inclusive. The desired probability is expressed as P( —2.55 < z < 2.55). Since, 
as we noted in Section 4.5, P(z = zo) = 0, P(— 2.55 < z < 2.55) = P(-2.55 < z < 
2.55) = .9892. 

Example 	What proportion of z values are between —2.74 and 1.53? 
4.6.3 

Solution: Figure 4.6.9 shows the area desired. We find in Table D that the area 
between —00 and 1.53 is .9370, and the area between —00 and —2.74 is .0031. To 
obtain the desired probability we subtract .0031 from .9370. That is, 

P( —2.74 < z < 1.53) = .9370 — .0031 = .9339 
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Figure 4.6.9 Standard normal curve showing proportion 
of z values between z = —2.74 and z = 1.53. 

Example 	Given the standard normal distribution, find P(z 2.71). 
4.6.4 

Solution: The area desired is shown in Figure 4.6.10. We obtain the area to the 
right of z = 2.71 by subtracting the area between —00 and 2.71 from 1. Thus, 

P(z 	2.71) = 1 — P(z < 2.71) 

= 1 — .9966 

= .0034 

Figure 4.6.10 Standard normal distribution showing 
P(z 2.71). 

Example 	Given the standard normal distribution, find P(.84 < z < 2.45). 

4.6.5 

Solution: The area we are looking for is shown in Figure 4.6.11. We first obtain 
the area between —00 and 2.45 and from that subtract the area between —00 and 



0 .84 2.45 
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Figure 4.6.11 Standard normal curve showing P(.84 
z < 2.45). 

.84. In other words, 

P(.84 5 z 5 2.45) = P(z 5 2.45) — P(z < .84) 

= .9929 — .7995 

= .1934 

EXERCISES 

Given the standard normal distribution find: 

4.6.1 The area under the curve between z = 0 and z = 1.43. 

4.6.2 The probability that a z picked at random will have a value between z = —2.87 and 
Z = 2.64. 

4.6.3 P(z 	.55). 	 4.6.4 P(z > — .55). 
4.6.5 P(z < —2.33). 	 4.6.6 P(z < 2.33). 
4.6.7 P( — 1.96 < z < 1.96). 	4.6.8 	— 2.58 < z < 2.58). 
4.6.9 P( — 1.65 < z < 1.65). 	4.6.10 P(z = .74). 

Given the following probabilities, find z1: 

4.6.11 P(z < zi) = .0055 
4.6.13 /3(z.  > z,) = .0384 
4.6.15 P( — z1  _5 z zi) = .8132 

4.6.12 P(— 2.67 	zi) = .9718 
4.6.14 P(. 5. < 2.98) = .1117 

4.7 
Normal Distribution Applications 

Although its importance in the field of statistics is indisputable, one should realize 
that the normal distribution is not a law that is adhered to by all measurable 
characteristics occurring in nature. It is true, however, that many of these charac-
teristics are approximately normally distributed. Consequently, even though no 
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variable encountered in practice is precisely normally distributed, the normal 
distribution can be used to model the distribution of many variables that are of 
interest. Using the normal distribution as a model allows us to make useful 
probability statements about some variables much more conveniently than would 
be the case if some more complicated model had to be used. 

Human stature and human intelligence are frequently cited as examples 
of variables that are approximately normally distributed. On the other hand, 
Elveback et al. (4) and Nelson et al. (5) have pointed out that many distributions 
relevant to the health field cannot be described adequately by a normal distribu-
tion. Whenever it is known that a random variable is approximately normally 
distributed or when, in the absence of complete knowledge, it is considered 
reasonable to make this assumption, the statistician is aided tremendously in his or 
her efforts to solve practical problems relative to this variable. 

There are several other reasons why the normal distribution is so important in 
statistics, and these will be considered in due time. For now, let us see how we may 
answer simple probability questions about random variables when we know, or are 
willing to assume, that they are, at least, approximately normally distributed. 

Example 
4.7.1 

As part of a study of Alzheimer's disease, Dusheiko (A-5) reported data that are 
compatible with the hypothesis that brain weights of victims of the disease are 
normally distributed. From the reported data, we may compute a mean of 1076.80 
grams and a standard deviation of 105.76 grams. If we assume that these results 
are applicable to all victims of Alzheimer's disease, find the probability that a 
randomly selected victim of the disease will have a brain that weighs less than 800 
grams. 

Solution: First let us draw a picture of the distribution and shade the area 
corresponding to the probability of interest. This has been done in Figure 4.7.1. 

If our distribution were the standard normal distribution with a mean of 0 and 
a standard deviation of 1, we could make use of Table D and find the probability 
with little effort. Fortunately, it is possible for any normal distribution to be 

 

 

800 	g = 1076.80 

Figure 4.7.1 Normal distribution to approximate 
distribution of brain weights of patients with Alzheimer's 
disease (mean and standard deviation estimated). 
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800 
	

1076.80 

-2.62 
	

0 

Figure 4.7.2 Normal distribution of brain weights (x) and 
the standard normal distribution (z). 

transformed easily to the standard normal. What we do is transform all values of X 
to corresponding values of z. This means that the mean of X must become 0, the 
mean of z. In Figure 4.7.2 both distributions are shown. We must determine what 
value of z, say zo, corresponds to an x of 800. This is done by the following 
formula: 

X - 
Z  	 (4.7.1) 

cr 

which transforms any value of x in any normal distribution to the corresponding 
value of z in the standard normal distribution. For the present example we have 

800 — 1076.80 
z 
	

= 2.62 
105.76 

The value of zo  we seek, then, is —2.62. 

Let us examine these relationships more closely. It is seen that the distance from 
the mean, 1076.80, to the x-value of interest, 800, is 800 — 1076.80 = —276.80, 
which is a distance of 2.62 standard deviations. When we transform brain weight 
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values to z values, the distance of the z value of interest from its mean, 0, is equal 
to the distance of the corresponding x value from its mean, 1076.80, in standard 
deviation units. We have seen that this latter distance is 2.62 standard deviations. 
In the z distribution a standard deviation is equal to 1, and consequently the point 
on the z scale located a distance of 2.62 standard deviations below 0 is z = —2.62, 
the result obtained by employing the formula. By consulting Table D, we find that 
the area to the left of z = —2.62 is .0044. We may summarize this discussion as 
follows: 

P(x 
< 800) = P(z < 800 — 1076.80 ) 
	  — P(z < —2.62) = .0044 

105.76 

To answer the original question, we say that the probability is .0044 that a 
randomly selected patient will have a brain weight of less than 800 grams. 

Example 
4.7.2 

Suppose it is known that the heights of a certain population of individuals are 
approximately normally distributed with a mean of 70 inches and a standard 
deviation of 3 inches. What is the probability that a person picked at random from 
this group will be between 65 and 74 inches tall? 

Solution: In Figure 4.7.3 are shown the distribution of heights and the z distribu-
tion to which we transform the original values to determine the desired probabili-
ties. We find the z value corresponding to an x of 65 by 

65 — 70 
z= 	

3 	
= —1.67 

a = 25 

65 
	

70 
	

74 

—1.67 	0 	1.33 

Figure 4.7.3 Distribution of heights (x) and the corresponding 
standard normal distribution (z). 
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Similarly, for x = 74 we have 

74 — 70 
z= 	

3 	
— 1.33 

From Table D we find the area between —00 and —1.67 to be .0475 and the area 
between —00 and 1.33 to be .9082. The area desired is the difference between these, 
.9082 — .0475 = .8607. To summarize 

( 65 — 70 	74 — 70 
P(65 x 5 74) = P < Z 	 

3 	 3 

= P(— 1.67 5 z 	1.33) 

= P(-00 5z 5 1.33) — P(-00 z S —1.67) 

= .9082 — .0475 

= .8607 

The probability asked for in our original question, then, is .8607. 

Example 	In a population of 10,000 of the people described in Example 4.7.2, how many 
4.7.3 	would you expect to be 6 feet 5 inches tall or taller? 

Solution: We first find the probability that one person selected at random from 
the population would be 6 feet 5 inches tall or taller. That is, 

77 — 70 
P(x > 77) = P(z> 	3 	) — P(z > 2.33) = 1 — .9901 = .0099 

Out of 10,000 people we would expect 10,000(.0099) = 99 to be 6 feet 5 inches (77 
inches) tall or taller. 

EXERCISES 

4.7.1 Suppose the ages at time of onset of a certain disease are approximately normally 
distributed with a mean of 11.5 years and a standard deviation of 3 years. A child has 
just come down with the disease. What is the probability that the child is: 

a. Between the ages of q and 144 years? 
b. Over 10 years of age? 
c. Under 12? 
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4.7.2 In the study of fingerprints an important quantitative characteristic is the total ridge 
count for the 10 fingers of an individual. Suppose that the total ridge counts of 
individuals in a certain population are approximately normally distributed with a 
mean of 140 and a standard deviation of 50. Find the probability that an individual 
picked at random from this population will have a ridge count: 

a. Of 200 or more. 
b. Less than 100. 
c. Between 100 and 200. 
d. Between 200 and 250. 
e. In a population of 10,000 people how many would you expect to have a ridge count 

of 200 or more? 

4.7.3 If the capacities of the cranial cavities of a certain population are approximately 
normally distributed with a mean of 1400 cc and a standard deviation of 125, find the 
probability that a person randomly picked from this population will have a cranial 
cavity capacity: 

a. Greater than 1450 cc. 	 b. Less than 1350 cc. 
c. Between 1300 cc and 1500 cc. 

4.7.4 Suppose the average length of stay in a chronic disease hospital of a certain type of 
patient is 60 days with a standard deviation of 15. If it is reasonable to assume an 
approximately normal distribution of lengths of stay, find the probability that a 
randomly selected patient from this group will have a length of stay: 

a. Greater than 50 days. 	b. Less than 30 days. 
c. Between 30 and 60 days. 	d. Greater than 90 days. 

4.7.5 If the total cholesterol values for a certain population are approximately normally 
distributed with a mean of 200 mg/100 ml and a standard deviation of 20 mg/100 
ml, find the probability that an individual picked at random from this population will 
have a cholesterol value: 

a. Between 180 and 200 mg/100 ml. 	b. Greater than 225 mg/100 ml. 
c. Less than 150 mg/100 ml. 	 d. Between 190 and 210 mg/100 ml. 

4.7.6 Given a normally distributed population with a mean of 75 and a variance of 625, 
find: 

a. P(50 < x < 100). 	b.P(x > 90). 
c. P(x < 60). 	 d. P(x 85). 
e. P(30 < x < 110). 

4.7.7 The weights of a certain population of young adult females are approximately 
normally distributed with a mean of 132 pounds and a standard deviation of 15. Find 
the probability that a subject selected at random from this population will weigh: 

a. More than 155 pounds. 	 b. 100 pounds or less. 
c. Between 105 and 145 pounds. 
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4.8 
Summary 

In the present chapter the concepts of probability described in the preceding 
chapter are further developed. The concepts of discrete and continuous random 
variables and their probability distributions are discussed. In particular, two 
discrete probability distributions, the binomial and the Poisson, and one continuous 
probability distribution, the normal, are examined in considerable detail. We have 
seen how these theoretical distributions allow us to make probability statements 
about certain random variables that are of interest to the health professional. 

REVIEW QUESTIONS AND EXERCISES 

1. What is a discrete random variable? Give three examples that are of interest to the 
health professional. 

2. What is a continuous random variable? Give three examples of interest to the health 
professional. 

3. Define the probability distribution of a discrete random variable. 

4. Define the probability distribution of a continuous random variable. 

5. What is a cumulative probability distribution? 

6. What is a Bernoulli trial? 

7. Describe the binomial distribution. 

8. Give an example of a random variable that you think follows a binomial distribution. 

9. Describe the Poisson distribution. 

10. Give an example of a random variable that you think is distributed according to the 
Poisson law. 

11. Describe the normal distribution. 

12. Describe the standard normal distribution and tell how it is used in statistics. 

13. Give an example of a random variable that you think is, at least approximately, 
normally distributed. 

14. Using the data of your answer to question 13, demonstrate the use of the standard 
normal distribution in answering probability questions related to the variable selected. 

15. The usual method for teaching a particular self-care skill to retarded persons is effective 
in 50 percent of the cases. A new method is tried with 10 persons. If the new method is 
no better than the standard, what is the probability that seven or more will learn the 
skill? 
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16. Personnel records of a large hospital show that 10 percent of housekeeping and 
maintenance employees quit within one year after being hired. If 10 new employees have 
just been hired: 

a. What is the probability that exactly half of them will still be working after one year? 
b. What is the probability that all will be working after one year? 
c. What is the probability that 3 of the 10 will quit before the year is up? 

17. In a certain developing country, 30 percent of the children are undernourished. In a 
random sample of 25 children from this area, what is the probability that the number of 
undernourished will be: 

a. Exactly 10? 	 b. Less than five? 
c. Five or more? 	 d. Between three and five inclusive? 
e. Less than seven, but more than four? 

18. On the average, two students per hour report for treatment to the first-aid room of a 
large elementary school. 

a. What is the probability that during a given hour three students come to the first-aid 
room for treatment? 

b. What is the probability that during a given hour two or fewer students will report to 
the first-aid room? 

c. What is the probability that between three and five students, inclusive, will report to 
the first-aid room during a given hour? 

19. On the average, five smokers pass a certain street corner every 10 minutes. What is the 
probability that during a given 10-minute period the number of smokers passing will be: 

a. Six or fewer? 	b. Seven or more? 
c. Exactly eight? 

20. In a certain metropolitan area there is an average of one suicide per month. What is the 
probability that during a given month the number of suicides will be: 

a. Greater than one? 	b. Less than one? 
c. Greater than three? 

21. The IQs of individuals admitted to a state school for the mentally retarded are 
approximately normally distributed with a mean of 60 and a standard deviation of 10. 

a. Find the proportion of individuals with IQs greater than 75. 
b. What is the probability that an individual picked at random will have an IQ between 

55 and 75? 
c. Find P(50 < X < 70). 

22. A nurse supervisor has found that staff nurses, on the average, complete a certain task 
in 10 minutes. If the times required to complete the task are approximately normally 
distributed with a standard deviation of 3 minutes, find: 

a. The proportion of nurses completing the task in less than 4 minutes. 
b. The proportion of nurses requiring more than 5 minutes to complete the task. 
c. The probability that a nurse who has just been assigned the task will complete it 

within 3 minutes. 
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23. Scores made on a certain aptitude test by nursing students are approximately normally 
distributed with a mean of 500 and a variance of 10,000. 

a. What proportion of those taking the test score below 200? 

b. A person is about to take the test; what is the probability that he or she will make a 
score of 650 or more? 

c. What proportion of scores fall between 350 and 675? 

24. Given a binomial variable with a mean of 20 and a variance of 16, find n and p. 

25. Suppose a variable X is normally distributed with a standard deviation of 10. Given that 
.0985 of the values of X are greater than 70, what is the mean value of X? 

26. Given the normally distributed random variable X, find the numerical value of k such 
that P(p, — ko- 	+ Ica) = .754. 

27. Given the normally distributed random variable X with mean 100 and standard 
deviation 15, find the numerical value of k such that: 

a. P(X < k) = .0094 
b. P(X 	k) = .1093 
c. P(100 < X < k) = .4778 
d. P(k' < X < k) = .9660, where k' and k are equidistant from 

28. Given the normally distributed random variable X with o = 10 and P(X < 40) = .0080, 
find tk. 

29. Given the normally distributed random variable X with a- = 15 and P(X < 50) = .9904, 
find p. 

30. Given the normally distributed random variable X with et = 5 and P(X 	25) = .0526, 
find p.. 

31. Given the normally distributed random variable X with p. = 25 and P(X 5 10) = .0778, 
find cr. 

32. Given the normally distributed random variable X with p, = 30 and P(X < 50) = .9772, 
find cr. 

33. Explain why each of the following measurements is or is not the result of a Bernoulli 
trial: 

a. The gender of a newborn child. 
b. The classification of a hospital patient's condition as stable, critical, fair, good, or 

poor. 
c. The weight in grams of a newborn child. 

34. Explain why each of the following measurements is or is not the result of a Bernoulli 
trial: 

a. The number of surgical procedures performed in a hospital in a week. 
b. A Hospital patient's temperature in degrees Celsius. 
c. A hospital patient's vital signs recorded as normal or not normal. 
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35. Explain why each of the following distributions is or is not a probability distribution. 

a. 	x P(X = x) b. x P(X = x) 

0 0.15 0 0.15 
1 0.25 1 0.20 
2 0.10 2 0.30 
3 0.25 3 0.10 
4 0.30 

c. 	x P(X = x) d. x P( X = x) 

0 0.15 - 1 0.15 
1 -0.20 0 0.30 
2 0.30 1 0.20 
3 0.20 2 0.15 
4 0.15 3 0.10 

0.10 4 
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Some Important 
Sampling Distributions 
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5.4 Distribution of the Difference Between Two Sample Means 

5.5 Distribution of the Sample Proportion 

5.6 Distribution of the Difference Between Two Sample Proportions 

5.7 Summary 

5.1 
Introduction 

Before we examine the subject matter of this chapter, let us review the high points 

of what we have covered thus far. Chapter 1 introduces some basic and useful 

statistical vocabulary and discusses the basic concepts of data collection. In Chapter 

2 the organization and summarization of data are emphasized. It is here that we 

encounter the concepts of central tendency and dispersion and learn how to 

compute their descriptive measures. In Chapter 3 we are introduced to the 

fundamental ideas of probability, and in Chapter 4 we consider the concept of a 

probability distribution. These concepts are fundamental to an understanding of 

statistical inference, the topic that comprises the major portion of this book. 

The present chapter serves as a bridge between the preceding material, which 

is essentially descriptive in nature, and most of the remaining topics, which have 

been selected from the area of statistical inference. 

119 
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5.2 
Sam ling Distributions 

The topic of this chapter is sampling distributions. The importance of a clear 
understanding of sampling distributions cannot be overemphasized, as this concept 
is the very key to the understanding of statistical inference. Probability distribu-
tions serve two purposes: (1) They allow us to answer probability questions about 
sample statistics, and (2) they provide the necessary theory for making statistical 
inference procedures valid. In this chapter we use sampling distributions to answer 
probability questions about sample statistics. In the chapters that follow we will see 
how sampling distributions make statistical inferences valid. 

We begin with the following definition. 

DEFINITION 

The distribution of all possible values that can be ssumed by some 
statistic, computed from samples of the same size randomly drawn from 
the same population, is called the sampling distribution of that statistic. 

Sampling Distributions: Construction Sampling distributions may be con-
structed empirically when sampling from a discrete, finite population. To construct 
a sampling distribution we proceed as followst 

1. From a finite population of size N, randomly draw all possible samples of 
size n. 

2. Compute the statistic of interest for each sample. 

3. List in one column the different distinct observed values of the statistic, and in 
another column list the corresponding frequency of occurrence of each distinct 
observed value of the statistic. 

The actual construction of a sampling distribution is a formidable undertaking 
if the population is of any appreciable size and is an impossible task if the 
population is infinite. In such cases, sampling distributions may be approximated 
by taking a large number of samples of a given size. 

Sampling Distributions: Important Characteristics We usually are inter-
ested in knowing three things about a given sampling distribution: its mean, its 
variance, and its functional form (how it looks when graphed). 

We can recognize the difficulty of constructing a sampling distribution accord-
ing to the steps given above when the population is large. We also run into a 
problem when considering the construction of a sampling distribution when 
the population is infinite. The best we can do experimentally in this case is to 
approximate the sampling distribution of a statistic. 
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Both these problems may be obviated by means of mathematics. Although the 
procedures involved are not compatible with the mathematical level of this text, 
sampling distributions can be derived mathematically. The interested reader can 
consult one of many mathematical statistics textbooks, for example, Larsen and 
Marx (1) or Rice (2). 

In the sections that follow some of the more frequently encountered sampling 
distributions are discussed. 

5.3 
Distribution of the Sample Mean 

An important sampling distribution is the distribution of the sample mean. Let us 
see how we might construct the sampling distribution by following the steps 
outlined in the previous section. 

Example 
5.3.1 

Suppose we have a population of size N = 5, consisting of the ages of five children 
who are outpatients in a community mental health center. The ages are as follows: 
x i  = 6, x2  = 8, x3  = 10, x 4  = 12, and x5  = 14. The mean, A, of this population is 
equal to Exi/N = 10 and the variance 

0. 	E(x. — 02 	40 2 = 	  
= - = 8 

N 	5 

Let us compute another measure of dispersion and designate it by capital S as 
follows: 

E(x, — µ)240  
S2  = 	 = — = 10 

N— 1 	4 

We will refer to this quantity again in the next chapter. We wish to construct the 
sampling distribution of the sample mean, x, based on samples of size n = 2 drawn 
from this population. 

Solution: Let us draw all possible samples of size n = 2 from this population. 
These samples, along with their means, are shown in Table 5.3.1. 

We see in this example that when sampling is with replacement, there are 25 
possible samples. In general, when sampling is with replacement, the number of 
possible samples is equal to NA. 
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TABLE 5.3.1 All Possible Samples of Size n = 2 From a Population of Size N = 5. 
Samples Above or Below the Principal Diagonal Result When Sampling is Without 
Replacement. Sample Means are in Parentheses 

Second Draw 

6 	8 	10 	12 	14 

6 	6, 6 	6, 8 	6, 10 	6, 12 	6, 14 
(6) (7) 	(8) 	(9) 	(10) 

8 	8, 6 	8, 8 	8, 10 	8, 12 	8, 14 
(7) (8) 	(9) 	(10) 	(11) 

First 	10 	10, 6 	10, 8 	10, 10 	10, 12 	10, 14 
draw 	 (8) 	(9) 	(10) 	(11) 	(12) 

12 	12, 6 	12, 8 	12, 10 	12, 12 	12, 14 
(9) (10) 	(11) 	(12) 	(13) 

14 	14, 6 	14, 8 	14, 10 	14, 12 	14, 14 
(10) (11) 	(12) 	(13) 	(14) 

We may construct the sampling distribution of x by listing the different values 
of x in one column and their frequency of occurrence in another, as in Table 5.3.2. 

We see that the data of Table 5.3.2 satisfy the requirements for a probability 
distribution. The individual probabilities are all greater than 0, and their sum is 
equal to 1. 

It was stated earlier that we are usually interested in the functional form of a 
sampling distribution, its mean, and its variance. We now consider these character-
istics for the sampling distribution of the sample mean, x. 

Sampling Distribution of 	Functional Form Let us look at the distribu- 
tion of x plotted as a histogram, along with the distribution of the population, both 

TABLE 5.3.2 Sampling Distribution of x Computed 
From Samples in Table 5.3.1 

Frequency 
Relative 

Frequency 

6 1 1/25 
7 2 2/25 
8 3 3/25 
9 4 4/25 
10 5 5/25 
11 4 4/25 
12 3 3/25 
13 2 2/25 
14 1 1/25 

Total 25 25/25 
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Figure 5.3.1 Distribution of population and sampling distribution 
of 5i. 

of which are shown in Figure 5.3.1. We note the radical difference in appearance 
between the histogram of the population and the histogram of the sampling 
distribution of x. Whereas the former is uniformly distributed, the latter gradually 
rises to a peak and then drops off with perfect symmetry. 

Sampling Distribution of N: Mean Now let us compute the mean, which 
we will call 	of our sampling distribution. To do this we add the 25 sample 
means and divide by 25. Thus 

E.Z., 	6 + 7 + 7 + 8 + • • • +14 	250 
	  = 	= 10 

= Nn = 	 25 	 25 

# We note with interest that the mean of the sampling distribution of x has the 
same value as the mean of the original population. 
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Sampling Distribution of 2: Variance Finally, we may compute the vari-
ance of x, which we call cr?, as follows: 

2 E(x, A,7)2  
— 

Nn 

(6 — 10)2  + (7 — 10)2  + (7 — 10)2  + • • +(14 — 10)2  

25 

100 
= — = 4 

25 

We note that the variance of the sampling distribution is not equal to the 
population variance. It is of interest to observe, however,, that the variance of 
the sampling distribution is equal to the population varianc6 divided by the size of 
the sample used to obtain the sampling distribution. That is, 

0.12 = 	= _ = 4  
n 	2 

# The square root of the variance of the sampling distribution, Qx2  = o-/1/72 , is 
called the standard error of the mean or, simply, the standard error. 

These results are not coincidences but are examples of the characteristics of 
sampling distributions in general, when sanipling is with replacement or when 
sampling is,from an infinite population. To generalize, we distinguish between two 

*situations: sampling from a normally distributed population and sampling from a 
nonnormally distributed population. 

Sampling Distribution of Fr: Sampling From Normally Distributed Popu-
lations When sampling is from a normally distributed population, the distribu-
tion of the sample mean will possess the following properties: 

• 1. The distribution of x will be normal. 

*2. The mean, /2, of the distribution of x will be equal to the mean of the 
population from which the samples were drawn. 

*3. The variance, (T.2, of the distribution of x will be equal to the variance of the 
population divided by the sample size. 

Sampling from Nonnormally Distributed Populations For the case where 
sampling is from a nonnormally distributed population, we refer to an important 
mathematical theorem known as the central limit theorem. The importance of this 
theorem in statistical inference may be summarized in the following statement. 

0.2 	8 
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The Central Limit Theorem 

Given a population of any nonnormal functional form with a meanµ and finite 
variance tr 2, the sampling distribution of x, computed from samples of size n from this 
population, will have mean µ and variance o 2  /n and will be approximate?),  
normally distributed when the sample site is large. 

Note that the central limit theorem allows us to sample from nonnormally 
distributed populations with a guarantee of approximately the same results as 
would be obtained if the populations were normally distributed provided that we 
take a large sample. 

The importance of this will become evident later when we learn that a 
normally distributed sampling distribution is a powerful tool in statistical infer-
ence. In the case of the sample mean, we are assured of at least an approximately 

*normally distributed sampling distribution under three conditions: (1) when sam-
*piing is from a normally distributed population; (2) when sampling is from a 

nonnormally distributed population and our sample is large; and (3) when sampling 
is from a population whose functional form is unknown to us as long as our sample 
size is large. 

The logical question that arises at this point is: How large does the sample 
have to be in order for the central limit theorem to apply? There is no one answer, 
since the size of the sample needed depends on the extent of nonnormality present 
in the population. One rule of thumb states that, in most practical situations, a 
sample of size 30 is satisfactory. In general, the approximation to normality of the 
sampling distribution of .7x. becomes better and better as the sample size increases. 

Sampling without Replacement The foregoing results have been given on 
the assumption that sampling is either with replacement or that the samples are 
drawn from infinite populations. In general, we do not sample with replacement, 
and in most practical situations it is necessary to sample from a finite population; 
hence, we need to become familiar with the behavior of the sampling distribution 
of the sample mean under these conditions. Before making any general statements, 
let us again look at the data in Table 5.3.1. The sample means that result when 
sampling is without replacement are those above the principal diagonal, which are 
the same as those below the principal diagonal, if we ignore the order in which the 

# observations were drawn. We see that there are 10 possible samples. In general, 
when drawing samples of size n from a finite population of size N without 
replacement, and ignoring the order in which the sample values are drawn, the 
number of possible samples is given by the combination of N things taken n at a 
time. In our present example we have 

N! 	5! 	5 • 4 • 3! 
# NCn  = 

n!(N — n)! 

- 

2!3! 

- 	

2!3! 
	= 10 possible samples 



126 	 Chapter 5 • Some Important Sampling Distributions 

The mean of the 10 sample means is 

a, 	7 + 8 + 9 + • • • +13 	100 
=   — 	— 10 

N Cn 	 10 	 10 

41We see that once again the mean of the sampling distribution is equal to the 
population mean. 

*The variance of this sampling distribution is found to be 

2 	— kt,)2 	30 
	  = 	= 3 

N C!, 	10 

and we note that this time the variance of the sampling distribution is not equal to 
the population variance divided by the sample size, since c7,2  = 3 0 8/2 = 4. There 
is, however, an interesting relationship that we discover by multiplying cr 2/n by 
(N — n)/(N — 1). That is, 

o.2 N—n 	8 5 — 2 
	 = • 	 —3 

n N — 1 	2 	4 

This result tells us that if we multiply the variance of the sampling distribution 
that would be obtained if sampling were with replacement, by the factor (N -
n)/(N — 1), we obtain the value of the variance of the sampling distribution that 
results when sampling is without replacement. We may generalize these results 
with the following statement. 

* When sampling is without replacement from a finite population, the sampling 
distribution of x will have meanµ and variance 

o.2  N— n  

n N— 1 

If the sample size is large, the central limit theorem applies and the sampling 
distribution of x will be approximately normally distributed. 

The Finite Population Correction The factor (N n)/(N — 1) is called the 
finite population correction and can be igncireci when the sample size is small in 
comparison with the population size. When the population is much larger than the 
sample, the difference between cr 2/n and (cr 2  / fi)[(N — n)/(N — 1)] will be negligi-
ble. Suppose a population contains 10,000 observations and a sample from this 
population consists of 25 observations; the finite population correction would be 
equal to (10,000 — 25)/(9999) = .9976. To multiply .9976 times 0- 2  /n is almost 
equivalent to multiplying by 1. Most practicing statisticians do not use the finite 
population correction unless the sample cOntains more than 5 percent of the 
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observations in the population. That is, the finite population correction is usually 
ignored when n/N 5 .05. 

The Sampling Distribution of it—A Summary Let us summarize the 
characteristics of the sampling distribution of x under two conditions. 

1. When sampling is from a normally distributed population with a known 
population variance: 

a. µx= µ  

*b. o = cr/ 

c. The sampling distribution of x is normal. 

2. Sampling is from a nonnormally distributed population with a known popula-
tion variance: 

a. µX= µ  

# b. cr,, = 	Viz 	when n/N .05 

( 	
N — n 

= o-/ 
N— I 

c. The sampling distribution of x is approximately normal. 

Applications As we will see in succeeding chapters, a knowledge and under-
standing of sampling distributions will be necessary for understanding the concepts 
of statistical inference. The simplest application of our knowledge of the sampling 
distribution of the sample mean is in computing the probability of obtaining a 
sample with a mean of some specified magnitude. Let us illustrate with some 
examples. 

Example 
5.3.2 

Suppose it is known that in a certain large human population cranial length is 
approximately normally distributed with a mean of 185.6 mm and a standard 
deviation of 12.7 mm. What is the probability that a random sample of size 10 from 
this population will have a mean greater than 190? 

Solution: We know that the single sample under consideration is one of all 
possible samples of size 10 that can be drawn from the population, so that the 
mean that it yields is one of the Tv's constituting the sampling distribution of 
that, theoretically, could be derived from this population. 

When we say that the population is approximately normally distributed, we 
assume that the sampling distribution of x will be, for all practical purposes, 

• normally distributed. We also know that the mean and standard deviation of the 

sampling distribution are equal to 185.6 and V(12.7)2 /10 = 12.7/ VT/ = 4.0161, 
respectively. We assume that the population is large relative to the sample so that 
the finite population correction can be ignored. 

We learned in Chapter 4 that whenever we have a random variable that is 
normally distributed, we may very easily transform it to the standard normal 
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distribution. Our random variable now is x, the mean of its distribution is 	and 
its standard deviation is o = u/ In-. By appliopTiately modifying the formula given 
previously, we arrive at the following formula foi transformibg the normal distribu-
tion of x to the standard normal distribution. 

z 	
cr/l/i2 
	 (5.3.1) 

The probability that answers our question is represented by the area to the right of 
= 190 under the curve of the sampling distribution. This area is equal to the area 

= 12.7mm 

•	  
# = 185.6mm 

(a)  

16  a = 	= 4.0161 
-1/ 10 

• 

b pi= 185.6 190 

(b)  

0 
	

1.09 

(c)  

Figure 5.3.2 Population distribution, sampling distribution, and 
standard normal distribution, Example 5.3.2: (a) poi ulation 
distribution; (b) sampling distribution of k for samples of size 10; (c) 

standard normal distribution. 
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to the right of 

190 — 185.6 	4.4 
z = 	   

4.0161 	4.0161 = 1.10 

By consulting the standard normal table we find that the area to the right of 1.10 is 
.1357; hence, we say that the probability is .1357 that a sample of size 10 will have a 
mean greater than 190. 

Figure 5.3.2 shows the relationship between the original population, the 
sampling distribution of x, and the standard normal distribution. 

Example 
	

If the mean and standard deviation of serum iron values for healthy men are 120 
5.3.3 	and 15 micrograms per 100 ml, respectively, what is the probability that a random 

sample of 50 normal men will yield a mean between 115 and 125 micrograms per 
100 ml? 

Solution: The functional form of the population of serum iron values is not 
specified, but since we have a sample size greater than 30, we make use of the 
central limit theorem and transform the resulting approximately normal sampling 
distribution of x (which has a mean of 120 and a standard deviation of 15/ V50 = 
2.1213) to the standard normal. The probability we seek is 

P(115 < x < 125) = P 
( 115 — 120 	125 — 120 
	 <z < 	 

2.12 	 2.12 	) 

= P( — 2.36 z 2.36) 

= .9909 — .0091 

= .9818 

EXERCISES 

5.3.1 The National Health and Nutrition Examination Survey of 1976-80 (A-1) found that 
the mean serum cholesterol level for U. S. males aged 20-74 years was 211. The 
standard deviation was approximately 90. Consider the sampling distribution of the 
sample mean based on samples of size 50 drawn from this population of males. What 
is the mean of the sampling distribution? The standard error? 

5.3.2 The study cited in Exercise 5.3.1 reported a serum cholesterol level of 180 for men 
aged 20-24 years. The standard deviation was approximately 43. If a simple random 
sample of size 60 is drawn from this population, find the probability that the sample 
mean serum cholesterol level will be: 

a. Between 170 and 195. 	b. Below 175. 
c. Greater than 190. 
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5.3.3 If the uric acid values in normal adult males are approximately normally distributed 
with a mean and standard deviation of 5.7 and 1 mg percent respectively, find the 
probability that a sample of size 9 will yield a mean: 

a. Greater than 6. 	b. Between 5 and 6. 
c. Less than 5.2. 

5.3.4 For a certain large segment of the population, for a particular year, suppose the 
mean number of days of disability is 5.4 with a standard deviation of 2.8 days. Find 
the probability that a random sample of size 49 from this population will have a 
mean: 

a. Greater than 6 days. 	b. Between 4 and 6 days. 
c. Between 44 and 52 days. 

5.3.5 Given a normally distributed population with a mean of 100 and a standard deviation 
of 20, find the following probabilities based on a sample of size 16: 

a. P(Tc 	100). 	b. P(96 < x < 108). 
c. 	110). 

5.3.6 Given: µ = 50, a. = 16, n = 64, find: 

a. P(45 < x < 55). 	b. P(i > 53). 
c. 	< 47). 	 d. P(49 < x < 56). 

5.3.7 Suppose a population consists of the following values: 1, 3, 5, 7, 9. Construct the 
sampling distribution of x based on samples of size two selected without replace- 
ment. Find the mean and variance of the sampling distribution. 

5.3.8 Use the data of Example 5.3.1 to construct the sampling distribution of x based on 
samples of size three selected without replacement. Find the mean and variance of 
the sampling distribution. 

5.3.9 For a population of 17-year-old boys, the mean subscapular skinfold thickness (in 
millimeters) is 9.7 and the standard deviation is 6.0. For a simple random sample of 
size 40 drawn from this population find the probability that the sample mean will be: 

a. Greater than 11. 	b. Less than or equal to 7.5. 
c. Between 7 and 10.5. 

5.4 
Distribution of the Difference 
Between Two Sample Means 

Frequently the interest in an investigation is focused on two populations. Specifi-
cally, an investigator may wish to know something about the difference between 
two population means. In one investigation, for example, a researcher may wish to 
know if it is reasonable to conclude that two population means are different. In 
another situation, the researcher may desire knowledge about the magnitude of 
the difference between two population means. A medical research team, for 
example, may want to know whether or not the mean serum cholesterol level is 
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higher in a population of sedentary office workers than in a population of laborers. 
If the researchers are able to conclude that the population means are different, 
they may wish to know by how much they differ. A knowledge of the sampling 
distribution of the difference between two means is useful in investigations of this 
type. 

Sampling from Normally Distributed Populations The following example 
illustrates the construction of and the characteristics of the sampling distribution 
of the difference between sample means when sampling is from two normally 
distributed distributions. 

Example 
5.4.1 

Suppose we have two populations of individuals—one population (population 1) has 
experienced some condition thought to be associated with mental retardation, and 
the other population (population 2) has not experienced the condition. The 
distribution of intelligence scores in each of the two populations is believed to be 
approximately normally distributed with a standard deviation of 20. 

Suppose, further, that we take a sample of 15 individuals from each population 
and compute for each sample the mean intelligence score with the following 
results: x, = 92 and x2  = 105. If there is no difference between the two popula-
tions, with respect to their true mean intelligence scores, what is the probability of 
observing a difference this large or larger (Tx, – .i2) between sample means? 

Solution: To answer this question we need to know the nature of the sampling 
distribution of the relevant statistic, the difference between two sample means, x i  – 
Notice that we seek a probability associated with the difference between two 
sample means rather than a single mean. 

Sampling Distribution of zt  – N2 — Construction Although, in practice, 
we would not attempt to construct the desired sampling distribution, we can 
conceptualize the manner in which it could be done when sampling is from finite 
populations. We would begin by selecting from population 1 all possible samples of 
size 15 and computing the mean for each sample. We know that there would be 
N Cn  such samples where NI  is the group size and n 1  = 15. Similarly, we would 
select all possible samples of size 15 from population 2 and compute the mean for 
each of these samples. We would then take all possible pairs of sample means, one 
from population 1 and one from population 2, and take the difference. Table 5.4.1 
shows the results of following this procedure. Note that the l's and 2's in the last 
line of this table are not exponents, but indicators of population 1 and 2, 
respectively. 

Sampling Distribution of NI  – N2 — Characteristics It is the distribution 
of the differences between sample means that we seek. If we plotted the sample 
differences against their frequency of occurrence, we would obtain a normal 
distribution with a mean equal to pi  – p,2, the difference between the two 
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TABLE 5.4.1 Working Table for Constructing The Distribution of the Difference Between 
Two Sample Means 

Samples Samples Sample Sample All Possible 
From From Means Means Differences 
Population 1 Population 2 Population 1 Population 2 Between Means 

nil 71 12 X11 X12 X11 — Xl2 

71 21 n  22 X21 X22 Xll — X22 
n 31  n 32 32 X11 — X32 

• 
n nN2cn22 XN2C n22 X N Cn  1 — XN2C n22 

population means, and a variance equal to (o-,2/22 1) + (4/n2). That is, the 
standard error of the difference between sample means would be equal to 

I(cri n i) + 	/ n 2) • 
For our present example we would have a normal distribution with a mean of 0 

(if there is no difference between the two population means) and a variance of 
[(20)2/15] + [(20)2 /15] = 53.3333. The graph of the sampling distribution is shown 
in Figure 5.4.1. 

Converting to z We know that the normal distribution described in Exam-
ple 5.4.1 can be transformed to the standard normal distribution by means of a 
modification of a previously learned formula. The new fortnula is as follows: 

— 	— Cal — /12) 
* Z 

u  2 

	

n 	n 2
i  °-2 

2 

 

(5.4.1) 

_ 	- 53.33 
7t2 

 

—— Pi — P2 — 

  

Figure 5.4.1 Graph of the sampling distribution of RI  —)72  
when there is no difference between population means, Example 
5.4.1. 
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The area under the curve of x i  — X2 corresponding to the probability we seek 
is the area to the left of x1  — x2  = 92 — 105 = — 13. The z value corresponding to 
— 13, assuming there is no difference between population means, is 

By consulting Table D, we find that the area under the standard normal curve to 
the left of — 1.78 is equal to .0375. In answer to our original question, we say that if 
there is no difference between population means, the probability of obtaining a 
difference between sample means as large as or larger than 13 is .0375. 

Sampling from Normal Populations The procedure we have just followed 
is valid even when the sample sizes, n1  and n 2, are different and when the 
population variances, a-12  and o2 have different values. The theoretical results on 
which this procedure is based may be summarized as follows. 

Given two normally distributed populations with means, 	and ,u,2, and variances, 
cr2 and 4, respectively, the sampling distribution of the difference, 	between 
the means of independent samples of size n 1  and n 2  drawn from these populations is 
normally distributed with mean Al  — 112  and variance (cr? /n 1) + (4/n2). 

Sampling from Nonnormal Populations Many times a researcher is faced 
with one or the other of the following problems: the necessity of (1) sampling from 
nonnormally distributed populations, or (2) sampling from populations whose 
functional forms are not known. A solution to these problems is to take largc 
samples, since when the sample sizes are large the central limit theorem appliel 
and the distribution of the difference between two sample means is at least 
approximately normally distributed with a mean equal to p. — 11.2  and a variance 
of (a-12/n) + (4/n2). To find probabilities associated with specific values of the 
statistic, then, our procedure would be the same as that given when sampling is 
from normally distributed populations. 

Example 
5.4.2 

Suppose it has been established that for a certain type of client the average length 
of a home visit by a public health nurse is 45 minutes with a standard deviation of 
15 minutes, and that for a second type of client the average home visit is 
30 minutes long with a standard deviation of 20 minutes. If a nurse randomly visits 
35 clients from the first and 40 from the second population, what is the probability 
that the average length of home visit will differ between the two groups by 20 or 

snore minutes? 

Solution: No mention is made of the functional form of the two populations, so 
let us assume that this characteristic is unknown, or that the populations are not 
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normally distributed. Since the sample sizes are large (greater than 30) in both 
cases, we draw on the results of the central limit theorem to answer the question 
posed. We know that the difference between sample means is at least approxi-
mately normally distributed with the following mean and variance: 

2 

/1,7, 

(72 
 

= — 
n 

= 1-4  

2  (72 

n 2 

— 	= 

(15)2  

45 — 30 = 

(20)2 

15 

— 16.4286 
35 40 

The area under the curve of xl  — . 2  that we seek is that area to the right of 20. 
The corresponding value of z in the standard normal is 

x 2)  — 	— A2) 	20 — 15 	5 
z 

- 	

4.0532 — 1.23 

	

2 	2 	

- 

V16.4286 

	

cri 	0-2 

	

n, 	n 2  

In Table D we find that the area to the right of z.  = 1.23 is 1 — .8907 = .1093. 
We say, then, that the probability of the nurse's random visits resulting in a 
difference between the two means as great as or greater than 20 minutes is .1093. 
The curve of x , — x2  and the corresponding standard normal curve are shown in 
Figure 5.4.2. 

At 0 	1.23 

Figure 5.4.2 Sampling distribution of x i  —R2  and the 
corresponding standard normal distribution, home visit example. 
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EXERCISES 

5.4.1 The reference cited in Exercises 5.3.1 and 5.3.2 gives the following data on serum 
cholesterol levels in U.S. males: 

Group Age Mean Standard Deviation 

A 20-24 180 43 
B 25-34 199 49 

Suppose we select a simple random sample of size 50 independently from each 
population. What is the probability that the difference between sample means 

— XA) will be more than 25? 

5.4.2 In a study of annual family expenditures for general health care, two populations 
were surveyed with the following results: 

Population 1: n 1  = 40, X i  = $346 

Population 2: n 2  = 35, x2  = $300 

If it is known that the population variances are o = 2800 and a2 = 3250, what is 
the probability of obtaining sample results 	—.Tc 2) as large as those shown if there 
is no difference in the means of the two populations? 

5.4.3 Given two normally distributed populations with equal means and variances of 
o = 100 and c4 = 80, what is the probability that samples of size n, = 25 and 
n 2  = 16 will yield a value of Tc, — x2  greater than or equal to 8? 

5.4.4 Given two normally distributed populations with equal means and variances of 
o-12  = 240 and Q2 = 350, what is the probability that samples of size n1  = 40 and 
n 2  = 35 will yield a value of X I  — 1'2  as large as or larger than 12? 

5.4.5 For a population of 17-year-old boys and 17-year-old girls the means and standard 
deviations, respectively, of their subscapular skinfold thickness values are as follows: 
boys, 9.7 and 6.0; girls, 15.6 and 9.5. Simple random samples of 40 boys and 35 girls 
are selected from the populations. What is the probability that the difference 
between sample means 

5.5 
Distribution of the Sample Proportion 

In the previous sections we have dealt with the sampling distributions of statistics 
computed from measured variables. We are frequently interested, however, in the 
sampling distribution of statistics, such as a sample proportion, that result from 
counts or frequency data. 

Example 
5.5.1 

Suppose we know that in a certain human population .08 are color blind. If we 
designate a population proportion by p, we can say that in this example p = .08. If 
we randomly select 150 individuals from this population, what is the probability 

that the proportion in the sample who are color blind will be as great as .15? 

.i boy,) will be greater than 10? 



136 	Chapter 5 • Some Important Sampling Distributions 

Solution: To answer this question we need to know the properties of the sam-
pling distribution of the sample proportion. We will designate the sample propor-
tion by the symbol "fi. 

You will recognize the similarity between this example and those presented in 
Section 4.3, which dealt with the binomial distribution. The variable color blindness 
is a dichotomous variable, since an individual can be classified into one or the other of 
two mutually exclusive categories, color blind or not color blind. In Section 4.3, we 
were given similar information and were asked to find the number with the 
characteristic of interest, whereas here we are seeking the proportion in the 
sample possessing the characteristic of interest. We could with a sufficiently large 
table of binomial probabilities, such as Table B, determine the probability associ-
ated with the number corresponding to the proportion of interest. As we will see, 
this will not be necessary, since there is available an alternative procedure, when 
sample sizes are large, that is generally more convenient. 

Sampling Distribution of A — Construction The sampling distribution of a 
sample proportion would be constructed experimentally in exactly the same 
manner as was suggested in the case of the arithmetic mean and the difference 
between two means. From the population, which we assume to be finite, we would 
take all possible samples of a given size and for each sample compute the sample 
proportion, 'fi. We would then prepare a frequency distribution of 1) by listing the 
different distinct values of p  along with their frequencies of occurrence. This 
frequency distribution (as well as the corresponding relative frequency distribution) 
would constitute the sampling distribution of "fi. 

Sampling Distribution of A — Characteristics When the sample size is 
large, the distribution of sample proportions is approximately normally distributed 
by virtue of the central limit theorem. The mean of the distribution, kth, that is, 
the average of all the possible sample proportions, will be equal to the true 
population proportion p, and the variance of the distribution o-; will be equal to 
p(1 — p)/n. To answer probability questions about p, then, we use the following 
formula: 

fi — p 
z 

11 	— p)  

V 	n 

(5.5.1) 

The question that now arises is: How large does the sample size have to be for 
the use of the normal approximation to be valid? A widely used criterion is that 
both np and n(1 — p) must be greater than 5, and we will abide by that rule in this 
text. 

We are now in a position to answer the question regarding color blindness in 
the sample of 150 individuals from a population in which .08 are color-blind. Since 
both np and n(1 — p) are greater than 5 (150 X .08 = 12 and 150 X .92 = 138), we 
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can say that, in this case, 13 is approximately normally distributed with a mean 
p =p = .08 and cri = p(i — p)/n = (.08X.92)/150 = .00049. The probability we 
seek is the area under the curve of fi that is to the right of .15. This area is equal 
to the area under the standard normal curve to the right of 

z —    —     — 3.15 
p(1 — p) 	v✓.00049 	.0222 

P 
	.15 — .08 	.07 

n 

The transformation to the standard normal distribution has been accomplished in 
the usual manner: z is found by dividing the standard error into the difference 
between a value of the statistic and its mean. Using Table D we find that the area 
to the right of z = 3.15 is 1 — .9992 = .0008. We may say, then, that the probabil-
ity of observing fi .15 in a random sample of size n = 150 from a population in 
which p = .08 is .0008. If we should, in fact, draw such a sample most people would 
consider it a rare event. 

Correction for Continuity The normal approximation may be improved by 
the correction for continuity, a device that makes an adjustment for the fact that a 
discrete distribution is being approximated by a continuous distribution. Suppose 
we let x = np, the number in the sample with the characteristic of interest when 
the proportion is fi. To apply the correction for continuity we compute 

x + .5 
	 p 

zc  — 
	 for x <np 	 (5.5.2) 

or 

x — .5 
p 

 

 

n 
z„ — 	Ilpq/n 	, for x > np 	 (5.5.3) 

where q = 1— p. The correction for continuity will not make a great deal of 
difference when n is large. In the above example ni) = 150(.15) = 22.5, and 

22.5 — .5 

    

.08 
	 — 3.01 zc  

150 

 

   

V.00049 

 

and P(fi 	.15) = 1 — .9987 = .0013, a result not greatly different from that 
obtained without the correction for continuity. 
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Example 
5.5.2 

Suppose it is known that in a certain population of women, 90 percent entering 
their third trimester of pregnancy have had some prenatal care. If a random 
sample of size 200 is drawn from this population, what is the probability that the 
sample proportion who have had some prenatal care will be less than .85? 

Solution: We can assume that the sampling distribution of j) is approximately 
normally distributed with I.L.fi  = .90 and Cl/ = (11.9)/200 = .00045. We compute 

.85 — .90 	— .05 
z =     =2.36 

V.00045 	.0212 

The area to the left of — 2.36 under the standard normal curve is .0091. Therefore, 
P(i) < .85) = P(z < —2.36) = .0091. 

EXERCISES 

5.5.1 A Survey by the National Center for Health Statistics (A-2) found that 33.2 percent of 
women 40 years of age and over had undergone a breast physical examination (BPE) 
within the previous year. If we select a simple random sample of size 200 from this 
population, what is the probability that the sample proportion of women who have 
had a BPE within the previous year will be between .28 and .37? 

5.5.2 In the mid-seventies, according to a report by the National Center for Health 
Statistics (A-3), 19.4 percent of the adult U.S. male population was obese. What is the 
probability that in a simple random sample of size 150 from this population fewer 
than 15 percent will be obese? 

5.5.3 In a survey conducted in 1990 by the National Center for Health Statistics (A-4), 
19 percent of respondents 18 years of age and over stated that they had not heard of 
the AIDS virus HIV. What is the probability that in a sample of size 175 from this 
population 25 percent or more will not have heard of the AIDS virus HIV? 

5.5.4 The standard drug used to treat a certain disease is known to prove effective within 
three days in 75 percent of the cases in which it is used. In evaluating the 
effectiveness of a new drug in treating the same disease, it was given to 150 persons 
suffering from the disease. At the end of three days 97 persons had recovered. If the 
new drug is equally as effective as the standard, what is the probability of observing 
this small a proportion recovering? 

5.5.5 Given a population in which p = .6 and a random sample from this population of size 
100, find: 

a P(11 	.65). 	 b. P(fi < .58). 
c. P(.56 < fi < .63). 

5.5.6 It is known that 35 percent of the members of a certain population suffer from one or 
more chronic diseases. What is the probability that in a sample of 200 subjects drawn 
at random from this population 80 or more will have at least one chronic disease? 
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5.6 
Distribution of the Difference Between 
Two Sample Proportions 

Often there are two population proportions in which we are interested and we 
desire to assess the probability associated with a difference in proportions com-
puted from samples drawn from each of these populations. The relevant sampling 
distribution is the distribution of the difference between the two sample propor-
tions. 

Sampling Distribution of 01  — 02 Characteristics The characteristics of 
this sampling distribution may be summarized as follows: 

If independent random samples of size n, and n 2  are drawn from two populations of 
dichotomous variables where the proportion of observations with the characteristic of 
interest in the two populations are p, and p2, respectively, the distribution of the 
difference between sample proportions, 1) 1  — fi 2, is approximately normal with mean 

lA Pi P2 =Pi — P2 

and variance 

P1(1 	
+ 

P2(1  2 
^ 	= 0" 
Pi-P2 	 n2 

when n, and n 2  are large. 

We consider n, and n 2  sufficiently large when n 1 p„ n 2p2, n,(1 — p1 ), and 
n 2(1 — p2) are all greater than 5. 

Sampling Distribution of 01  — 02 — Construction To physically construct 
the sampling distribution of the difference between two sample proportions, we 
would proceed in the manner described in Section 5.4 for constructing the sam-
pling distribution of the difference between two means. 

Given two sufficiently small populations, one would draw, from population 1, 
all possible simple random samples of size n and compute, from each set of 
sample data, the sample proportion 131 . From population 2, one would draw 
independently all possible simple random samples of size n 2  and compute, for each 
set of sample data, the sample proportion fi2. One would compute the differences 
between all possible pairs of sample proportions, where one number of each pair 
was a value of fi, and the other a value of /32.  The sampling distribution of the 
difference between sample proportions, then, would consist of all such distinct 
differences, accompanied by their frequencies (or relative frequencies) of occur-
rence. For large finite or infinite populations one could approximate the sampling 
distribution of the difference between sample proportions by drawing a large 
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number of independent simple random samples and proceeding in the manner just 
described. 

To answer probability questions about the difference between two sample 
proportions, then, we use the following formula: 

(13 -13 2) - (P - P2) z - 
P 1( 1  - p 

 + 
p 2( 1 -p2) 

(5.6.1) 

n l 
	 n 2 

Example 
5.6.1 

Suppose that the proportion of moderate to heavy users of illegal drugs in 
population 1 is .50 while in population 2 the proportion is .33. What is the 
probability that samples of size 100 drawn from each of the populations will yield a 
value of 	— /32  as large as .30? 

Solution: We assume that the sampling distribution of p i — fi 2  is approximately 
normal with mean 

= .50 — .33 = .17 

and variance 

cr 2 	(.33)( .67) 	(.5)(.5) 
A - 	  

rl r2 	
100 	 100 

= .004711 

The area corresponding to the probability we seek is the area under the curve of 

pi — fi2  to the right of .30. Transforming to the standard normal distribution gives 

(1 P2) — (Pi —P2) 	.30 — .17 
z = 

—Pi) 
 + 

 p2( 1  —p2) 	V.004711 

n i n 2 

= 1.89 

Consulting Table D, we find that the area under the standard normal curve that 
lies to the right of z = 1.89 is 1 — .9706 = .0294. The probability of observing a 
difference as large as .30 is, then, .0294. 

Example 
	

In a certain population of teenagers it is known that 10 percent of the boys are 
5.6.2 	obese. If the same proportion of girls in the population are obese, what is the 

probability that a random sample of 250 boys and 200 girls will yield a value of 
13 — p2 .06? 
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Solution: We assume that the sampling distribution of fi — /32  is approximately 
normal. If the proportion of obese individuals is the same in the two populations, 
the mean of the distribution will be 0 and the variance will be 

2 	p1( 1 	
+ 

P2( I  — p2) 	(.1)(.9) 	(.1)(.9) 

PI -P2 n i 	 n 2 	 250 	200 

= .00081 

The area of interest under the curve of fi t  —_"2  is that to the right of .06. The 
corresponding z value is 

.06 — 0 
z    — 2.11 

V.00081 

Consulting Table D, we find that the area to the right of z = 2.11 is 1 — .9826 = 
.0174. 

EXERCISES 

5.6.1 In a certain population of retarded children, it is known that the proportion who are 
hyperactive is .40. A random sample of size 120 was drawn from this population, and 
a random sample of size 100 was drawn from another population of retarded 
children. If the proportion of hyperactive children is the same in both populations, 
what is the probability that the sample would yield a difference, p, — fi2, of .16 or 
more? 

5.6.2 In a certain area of a large city it is hypothesized that 40 percent of the houses are in 
a dilapidated condition. A random sample of 75 houses from this section and 
90 houses from another section yielded a difference, fi, — fi2, of .09. If there is no 
difference between the two areas in the proportion of dilapidated houses, what is the 
probability of observing a difference this large or larger? 

5.6.3 A survey conducted by the National Center for Health Statistics (A-5) revealed that 
14 percent of males and 23.8 percent of females between the ages of 20 and 74 years 
deviated from their desirable weight by 20 percent or more. Suppose we select a 
simple random sample of size 120 males and an independent simple random sample 
of 130 females. What is the probability that the difference between sample propor-
tions, 'fiF  — PM, will be between .04 and .20? 

5.7 
Summary 

This chapter is concerned with sampling distributions. The concept of a sampling 
distribution is introduced and the following important sampling distributions are 
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covered: 

1. The distribution of a single sample mean. 

2. The distribution of the difference between two sample means. 

3. The distribution of a sample proportion. 

4. The distribution of the difference between two sample proportions. 

We emphasize the importance of this material and urge readers to make sure 
that they understand it before proceeding to the next chapter. 

REVIEW QUESTIONS AND EXERCISES 

1. What is a sampling distribution? 

2. Explain how a sampling distribution may be constructed from a finite population. 

3. Describe the sampling distribution of the sample mean when sampling is with replace-
ment from a normally distributed population. 

4. Explain the central limit theorem. 

5. How does the sampling distribution of the sample mean, when sampling is without 
replacement, differ from the sampling distribution obtained when sampling is with 
replacement? 

6. Describe the sampling distribution of the difference between two sample means. 

7. Describe the sampling distribution of the sample proportion when large samples are 
drawn. 

8. Describe the sampling distribution of the difference between two sample means when 
large samples are drawn. 

9. Explain the procedure you would follow in constructing the sampling distribution of the 
difference between sample proportions based on large samples from finite populations. 

10. Suppose it is known that the response time of healthy subjects to a particular stimulus is 
a normally distributed random variable with a mean of 15 seconds and a variance of 16. 
What is the probability that a random sample of 16 subjects will have a mean response 
time of 12 seconds or more? 

11. A certain firm has 2000 employees. During a recent year, the mean amount per 
employee spent on personal medical expenses was $31.50, and the standard deviation 
was $6.00. What is the probability that a simple random sample of 36 employees will 
yield a mean between $30 and $33? 

12. Suppose it is known that in a certain population of drug addicts the mean duration of 
abuse is 5 years and the standard deviation is 3 years. What is the probability that a 
random sample of 36 subjects from this population will yield a mean duration of abuse 
between 4 and 6 years? 
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13. Suppose the mean daily protein intake for a certain population is 125 grams, while for 
another population the mean is 100 grams. If daily protein intake values in the two 
populations are normally distributed with a standard deviation of 15 grams, what is the 
probability that random and independent samples of size 25 from each population will 
yield a difference between sample means of 12 or less? 

14. Suppose that two drugs, purported to reduce the response time to a certain stimulus, 
are under study by a drug manufacturer. The researcher is willing to assume that 
response times, following administration of the two drugs, are normally distributed with 
equal variances of 60. As part of the evaluation of the two drugs, drug A is to be 
administered to 15 subjects and drug B is to be administered to 12 subjects. The 
researcher would like to know between what two values the central 95 percent of all 
differences between sample means would lie if the drugs were equally effective and the 
experiment were repeated a large number of times using these sample sizes. 

15. Suppose it is known that the serum albumin concentration in a certain population of 
individuals is normally distributed with a mean of 4.2 g/100 ml and a standard 
deviation of .5. A random sample of nine of these individuals placed on a daily dosage of 
a certain oral steroid yielded a mean serum albumin concentration value of 3.8 g/100 
ml. Does it appear likely from these results that the oral steroid reduces the level of 
serum albumin? 

16. A survey conducted in a large metropolitan area revealed that among high school 
students, 35 percent have, at one time or another, smoked marijuana. If, in a random 
sample of 150 of these students, only 40 admit to having ever smoked marijuana, what 
would you conclude? 

17. A 1989 survey by the National Center for Health Statistics (A-6) revealed that 7.1 
percent of the patients discharged from short-stay hospitals in the United States were 
between the ages of 20 and 24 years, inclusive. If we select a simple random sample of 
size 150 from the relevant population, what is the probability that the proportion of 
patients between the ages of 20 and 24 will be between .05 and .10? 

18. A psychiatric social worker believes that in both community A and community B the 
proportion of adolescents suffering from some emotional or mental problem is .20. In a 
sample of 150 adolescents from community A, 15 had an emotional or mental problem. 
In a sample of 100 from community B, the number was 16. If the social worker's belief is 
correct, what is the probability of observing a difference as great as was observed 
between these two samples? 

19. A report by the National Center for Health Statistics (A-7) shows that in the United 
States 5.7 percent of males and 7.3 percent of females between the ages of 20 and 74 
years have diabetes. Suppose we take a simple random sample of 100 males and an 
independent simple random sample of 150 females from the relevant populations. What 
is the probability that the difference between sample proportions with diabetes, fi, — fim, 
will be more than .05? 

20. How many simple random samples (without replacement) of size 5 can be selected from 
a population of size 10? 

21. It is known that 27 percent of the members of a certain adult population have never 
smoked. Consider the sampling distribution of the sample proportion based on simple 
random samples of size 110 drawn from this population. What is the functional form of 
the sampling distribution? 
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22. Refer to Exercise 21. Compute the mean and variance of the sampling distribution. 

23. Refer to Exercise 21. What is the probability that a single simple random sample of size 
110 drawn from this population will yield a sample proportion smaller than .18? 

24. In a population of subjects who died from lung cancer following exposure to asbestos it 
was found that the mean number of years elapsing between exposure and death was 25. 
The standard deviation was 7 years. Consider the sampling distribution of sample means 
based on samples of size 35 drawn from this population. What will be the shape of the 
sampling distribution? 

25. Refer to Exercise 24. What will be the mean and variance of the sampling distribution? 

26. Refer to Exercise 24. What is the probability that a single simple random sample of size 
35 drawn from this population will yield a mean between 22 and 29? 

27. For each of the following populations of measurements, state whether the sampling 
distribution of the sample mean is normally distributed, approximately normally dis-
tributed, or not approximately normally distributed when computed from samples of 
size (A) 10, (B) 50, and (B) 200. 

a. The logarithm of metabolic ratios. The population is normally distributed. 
b. Resting vagal tone in healthy adults. The population is normally distributed. 
c. Insulin action in obese subjects. The population is not normally distributed. 

28. For each of the following sampling situations indicate whether the sampling distribution 
of the sample proportion can be approximated by a normal distribution and explain why 
or why not. 

a. p = .50, n = 8 b. p = .40, n = 30 
c. p = .10, n = 30 d. p = .01, n = 1,000 
e. p = .90, n = 100 f. p = .05, n = 150 
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6.1 
Introduction 

We come now to a consideration of estimation, the first of the two general areas of 
statistical inference. The second general area, hypothesis testing, is examined in the 
next chapter. 

We learned in Chapter 1 that inferential statistics is defined as follows. 

DEFINITION 

Statistical inference is the procedure by which we reach a conclusion about a 
population on the basis of the information contained in a sample drawn 
from that population. 

147 
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The pr9cess of estimation entails calculating, from the data of a sample, some 
statistic that is offered as an approximation cif the correstoorlding parameter of the 
population from which the sample was drawn. 

The rationale behind estimation in the health sciences field rests on the 
assumption that workers in this field have an interest in the parameters, such as 
means and proportions, of various populations. If this is the case, there are two 
good reasons why one must rely on estimating procedures to obtain information 
regarding these parameters. First, many popul Lions of in terest, although finite, 
are so large that a 100 percent examination would be i prohibitive from the 
standpoint a cost. Second, populations that are infinite are incapable of complete 
examination. 

Suppose the administrator of a large hospital is interested in the mean age of 
patients admitted to his hospital during a given year. He may consider it too 
expensive to go through the records of all patients admitted during that particular 
year and, consequently, elects to examine a sample of the records from which he 
can compute an estimate of the mean age of patients admitted that year. 

A physician in general practice may be interested in knowing what proportion 
of a certain type of individual, treated with a particular drug, suffers undesirable 
side effects. No doubt, her concept of the population consists of all those persons 
who ever have been or ever will be treated with this drug. Deferring a conclusion 
until the entire population has been observed could have an adverse effect on her 
practice. 

These two examples have implied an interest in estimating, respectively, a 
population mean and a population proportion. Other parameters, the estimation of 
which we will cover in this chapter, are the difference between two means, the 
difference between two proportions, the population variance, and the ratio of two 
variances. 

We will find that for each of the parameters we discuss, we can compute two 
types of estimate: a point estimate and an interval estimate. 

DEFINITION 

*A point estimate is a single numerical value used to estimate the cor-
responding population parameter. 

DEFINITION 

An interval estimate consists of two numerical values defining a range of 
values that, with a specified degree of confidence, we feel includes the 
parameter being estimated. 

These concepts will be elaborated on in the succeeding sections. 

Choosing an Appropriate Estimator Note that a single computed value 
has been referred to as an estimate. The rule that tells us how to compute this 
value, or estimate, is referred to as an estimator. Estimators are usually presented as 
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formulas. For example, 

Ex, 

n
— 	 

is an estimator of the population mean, A. The single numerical value that results 
from evaluating this formula is called an estimate of the parameter p. 

In many cases, a parameter may be estimated by more than one estimator. For 
example, we could use the sample median to estimate the population mean. How 
then do we decide which estimator to use for estimating a given parameter? The 
decision is based on criteria that reflect the "goodness" of particular estimators. 
When measured against these criteria, some estimators are better than others. 
One of these criteria is the property of unbiasedness. 

DEFINITION 
MIOMMOVONSMOMMO 

+An estimator, say T, of the parameter 0 is said to be an unbiased estimator 
of 0 if E(T) = O. 

E(T) is read, "the expected value of T." For a finite population, E(T) is 
obtained by taking the average value of T computed from all possible samples of a 
given size that may be drawn from the population. That is, E(T) = 	. For an 
infinite population, E(T) is defined in terms of calculus. 

In the previous chapter we have seen that the sample mean, the sample 
proportion, the difference between two sample means, and the difference between 
two sample proportions are each unbiased estimates of their corresponding param-
eters. This property was implied when the parameters were said to be the means of 
the respective sampling distributions. For example, since the mean of the sampling 
distribution of x is equal to kt, we know that 3-c is an unbiased estimator of p. The 
other criteria of good estimators will not be discussed in this book. The interested 
reader will find them covered in detail by Freund and Walpole (1) and Mood et al. 
(2), among others. A much less mathematically rigorous treatment may be found in 
Yamane (3). 

Sampled Populations and Target Populations The health researcher who 
uses statistical inference procedures must be aware of the difference between two 
kinds of population—the sampled population and the target population. 

DEFINITION 
MAMM.41 

4The sampled population is the population from which one actually draws a 
sample. 

DEFINITION 

*The target population is the population about which one wishes to make 
an inference. 

V:3= 
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These two populations may or may not be the same. Statistical inference 
procedures allow one to make inferences about sampled populations (provided 
proper sampling methods have been employed). Only when the target population 
and the sampled population are the same is it possible foi one to use statistical 
inference procedures to reach conclusions about the target population. If the 
sampled population and the target population are different, the researcher can 
reach conclusions about the target population only on the basis of nonstatistical 
considerations. 

Suppose, for example, that a researcher wishes to assess the effectiveness of 
some method for treating rheumatoid arthritis. The target population consists of 
all patients suffering from the disease. It is not practical to draw a sample from 
this population. The researcher may, however, select a sample from all rheumatoid 
arthritis patients seen in some specific clinic. These patients constitute the sampled 
population, and, if proper sampling methods are used, inferences about this 
sampled population may be drawn on the basis of the information in the sample. If 
the researcher wishes to make inferences about all rheumatoid arthritis sufferers, 
he or she must rely on nonstatistical means to do so. Perhaps the researcher knows 
that the sampled population is similar, with respect to all important characteris-
tics, to the target population. That is, the researcher may know that the age, sex, 
severity of illness, duration of illness, and so on are similar in both populations. 
And on the strength of this knowledge, the researcher may be willing to extrapo-
late his or her findings to the target population. 

In many situations the sampled population and the , target population are 
identical, and, when this is the case, inferences about the target population are 
straightforward. The researcher should, however, be aware that this is not always 
the case and not fall into the trap of drawing unwarranted inferences about a 
population that is different from the one that is sampled. 

Random and Nonrandom Samples In the examples and exercises of this 
book, we assume that the data available for analysis have come from random 
samples. The strict validity of the statistical procedures discussed depends on this 
assumption. In many instances in real-world applications it is impossible or imprac-
tical to use truly random samples. In animal experiments, for example, researchers 
usually use whatever animals are available from suppliers or their own breeding 
stock. If the researchers had to depend on randomly selected material, very little 
research of this type would be conducted. Again, nonstatistical considerations must 
play a part in the generalization process. Researchers may contend that the 
samples actually used are equivalent to simple random samples, since there is no 
reason to believe that the material actually used is not representative of the 
population about which inferences are desired. 

In many health research projects, samples of convenience, rather than random 
samples, are employed. Researchers may have to rely on volunteer subjects or on 
readily available subjects such as students in their classes. Again, generalizations 
must be made on the basis of nonstatistical considerations. The consequences of 
such generalizations, however, may be useful or they may range from misleading to 
disastrous. 
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In some situations it is possible to introduce randomization into an experiment 
even though available subjects are not randomly selected from some well-defined 
population. In comparing two treatments, for example, each subject may be 
randomly assigned to one or the other of the treatments. Inferences in such cases 
apply to the treatments and not the subjects, and hence the inferences are valid. 

6.2 
Confidence Interval for a 
Population Mean 

Suppose researchers wish to estimate the mean of some normally distributed 
population. They draw a random sample of size n from the population, and 
compute X, which they use as a point estimate of ,u. Although this estimator of ,u 
possesses all the qualities of a good estimator, we know that because of the 
vagaries of sampling, X cannot be expected to be equal to ,u. 

It would be much more meaningful, therefore, to estimate p, by an interval 
that somehow communicates information regarding the probable magnitude of A. 

Sampling Distributions and Estimation To obtain an interval estimate, we 
must draw on our knowledge of sampling distributions. In the present case, since 
we are concerned with the sample mean as an estimator of a population mean, we 
must recall what we know about the sampling distribution of the sample mean. 

In the previous chapter we learned that if sampling is from a normally 
distributed population, the sampling distribution of the sample mean will be 
normally distributed with a mean, p,, equal to the population mean At, and a 
variance 4, equal to cr 2/n. We could plot the sampling distribution if we only 
knew where to locate it on the X-axis. From our knowledge of normal distributions, 
in general, we know even more about the distribution of x in this case. We know, 
for example, that regardless of where it is located, approximately 95 percent of the 
possible values of x constituting the distribution are within 2 standard deviations of 
the men. The two points that are 2 standard deviations from the mean are 

— 	and p, + 2a.,, so that the intervalµ ± 20 will contain approximately 95 
perient of the possible values of 7c. We know that kt, and, hence, p are unknown, 
but we may arbitrarily place the sampling distribution of X on the 

Since we do not know the value of A, not a great deal is accomplished by the 
expression ± 	We do, however, have a point estimate of p, which is X. Would 
it be useful to construct an interval about this point estimate of p2 The answer is, 
yes. Suppose we constructed intervals about every possible value of x computed 
from all possible samples of size n from the population of interest. We would have 
a large number of intervals of the form X + 20r, with widths all equal to the width 
of the interval about the unknown m.. Approximately 95 percent of these intervals 
would have centers falling within the +2o,.. interval about p,. Each of the intervals 

whose centers fall within 2o of p, would contain 1.1„. These concepts are illustrated 
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Figure 6.2.1 The 95 percent confidence intervals for A. 

in Figure 6.2.1. In Figure 6.2.1 we see that x i , x3, and x4  all fall within the 20i  
interval about 	and, consequently, the 2o intervals about these sample means 
include the value of IA. The sample means x2  and .17' 5  do not fall within the 2u, 
interval about ,u, and the 2o-, intervals about them do not include it. 

Example 
6.2.1 

Suppose a researcher, interested in obtaining an estimate of the average level of 
some enzyme in a certain human population, takes a sample of 10 individuals, 
determines the level of the enzyme in each, and computes a sample mean of 

= 22. Suppose further it is known that the variable of interest is approximately 
normally distributed with a variance of 45. We wish to estimate A. 

 

Solution: An approximate 95 percent confidence interval for u is given by 

+ 2o-, 

22± 2  

22 ± 2(2.1213) 

17.76,26.24 

 

 

Interval Estimate Components Let us examine the composition of the 
interval estimate constructed in Example 6.2.1. It contains in its center the point 
estimate of The 2 we recognize as a value from the standard normal distribution 
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that tells us within how many standard errors lie approximately 95 percent of the 
possible values of This value of .c is referred to as the reliability coefficient. The last 
component, cr,, is the standard error, or standard deviation of the sampling 
distribution of Tc. In general, then, an interval estimate may be expressed as 
follows: 

estimator ± (reliability coefficient) X (standard error) 	(6.2.1) 

In particular, when sampling is from a normal distribution with known vari-
ance, an interval estimate forµ may be expressed as 

	 —./2)6r 
	

(6.2.2) 

Interpreting Confidence Intervals How do we interpret the interval given 
by Expression 6.2.2? In the present example, where the reliability coefficient is 
equal to 2, we say that in repeated sampling approximately 95 percent of the 
intervals constructed by Expression 6.2.2 will include the population mean. This 
interpretation is based on the probability of occurrence of different values of x. We 
may generalize this interpretation if we designate the total area under the curve of 
"i that is outside the interval 	± 2a, as a and the area within the interval as 
1 — a and give the following probabilistic interpretation of Expression 6.2.2. 

Probabilistic Interpretation In repeated sampling, from a normaly 
distributed population with a known standard deviation, 100(1 — a) percent of an 
intervals of the form x f zo _a/2)cri  will in the long run include the population 
mean, µ. 

The quantity 1 — a, in this case .95, is called the confidence coefficient (or 
confidence level), and the interval •i f Zo_a /2)01.- is called a confidence interval for g. 
When (1 — a) = .95, the interval is called the 95 percent confidence interval for .t. 
In the present example we say that we are 95 percent confident that the population 
mean is between 17.76 and 26.24. This is called the practical interpretation of 
Expression 6.2.2. In general, it may be expressed as follows. 

Practical Interpretation When sampling is from a normally distributed 
population with known standard deviation; we are 100(1 — a) percent confident that 
the single computed interval, •i f zo /2)(rp contains the population mean, 1.4. 

In the example given here we might prefer, rather than 2, the more exact 
value of z, 1.96, corresponding to a confidence coefficient of .95. Researchers may 
use any confidence coefficient they wish; the most frequently used values are .90, 
.95, and .99, which have associated reliability factors, respectively, of 1.645, 1.96, 
and 2.58. 

Precision The quantity obtained by multiplying the reliability factor by the 
standard error of the mean is called the precision of the estimate. This quantity is 
also called the margin of error. 
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Example 
6.2.2 

A physical therapist wished to estimate, with 99 percent confidence, the mean 
maximal strength of a particular muscle in a certain group of individuals. He is 
willing to assume that strength scores are approximately normally distributed with 
a variance of 144. A sample of 15 subjects who participated in the experiment 
yielded a mean of 84.3. 

Solution: The z value corresponding to a confidence coefficient of .99 is found in 
Table D to be 2.58. This is our reliability coefficient. The standard error is 
QX  = 12/ Ifff = 3.0984. Our 99 percent confidence interval for 	then, is 

84.3 ± 2.58(3.0984) 

84.3 ± 8.0 

76.3,92.3 

We say we are 99 percent confident that the population mean is between 76.3 and 
92.3 since, in repeated sampling, 99 percent of all intervals that could be con-
structed in the manner just described would include the population mean. 

Situations in which the variable of interest is approximately normally distributed 
with a known variance are so rare as to be almost nonexistent. The purpose of the 
preceding examples, which assumed that these ideal conditions existed, was to 
establish the theoretical background for constructing confidence intervals for 
population means. In most practical situations either the variables are not approxi-
mately normally distributed or the population variances are not known or both. 
Example 6.2.3 and Section 6.3 explain the procedures that are available for use in 
the less than ideal, but more common, situations. 

Sampling from Nonnormal Populations As noted, it will not always be 
possible or prudent to assume that the population of interest is normally dis-
tributed. Thanks to the central limit theorem, this will not deter us if we are able 
to select a large enough sample. We have learned that for large samples, the 
sampling distribution of X. is approximately normally distributed regardless of how 
the parent population is distributed. 

Example 
6.2.3 

Punctuality of patients in keeping appointments is of interest to a research team. 
In a study of patient flow through the offices of general practitioners, it was found 
that a sample of 35 patients were 17.2 minutes late for appointments, on the 
average. Previous research had shown the standard deviation to be about 8 
minutes. The population distribution was felt to be nonnormal. What is the 90 
percent confidence interval for kt, the true mean amount of time late for appoint-
ments? 
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Solution: Since the sample size is fairly large (greater than 30), and since the 
population standard deviation is known, we draw on the central limit theorem and 
assume the sampling distribution of x-  to be approximately normally distributed. 
From Table D we find the reliability coefficient corresponding to a confidence 
coefficient of .90 to be about 1.645, if we interpolate. The standard error is o = 
8/ I3.5 = 1.3522, so that our 90 percent confidence interval forµ is 

17.2 ± 1.645(1.3522) 

17.2 ± 2.2 

15.0, 19.4 

Frequently, when the sample is large enough for the application of the central limit 
theorem the population variance is unknownitIn that case we use the sample 
variance as a replacement for the unknown population variance in the formula for 
constructing a confidence interval for the population mean. 

Computer Analysis When confidence intervals are desired, a great deal of 
time can be saved if one uses a computer, which can be programmed to construct 
intervals from raw data. 

Example 
6.2.4 

The following are the activity values (micromoles per minute per gram of tissue) of 
a certain enzyme measured in normal gastric tissue of 35 patients with gastric 
carcinoma. 

.360 1.189 .614 .788 .273 2.464 .571 

1.827 .537 .374 .449 .262 .448 .971 
.372 .898 .411 .348 1.925 .550 .622 
.610 .319 .406 .413 .767 .385 .674 
.521 .603 .533 .662 1.177 .307 1.499 

We wish to use the MINITAB computer software package to construct a 95 percent 
confidence interval for the population mean. Suppose we know that the population 
variance is .36. It is not necessary to assume that the sampled population of values 
is normally distributed since the sample size is sufficiently large for application of 
the central limit theorem. 

Solution: We enter the data into column I and issue the following MINITAB 
command: 

ZINTERVAL 95 .6 Cl 

This command tells the computer that the reliability factor is z, that a 95 percent 
confidence interval is desired, that the population standard deviation is .6, and that 
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the data are in column 1. We obtain the following printout. 

THE ASSUMED SIGMA = 0.600 

N 	MEAN 	STDEV SE MEAN 95.0 PERCENT C. I. 

35 0.718 0.511 0.101 	( 0.519, 0.917) 

The printout tells us that the sample mean is .718, the sample standard deviation 
is .511, and the standard error of the mean, cr/ 	, is .6/ V35 = .101. 

We are 95 percent confident that the population mean is somewhere between 
.519 and .917. 

Confidence intervals may be obtained through the use of many other software 
packages. Users of SAS®, for example, may wish to use the output from PROC 
MEANS or PROC UNIVARIATE to construct confidence intervals. 

Alternative Estimates of Central Tendency As noted previously, the mean 
is sensitive to extreme values—those values that deviate appreciably from most of 
the measurements in a data set. They are sometimes referred to as outliers. We also 
noted earlier that the median, because it is not so sensitive to extreme measure-
ments, is sometimes preferred over the mean as a measure of central tendency 
when outliers are present. For the same reason we may prefer to use the sample 
median as an estimator of the population median when we wish to make an 
inference about the central tendency of a population. Not only may we use the 
sample median as a point estimate of the population median, we also may 
construct a confidence interval for the population median. The formula is not given 
here, but may be found in the book by Rice (4). 

Trimmed Mean Estimators that are insensitive to outliers are called robust 
estimators. Another robust measure and estimator of central tendency is the trimmed 
mean. For a set of sample data containing n measurements we calculate the 100a 
percent trimmed mean as follows: 

1. Order the measurements. 

2. Discard the smallest 100a percent and the largest 100a percent of the 
measurements. The recommended value of a is something between .1 and .2. 

3. Compute the arithmetic mean of the remaining measurements. 

Note that the median may be regarded as a 50 percent trimmed mean. The 
formula for the confidence interval based on the trimmed mean is not given here. 
The interested reader is referred to the book by Rice (4). Recall that the trimmed 
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mean for a set of data is one of the descriptive measures calculated by MINITAB in 
response to the DESCRIBE command. 

EXERCISES 

6.2.1 We wish to estimate the average number of heartbeats per minute for a certain 
population. The average number of heartbeats per minute for a sample of 49 subjects 
was found to be 90. If it is reasonable to assume that these 49 patients constitute a 
random sample, and that the population is normally distributed with a standard 
deviation of 10, find: 

a. The 90 percent confidence interval for A. 
b. The 95 percent confidence interval for 
c. The 99 percent confidence interval for 

6.2.2 We wish to estimate the mean serum indirect bilirubin level of 4-day-old infants. The 
mean for a sample of 16 infants was found to be 5.98 mg/100 cc. Assuming bilirubin 
levels in 4-day-old infants are approximately normally distributed with a standard 
deviation of 3.5 mg/100 cc find: 

a. The 90 percent confidence interval for A. 
b. The 95 percent confidence interval for A. 
c. The 99 percent confidence interval for A. 

6.2.3 In a length of hospitalization study conducted by several cooperating hospitals, a 
random sample of 64 peptic ulcer patients was drawn from a list of all peptic ulcer 
patients ever admitted to the participating hospitals and the length of hospitalization 
per admission was determined for each. The mean length of hospitalization was 
found to be 8.25 days. If the population standard deviation is known to be 3 days, 
find: 

a. The 90 percent confidence interval for A. 
b. The 95 percent confidence interval for A. 
c. The 99 percent confidence interval for pt. 

6.2.4 A sample of 100 apparently normal adult males, 25 years old, had a mean systolic 
blood pressure of 125. If it is believed that the population standard deviation is 15, 
find: 

a. The 90 percent confidence interval for A. 
b. The 95 percent confidence interval for p.. 

6.2.5 Some studies of Alzheimer's disease (AD) have shown an increase in 14CO2  produc-
tion in patients with the disease. In one such study the following 14CO2  values were 
obtained from 16 neocortical biopsy samples from AD patients. 

1009, 1280, 1180, 1255, 1547, 2352, 1956, 1080, 
1776, 1767, 1680, 2050, 1452, 2857, 3100, 1621 

Assume that the population of such values is normally distributed with a standard 
deviation of 350 and construct a 95 percent confidence interval for the population 
mean. 
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6.3 
The t Distribution 

In Section 6.2 a procedure was outlined for constructing a confidence interval for a 
population mean. The procedure requires a knowledge of the variance of the 
population from which the sample is drawn. It may seem somewhat strange that 
one can have knowledge of the population variance and not know the value of the 
population mean. Indeed, it is the usual case, in situations such as have been 
presented, that the population variance, as well as the population mean, is 
unknown. This condition presents a problem with respect to constructing confi-
dence intervals. Although, for example, the statistic 

— 

is normally distributed when the population is normally distributed, and is at least 
approximately normally distributed when n is large, regardless of the functional 
form of the population, we cannot make use of this fact because a-  is unknown. 
However, all is not lost, and the most logical solution to the problem is the one 
followed. We use the sample standard deviation 

s = 	E(x, — :0 21(n — 1) 

to replace a-. When the sample size is large, say greater than 30, our faith in s as 
an approximation of Q is usually substantial, and we may feel justified in using 
normal distribution theory to construct a confidence interval for the population 
mean. In that event, we proceed as instructed in Section 6.2. 

It is when we have small samples that it becomes mandatory for us to find an 
alternative procedure for constructing confidence intervals. 

As a result of the work of Gosset (5), writing under the pseudonym of 
"Student," an alternative, known as Student's t distribution, usually shortened to t 
distribution, is available to us. 

The quantity 

follows this distribution. 

Properties of the t Distribution The t distribution has the following 
properties. 

4 1. It has a mean of 0. 

*2. It is symmetrical about the mean. 
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Figure 6.3.1 The t distribution for different degrees-of-freedom values. 

3. In general, it has a variance greater than 1, but the variance approaches 1 as 
the sample size becomes large. For df> 2, the variance of the t distribution is 
df (df — 2), where df is the degrees of freedom. Alternatively, since here 
df = n — 1 for n > 3, we may write the variance of the t distribution as 

— 1)/(n — 3). 

4. The variable t ranges from — 00 to +00. 

5. The t distribution is really a family of distributions, since there is a different 
distribution for each sample value of n — 1, the divisor used in computing s2. 
We recall that n — I is referred to as degrees of freedom. Figure 6.3.1 shows t 
distributions corresponding to several degrees-of-freedom values. 

6. Compared to the normal distribution the t distribution is less peaked in the 
center and has higher tails. Figure 6.3.2 compares the t distribution with the 
normal. 

7. The t distribution approaches the normal distribution as n — 1 approaches 
infinity. 

- Normal distribution 

--- t distribution 

x 

Figure 6.3.2 Comparison of normal distribution and t distribution. 
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The t distribution, like the standard normal, has been extensively tabulated. 
One such table is given as Table E in Appendix II. As we will see, we must take 
both the confidence coefficient and degrees of freedom into account when using the 
table of the t distribution. 

Confidence Intervals Using t The general procedure for constructing con-
fidence intervals is not affected by our having to use the t distribution rather than 
the standard normal distribution. We still make use of the relationship expressed 
by 

estimator ± (reliability coefficient) X (standard error) 

What is different is the source of the reliability coefficient. It is now obtained from 
the table of the t distribution rather than from the table of the standard normal 
distribution. To be more specific, when sampling is from a normal distribution whose 
standard deviation, o- , is unknown, the 100(1 — a) percent confidence interval for the 
population mean, /1, is given by 

1-a/2) 	 (6.3.1) 

Notice that a requirement for valid use of the t distribution is that the sample 
must be drawn from a normal distribution. Experience has shown, however, that 
moderate departures from this requirement can be tolerated. As a consequence, 
the t distribution is used even when it is known that the parent population deviates 
somewhat from normality. Most researchers require that an assumption of, at 
least, a mound-shaped population distribution be tenable. 

Example 
6.3.1 

Maureen McCauley conducted a study to evaluate the effect of on-the-job body 
mechanics instruction on the work performance of newly employed young workers 
(A-1). She used two randomly selected groups of subjects, an experimental group 
and a control group. The experimental group received one hour of back school 
training provided by an occupational therapist. The control group did not receive 
this training. A criterion-referenced Body Mechanics Evaluation Checklist was used 
to evaluate each worker's lifting, lowering, pulling, and transferring of objects in 
the work environment. A correctly performed task received a score of 1. The 15 
control subjects made a mean score of 11.53 on the evaluation with a standard 
deviation of 3.681. We assume that these 15 controls behave as a random sample 
from a population of similar subjects. We wish to use these sample data to estimate 
the mean score for the population. 

Solution: We may use the sample mean, 11.53 as a point estimate of the 
population mean but, since the population standard deviation is unknown, we must 
assume the population of values to be at least approximately normally distributed 
before constructing a confidence interval for bk. Let us assume that such an 
assumption is reasonable and that a 95 percent confidence interval is desired. We 
have our estimator, x, and our standard error is s/ Viz = 3.681/ 15 = .9504. We 
need now to find the reliability coefficient, the value of t associated with a 
confidence coefficient of .95 and n — 1 = 14 degrees of freedom. Since a 95 percent 



6
.3

  T
h

e t D
istrib

u
tio

n
 

	 No 
Sample 

size 
large? 

Sample 
size 

large? 

1E1 

Population 
normally 

distributed? 

Population 
variance 
known? 

Population 
variance 
known? 

Population 
variance 
known? 

Population 
variance 
known? 

Central limit theorem applies Or 

z z 

z 

Figure 6.3.3 Flowchart for use in deciding between z and t when making inferences about population means. (*Use a 
nonparametric procedure. See Chapter 13.) 
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confidence interval leaves .05 of the area under the curve of t to be equally divided 
between the two tails, we need the value of t to the right of which lies .025 of the 
area. We locate in Table E the column headed 1.975. This is the value of t to the left 
of which lies .975 of the area under the curve. The area to the right of this value is 
equal to the desired .025. We now locate the number 14 in the degrees-of-freedom 
column. The value at the intersection of the row labeled 14 and the column labeled 
/.975  is the t we seek. This value of t, which is our reliability coefficient, is found to 
be 2.1448. We now construct our 95 percent confidence interval as follows: 

11.53 ± 2.1448(.9504) 

11.53 ± 2.04 

9.49, 13.57 

This interval may be interpreted from both the probabilistic and practical points of 
view. We say we are 95 percent confident that the true population mean, .t, is 
somewhere between 9.49 and 13.57 because, in repeated sampling, 95 percent of 
intervals constructed in like manner will include p.. 

Deciding Between z and t When we construct a confidence interval for a 
population mean, we must decide whether to use a value of z or a value of t as the 
reliability factor. To make an appropriate choice we must consider sample size, 
whether the sampled population is normally distributed, and whether the popula-
tion variance is known. Figure 6.3.3 provides a flowchart that one can use to decide 
quickly whether the reliability factor should be z or t. 

Computer Analysis If you wish to have MINITAB construct a confidence 
interval for a population mean when the t statistic is the appropriate reliability 
factor, the command begins with the word TINTERVAL. The remainder of the 
command is the same as for the ZINTERVAL command minus the sigma designa-
tion. 

EXERCISES 

6.3.1 Use the t distribution to find the reliability factor for a confidence interval based on 
the following confidence coefficients and sample sizes: 

a 
Confidence coefficient .95 .99 .90 .95 
Sample size 15 24 8 30 

6.3.2 In an investigation of the flow and volume dependence of the total respiratory system 
in a group of mechanically ventilated patients with chronic obstructive pulmonary 
disease, Tantucci et al. (A-2) collected the following baseline values on constant 
inspiratory flow (L/s): .90, .97, 1.03, 1.10, 1.04, 1.00. Assume that the six subjects 
constitute a simple random sample from a normally distributed population of similar 
subjects. 
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a. What is the point estimate of the population mean? 
b. What is the standard deviation of the sample? 
c. What is the estimated standard error of the sample mean? 
d. Construct a 95 percent confidence interval for the population mean constant 

inspiratory flow. 
e. What is the precision of the estimate? 
f. State the probabilistic interpretation of the confidence interval you constructed. 
g. State the practical interpretation of the confidence interval you constructed. 

6.3.3 Lloyd and Mailloux (A-3) reported the following data on the pituitary gland weight in 
a sample of four Wistar Furth Rats: 

mean = 9.0 mg, standard error of the mean = .3 

SOURCE: Ricardo V. Lloyd and Joe Mailloux, "Analysis 
of S-100 Protein Positive Folliculo-Stellate Cells in Rat 
Pituitary Tissues," American Journal of Pathology, 133 
(1988), 338-346. 

a. What was the sample standard deviation? 
b. Construct a 95 percent confidence interval for the mean pituitary weight of a 

population of similar rats. 
c. What assumptions are necessary for the validity of the confidence interval you 

constructed? 

6.3.4 In a study of preeclampsia, Kaminski and Rechberger (A-4) found the mean systolic 
blood pressure of 10 healthy, nonpregnant women to be 119 with a standard deviation 
of 2.1. 

a. What is the estimated standard error of the mean? 
b. Construct the 99 percent confidence interval for the mean of the population from 

which the 10 subjects may be presumed to be a random sample. 
c. What is the precision of the estimate? 
d. What assumptions are necessary for the validity of the confidence interval you 

constructed? 

6.3.5 A sample of 16 ten-year-old girls gave a mean weight of 71.5 and a standard deviation 
of 12 pounds, respectively. Assuming normality, find the 90, 95, and 99 percent 
confidence intervals for A. 

6.3.6 A simple random sample of 16 apparently healthy subjects yielded the following 
values of urine excreted arsenic (milligrams per day). 

Subject Value Subject Value 

1 .007 9 .012 
2 .030 10 .006 
3 .025 11 .010 
4 .008 12 .032 
5 .030 13 .006 
6 .038 14 .009 
7 .007 15 .014 
8 .005 16 .011 

Construct a 95 percent confidence interval for the population mean. 
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6.4 
Confidence Interval for the Difference 
Between Two Population Means 

Sometimes there arise cases in which we are interested in estimating the difference 
between two population means. From each of the populations an independent 
random sample is drawn and, from the data of each, the sample means x l  and 
respectively, are computed. We learned in the previous chapter that the estimator 

— x2  yields an unbiased estimate of A l  — A2, the difference between the popula- 
tion means. The variance of the estimator is (o-2/n) + 	/n 2). We also know 
from Chapter 5 that, depending on the conditions, the sampling distribution of 
x i  — x 2  may be, at least, approximately normally distributed, so that in many cases 
we make use of the theory relevant to normal distributions to compute a confi- 
dence interval for 	— ti,2. When the population variances are known, the 100(1 - 
a) percent confidence interval for A I  — /12  is given by 

(6.4.1) 

Let us illustrate, for the case where sampling is from normal distributions. 

Example 
6.4.1 

A research team is interested in the difference between serum uric acid levels in 
patients with and without Down's syndrome. In a large hospital for the treatment 
of the mentally retarded, a sample of 12 individuals with Down's syndrome yielded 
a mean of 	= 4.5 mg/100 ml. In a general hospital a sample of 15 normal 
individuals of the same age and sex were found to have a mean value of x2  = 3.4. If 
it is reasonable to assume that the two populations of values are normally 
distributed with variances equal to 1 and 1.5, find the 95 percent confidence 
interval for A, — /12. 

Solution: For a point estimate of p — A2, we use x l  — x 2  = 4.5 — 3.4 = 1.1. The 
reliability coefficient corresponding to .95 is found in Table D to be 1.96. The 
standard error is 

    

2 
Crl

2 OF2  
- — 
n 	n 2  

 

1 	1.5 

12 + 15 = .
4282 

The 95 percent confidence interval, then, is 

1.1 ± 1.96(.4282) 

1.1 ± .84 

.26, 1.94 
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We say that we are 95 percent confident that the true difference, p — /12, is 
somewhere between .26 and 1.94, because, in repeated sampling, 95 percent of the 
intervals constructed in this manner would include the difference between the true 
means. 

Sampling from Nonnormal Populations The construction of a confidence 
interval for the difference between two population means when sampling is from 
nonnormal populations proceeds in the same manner as in Example 6.4.1 if the 
sample sizes n, and n 2  are large. Again, this is a result of the central limit 
theorem. If the population variances are unknown, we use the sample variances to 
estimate them. 

Example 
6.4.2 

Motivated by an awareness of the existence of a body of controversial literature 
suggesting that stress, anxiety, and depression are harmful to the immune system, 
Gorman et al. (A-5) conducted a study in which the subjects were homosexual men, 
some of whom were HIV positive and some of whom were HIV negative. Data were 
collected on a wide variety of medical, immunological, psychiatric, and neurological 
measures, one of which was the number of CD4 + cells in the blood. The mean 
number of CD4 + cells for the 112 men with HIV infection was 401.8 with a 
standard deviation of 226.4. For the 75 men without HIV infection the mean and 
standard deviation were 828.2 and 274.9, respectively. We wish to construct a 99 
percent confidence interval for the difference between population means. 

Solution: No information is given regarding the shape of the distribution of 
CD4 + cells. Since our sample sizes are large, however, the central limit theorem 
assures us that the sampling distribution of the difference between sample means 
will be approximately normally distributed even if the distribution of the variable 
in the populations is not normally distributed. We may use this fact as justification 
for using the z statistic as the reliability factor in the construction of our 
confidence interval. Also, since the population standard deviations are not given, 
we will use the sample standard deviations to estimate them. The point estimate 
for the difference between population means is the difference between sample 
means, 828.2 — 401.8 = 426.4. In Table D we find the reliability factor to be 2.58. 
The estimated standard error is 

 

274.92 	226.42  
sx,-x2 	75 	112 	

— 38.2786 
 

By Equation 6.4.1, our 99 percent confidence interval for the difference between 
population means is 

426.4 ± 2.58(38.2786) 

327.6,525.2 
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We are 99 percent confident that the mean number of CD4 + cells in HIV-positive 
males differs from the mean for HIV-negative males by somewhere between 327.6 
and 525.2. 

The t Distribution and the Difference Between Means When population 
variances are unknown, and we wish to estimate the difference between two 
population means with a confidence interval, we can use the t distribution as a 
source of the reliability factor if certain assumptions are met. We must know, or be 
willing to assume, that the two sampled populations are normally distributed. With 
regard to the population variances, we distinguish between two situations: (1) the 
situation in which the population variances are equal and (2) the situation in which 
they are not equal. Let us consider each situation separately. 

Population Variances Equal If the assumption of equal population vari-
ances is justified, the two sample variances that we compute from our two 
independent samples may be considered as estimates of the same quantity, the 
common variance. It seems logical then that we should somehow capitalize on this 
in our analysis. We do just that and obtain a pooled estimate of the common 
variance. This pooled estimate is obtained by computing the weighted average of 
the two sample variances. Each sample variance is weighted by its degrees of 
freedom. If the sample sizes are equal, this weighted average is the arithmetic 
mean of the two sample variances. If the two sample sizes are unequal, the 
weighted average takes advantage of the additional information provided by the 
larger sample. The pooled estimate is given by the formula: 

(6.4.2) 

The standard error of the estimate, then, is given by 

(6.4.3) 

and the 100(1 — a) percent confidence interval for /I I  — kt,2  is given by 

*2) 	t(I -a/2) 

	

2 	2 

	

Sp 	s p  

n 2 
(6.4.4) 

The number of degrees of freedom used in determining the value of t to use in 
constructing the interval is n1  + n 2  — 2, the denominator of Equation 6.4.2. We 
interpret this interval in the usual manner. 
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Example 
6.4.3 

The purpose of a study by Stone et al. (A-6) was to determine the effects of 
long-term exercise intervention on corporate executives enrolled in a supervised 
fitness program. Data were collected on 13 subjects (the exercise group) who 
voluntarily entered a supervised exercise program and remained active for an 
average of 13 years and 17 subjects (the sedentary group) who elected not to join 
the fitness program. Among the data collected on the subjects was maximum 
number of sit-ups completed in 30 seconds. The exercise group had a mean and 
standard deviation for this variable of 21.0 and 4.9, respectively. The mean and 
standard deviation for the sedentary group were 12.1 and 5.6, respectively. We 
assume that the two populations of overall muscle condition measures are approxi-
mately normally distributed and that the two population variances are equal. We 
wish to construct a 95 percent confidence interval for the difference between the 
means of the populations represented by these two samples. 

Solution: First, we use Equation 6.4.2 to compute the pooled estimate of the 
common population variance. 

(13 — 1)(4.92) + (17 — 1)(5.62) 
s 2 
- 	  - 28.21 

13 + 17 — 2 

When we enter Table E with 13 + 17 — 2 = 28 degrees of freedom and a desired 
confidence level of .95, we find that the reliability factor is 2.0484. By Expression 
6.4.4 we compute the 95 percent confidence interval for the difference between 
population means as follows: 

(21.0 — 12.1) ± 2.04841/ 	13  + 	 
/28.21 	28.21 

8.9 ± 4.0085 

4.9, 12.9 

We are 95 percent confident that the difference between population means is 
somewhere between 4.9 and 12.9. We can say this because we know that if we were 
to repeat the study many, many times, and compute confidence intervals in the 
same way, about 95 percent of the intervals would include the difference between 
the population means. 

Population Variances Not Equal When one is unable to ascertain that the 
variances of two populations of interest are equal, even though the two populations 
may be assumed to be normally distributed, it is not proper to use the t 
distribution as just outlined in constructing confidence intervals. 

A solution to the problem of unequal variances was proposed by Behrens (6) 
and later was verified and generalized by Fisher (7, 8). Solutions have also been 

17 
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proposed by Neyman (9), Scheffe (10, 11), and Welch (12, 13). The problem is 
discussed in detail by Aspin (14), Trickett et al. (15), and Cochran (16). Cochran's 
approach is also found in Snedecor and Cochran (17). 

The problem revolves around the fact that the quantity 

()7 	— 	— /22) 

	

2 	S2 2 
— 

	

n 1 	n 2 

does not follow a t distribution with n, + n 2  — 2 degrees of freedom when the 
population variances are not equal. Consequently, the t distribution cannot be 
used in the usual way to obtain the reliability factor for the confidence interval for 
the difference between the means of two populations that have unequal variances. 
The solution proposed by Cochran consists of computing the reliability factor, 

_a/2, by the following formula: 

tl —a /2 = 
W1 t 1 W 2 t 2 

(6.4.5) 
W + W 2 

where w1 = 	w2 = s22/n23 t1  = t l _a/2  for n, — 1 degrees of freedom, and 
t 2 = t _a /2 for n 2  — 1 degrees of freedom. An approximate 100(1 — a) percent 
confidence interval for A I  — /12  is given by 

t(1 — a/2) 

2 S 2 

	

1 	S2 —+- 

	

n  1 	n 2 
(6.4.6) 

Example 
6.4.4 

In the study by Stone et al. (A-6) described in Example 6.4.3, the investigators also 
reported the following information on a measure of overall muscle condition scores 
made by the subjects: 

Sample n Mean Standard Deviation 

Exercise group 13 4.5 .3 
Sedentary group 17 3.7 1.0 

We assume that the two populations of overall muscle condition scores are 
approximately normally distributed. We are unwilling to assume, however, that the 
two population variances are equal. We wish to construct a 95 percent confidence 
interval for the difference between the mean overall muscle condition scores of the 
two populations represented by the samples. 

Solution: We will use t' as found by Equation 6.4.5 for the reliability factor. 
Reference to Table E shows that with 12 degrees of freedom and 1 — .05/2 = .975, 
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t i  = 2.1788. Similarly, with 16 degrees of freedom and 1 — .05/2 = .975, t 2  = 
2.1199. We now compute 

	

(.32/13)(2.1788) + (1.02 /17)(2.1199) 	.139784 
= 	  

(.32/13) + (1.02 /17) 	 .065747 

= 2.1261 

By Expression 6.4.6 we now construct the 95 percent confidence interval for the 
difference between the two population means. 

.32 	1.02 
(4.5 — 3.7) + 2.1261 	

13 + 17 

.8 ± 2.1261(.25641101) 

.25, 1.34 

When constructing a confidence interval for the difference between two popu-
lation means one may use Figure 6.4.1 to decide quickly whether the reliability 
factor should be z, t, or t'. 

EXERCISES 

6.4.1 The objective of an experiment by Buckner et al. (A-7) was to study the effect of 
pancuronium-induced muscle relaxation on circulating plasma volume. Subjects 
were newborn infants weighing more than 1700 grams who required respiratory 
assistance within 24 hours of birth and met other clinical criteria. Five infants 
paralyzed with pancuronium and seven nonparalyzed infants yielded the following 
statistics on the second of three measurements of plasma volume (ml) made during 
mechanical ventilation: 

Subject Group 	Sample Mean 	Sample Standard Deviation 

Paralyzed 	 48.0 	 8.1 
Nonparalyzed 	 56.7 	 8.1 

The second measurement for the paralyzed group occurred 12 to 24 hours after the 
first dose of pancuronium. For the nonparalyzed group, measurements were made 
12 to 24 hours after commencing mechanical ventilation. State all necessary as-
sumptions and construct the following: 
a. The 90 percent confidence interval for p. — t-L2. 
b. The 95 percent confidence interval for gi  — 
C. The 99 percent confidence interval for A i  — P-2. 

6.4.2 Zucker and Archer (A-8) state that N-NITROSOBIS (2-oxopropyl)amine (BOP) and 
related 13-oxidized nitrosamines produce a high incidence of pancreatic ductular 
tumors in the Syrian golden hamster. They studied the effect on body weight, 
plasma glucose, insulin, and plasma glutamate-oxaloacetate transaminase (GOT) 
levels of exposure of hamsters in vivo to BOP. The investigators reported the 
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following results for 8 treated and 12 untreated animals: 

Variable 	 Untreated 	Treated 

Plasma glucose (mg/dl) 	101 ± 5 	74 ± 6  

SOURCE: Peter F. Zucker and Michael C. Archer, "Alterations in 
Pancreatic Islet Function Produced by Carcinogenic Nitrosamines in 
the Syrian Hamster," American Journal of Pathology, 133 (1988), 
573-577 

The data are the sample mean ± the estimated standard error of the sample mean. 
State all necessary assumptions and construct the following: 

a. The 90 percent confidence interval for p. — /12. 
b. The 95 percent confidence interval for A l  — A2. 
c. The 99 percent confidence interval for p i  — A2. 

6.4.3 The objectives of a study by Davies et al. (A-9) were to evaluate (1) the effectiveness 
of the "Time to Quit" self-help smoking cessation program when used on a 
one-to-one basis in the home and (2) the feasibility of teaching smoking cessation 
techniques to baccalaureate nursing students. Senior nursing students enrolled in 
two University of Ottawa research methodology courses were invited to participate 
in the project. A smoking cessation multiple choice quiz was administered to 120 
student nurses who participated and 42 nonparticipating student nurses before and 
after the study. Differences between pre- and post-study scores were calculated and 
the following statistics were computed from the differences: 

Group 
	

Mean 	Standard Deviation 

Participants (A) 	21.4444 	 15.392 
Nonparticipants (B) 	3.3333 	 14.595 

State all necessary assumptions, and construct the following: 

a. The 90 percent confidence interval for ti,A  — AB. 
b. The 95 percent confidence interval for AA  — AB. 
C. The 99 percent confidence interval for AA  — AB. 

6.4.4 Dr. Ali A. Khraibi (A-10), of the Mayo Clinic and Foundation, conducted a series of 
experiments to evaluate the natriuretic and diuretic responses of Okamoto sponta-
neously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) to direct increases in 
renal interstitial hydrostatic pressure (RIHP). Direct renal interstitial volume ex-
pansion (DRIVE), via a chronically implanted polyethylene matrix in the kidney, was 
used to increase RIHP. Among the data collected during.  the study were the 
following measurements on urinary sodium excretion (UNaV) during the DRIVE 
period. 

Group 	UNY, (p.eq / min) 

SHR 	6.32, 5.72, 7.96, 4.83, 5.27 
2WKY 	4.20, 4.69, 4.82, 1.08, 2.10 

SOURCE: Dr. Ali A. Khraibi. Used with permission. 

State all necessary assumptions and construct a 95 percent confidence interval for 
the difference between the two population means. 
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6.4.5 A study by Osberg and Di Scala (A-11) focused on the effectiveness of seat belts in 
reducing injuries among survivors aged 4 to 14 who were admitted to hospitals. The 
study contrasted outcomes for 123 belted versus 290 unrestrained children among 
those involved in motor vehicle crashes who required hospitalization. The study 
report contained the following statistics on number of ICU days: 

Group 
	

Mean 	Estimated Standard Error 

Belted 	 .83 	 .16 
No restraint 	1.39 	 .18 

State all necessary assumptions, and construct a 95 percent confidence interval for 
the difference between population means. 

6.4.6 Transverse diameter measurements on the hearts of adult males and females gave 
the following results: 

Group Sample Size (cm) (cm) 

Males 12 13.21 1.05 
Females 9 11.00 1.01 

Assuming normally distributed populations with equal variances, construct the 90, 
95, and 99 percent confidence intervals for A, — 

6.4.7 Twenty-four experimental animals with vitamin D deficiency were divided equally 
into two groups. Group 1 received treatment consisting of a diet that provided 
vitamin D. The second group was not treated. At the end of the experimental 
period, serum calcium determinations were made with the following results: 

Treated group: X = 11.1 mg/100 ml, s = 1.5 

Untreated group: ri = 7.8 mg/100 ml, s = 2.0 

Assuming normally distributed populations with equal variances, construct the 90, 
95, and 99 percent confidence intervals for the difference between population 
means. 

6.4.8 Two groups of children were given visual acuity tests. Group I was composed of 11 
children who receive their health care from private physicians. The mean score for 
this group was 26 with a standard deviation of 5. The second group, consisting of 14 
children who receive their health care from the health department, had an average 
score of 21 with a standard deviation of 6. Assuming normally distributed popula-
tions with equal variances find the 90, 95, and 99 percent confidence intervals for 

6.4.9 The average length of stay of a sample of 20 patients discharged from a general 
hospital was 7 days with a standard deviation of 2 days. A sample of 24 patients 
discharged from a chronic disease hospital has an average length of stay of 36 days 
with a standard deviation of 10 days. Assuming normally distributed populations 
with unequal variances, find the 95 percent confidence interval for the difference 
between population means. 
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6.4.10 In a study of factors thought to be responsible for the adverse effects of smoking on 
human reproduction, cadmium level determinations (nanograms per gram) were 
made on placenta tissue of a sample of 14 mothers who were smokers and an 
independent random sample of 18 nonsmoking mothers. The results were as follows: 

Nonsmokers: 10.0, 8.4, 12.8, 25.0, 11.8, 9.8, 12.5, 15.4, 23.5, 

Smokers: 

9.4, 25.1, 

30.0, 30.1, 
19.5, 25.5, 9.8, 7.5, 11.8, 12.2, 15.0 

15.0, 24.1, 30.5, 17.8, 16.8, 14.8, 

13.4, 28.5, 17.5, 14.4, 12.5, 20.4 

Construct a 95 percent confidence interval for the difference between population 
means. Does it appear likely that the mean cadmium level is higher among smokers 
than nonsmokers? Why do you reach this conclusion? 

6.5 
Confidence Interval for 
a Population Proportion 

Many questions of interest to the health worker relate to population proportions. 
What proportion of patients who receive a particular type of treatment recover? 
What proportion of some population has a certain disease? What proportion of a 
population are immune to a certain disease? 

To estimate a population proportion we proceed in the same manner as when 
estimating a population mean. A sample is drawn from the population of interest, 
and the sample proportion, fi, is computed. This sample proportion is used as the 
point estimator of the population proportion. A confidence interval is obtained by 
the general formula: 

estimator ± (reliability coefficient) X (standard error) 

In the previous chapter we saw that when both np and n(1 - p) are greater 
than 5, we may consider the sampling distribution of fi to be quite close to the 
normal distribution. When this condition is met, our reliability coefficient is some 
value of z from the standard normal distribution. The standard error, we have 
seen, is equal to cri, = 17p(1 — p)/n . Since p, the parameter we are trying to 
estimate, is unknown, we must use fi as an estimate. Thus we estimate cri, by 
1/p(1 — fi)/n , and our 100(1 — a) percent confidence interval for p is given by 

± zo _„ /2)1119(1 fi) / n (6.5.1) 

We give this interval both the probabilistic and practical interpretations. 
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Example 
6.5.1 

Mathers et al. (A-12) found that in a sample of 591 admitted to a psychiatric 
hospital, 204 admitted to using cannabis at least once in their lifetime. We wish to 
construct a 95 percent confidence interval for the proportion of lifetime cannabis 
users in the sampled population of psychiatric hospital admissions. 

Solution: The best point estimate of the population proportion is /3,  = 204/591 = 
.3452. The size of the sample and our estimate of p are of sufficient magni-
tude to justify use of the standard normal distribution in construc-
ting a confidence interval. The reliability coefficient corresponding to a confi-
dence level of .95 is 1.96 and our estimate of the standard error cr- is 
fi(i 1))/n = V(.3452)(.6548)/591 = .01956. The 95 percent confidence inter-

val for p, based on these data, is 

.3452 ± 1.96(.01956) 

.3452 ± .0383 

.3069, .3835 

We say we are 95 percent confident that the population proportion p is between 
.3069 and .3835 since, in repeated sampling, about 95 percent of the intervals 
constructed in the manner of the present single interval would include the true p. 
On the basis of these results we would expect, with 95 percent confidence, to find 
somewhere between 30.69 percent and 38.35 percent of psychiatric hospital admis-
sions to have a history of cannabis use. 

EXERCISES 

6.5.1 In a study of childhood abuse in psychiatric patients, Brown and Anderson (A-13) 
found 166 in a sample of 947 patients reported histories of physical and/or sexual 
abuse. Construct a 90 percent confidence interval for the population proportion. 

6.5.2 Catania et al. (A-14) obtained data regarding sexual behavior from a sample of 
unmarried men and women between the ages of 20 and 44 residing in geographic 
areas characterized by high rates of sexually transmitted diseases and admission to 
drug programs. Fifty percent of 1229 respondents reported that they never used a 
condom. Construct a 95 percent confidence interval for the population proportion 
never using a condom. 

6.5.3 Rothberg and Lits (A-15) studied the effect on birth weight of maternal stress during 
pregnancy. Subjects were 86 white mothers with a history of stress who had no known 
medical or obstetric risk factors for reduced birth weight. The investigators found 
that 12.8 percent of the mothers in the study gave birth to babies satisfying the 
criterion for low birth weight. Construct a 99 percent confidence interval for the 
population proportion. 
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6.5.4 In a simple random sample of 125 unemployed male high school dropouts between 
the ages of 16 and 21, inclusive, 88 stated that they were regular consumers of 
alcoholic beverages. Construct a 95 percent confidence interval for the population 
proportion. 

6.6 
Confidence Interval for the Difference 
Between Two Po • ulation Proportions 

The magnitude of the difference between two population proportions is often of 
interest. We may want to compare, for example, men and women, two age groups, 
two socioeconomic groups, or two diagnostic groups with respect to the proportion 
possessing some characteristic of interest. An unbiased point estimator of the 
difference between two population proportions is provided by the difference be-
tween sample proportions, fi, —P2.  Since, as we have seen, n 1  and n 2  are large and 
the population proportions are not too close to 0 or 1, the central limit theorem 
applies and normal distribution theory may be employed to obtain confidence 
intervals. The standard error of the estimate usually must be estimated by 

a
Pi P2 

fii(1  	1)2(1 -1)2 )  

n l n 

since, as a rule, the population proportions are unknown. A 100(1 — a) percent 
confidence interval for p1  — p2  is given by 

(fil — 132) 	Z(1-a/2) 
fi 1(1  	I; 	2)  

n l 	 n2 
(6.6.1) 

We may interpret this interval from both the probabilistic and practical points of 
view. 

Example 
6.6.1 

Borst et al. (A-16) investigated the relation of ego development, age, gender, and 
diagnosis to suicidality among adolescent psychiatric inpatients. Their sample 
consisted of 96 boys and 123 girls between the ages of 12 and 16 years selected 
from admissions to a child and adolescent unit of a private psychiatric hospital. 
Suicide attempts were reported by 18 of the boys and 60 of the girls. Let us assume 
that the girls behave like a simple random sample from a population of similar 
girls and that the boys likewise may be considered a simple random sample from a 
population of similar boys. For these two populations, we wish to construct a 99 
percent confidence interval for the difference between the proportions of suicide 
attempters. 
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Solution: The sample proportions for the girls and boys are, respectively, fiG  = 
60/123 = .4878 and j)B  = 18/96 = .1875. The difference between sample propor-
tions is 1/3G, — PB = .4878 — .1875 = .3003. The estimated standard error of the 
difference between sample proportions is 

Sh 	= 
rG PB 

(.4878)(.5122) 	(.1875)(.8125) 

123 	+ 	96 

= .0602 

The reliability factor from Table D is 2.58, so that our confidence interval, by 
Expression 6.6.1, is 

.3003 ± 2.58(.0602) 

.1450, .4556 

We are 99 percent confident that for the sampled populations, the proportion of 
suicide attempts among girls exceeds the proportion of suicide attempts among 
boys by somewhere between .1450 and .4556. 

EXERCISES 

6.6.1 Hartgers et al. (A-17), of the Department of Public Health and Environment in 
Amsterdam, conducted a study in which the subjects were injecting drug users 
(IDUs). In a sample of 194 long-term regular methadone (LTM) users, 145 were 

males. In a sample of 189 IDUs who were not LTM users, 113 were males. State the 
necessary assumptions about the samples and the represented populations and 
construct a 95 percent confidence interval for the difference between the proportions 
of males in the two populations. 

6.6.2 Research by Lane et al. (A-18) assessed differences in breast cancer screening 
practices between samples of predominantly low-income women aged 50 to 75 using 
county-funded health centers and women in the same age group residing in the towns 
where the health centers are located. Of the 404 respondents selected from the 
community at large, 59.2 percent agreed with the following statement about breast 

cancer: "Women live longer if the cancer is found early." Among the 795 in the 

sample of health center users, 44.9 percent agreed with the statement. State the 
assumptions that you think are appropriate and construct a 99 percent confidence 
interval for the difference between the two relevant population proportions. 

6.6.3 Williams et al. (A-19) surveyed a sample of 67 physicians and 133 nurses with 
chemical-dependent significant others. The purpose of the study was to evaluate the 
effect on physicians and nurses of being closely involved with one or more chemical-
dependent persons. Fifty-two of the physicians and 89 of the nurses said that living 
with a chemical-dependent person adversely affected their work. State all assump-

tions that you think are necessary and construct a 95 percent confidence interval for 
the difference between the proportions in the two populations whose work we would 
expect to be adversely affected by living with a chemical-dependent person. 
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6.6.4 Aronow and Kronzon (A-20) identified coronary risk factors among men and women 
in a long-term health care facility. Of the 215 subjects who were black, 58 had 
diabetes mellitus. Of the 1140 white subjects, 217 had diabetes mellitus. Construct a 
90 percent confidence interval for the difference between the two population propor-
tions. What are the relevant populations? What assumptions are necessary to validate 
your inferential procedure? 

6.7 
Determination of Sample Size 
for Estimating Means 

The question of how large a sample to take arises early in the planning of any 
survey or experiment. This is an important question that should not be treated 
lightly. To take a larger sample than is needed to achieve the desired results is 
wasteful of resources, whereas very small samples often lead to results that are of 
no practical use. Let us consider, then, how one may go about determining the size 
sample that is needed in a given situation. In this section, we present a method for 
determining the sample size required for estimating a population mean, and in the 
next section we apply this method to the case of sample size determination when 
the parameter to be estimated is a population proportion. By straightforward 
extensions of these methods, sample sizes required for more complicated situations 
can be determined. 

Objectives The objectives in interval estimation are to obtain narrow inter-
vals with high reliability. If we look at the components of a confidence interval, we 
see that the width of the interval is determined by the magnitude of the quantity 

(reliability coefficient) X (standard error) 

since the total width of the interval is twice this amount. We have learned that this 
quantity is usually called the precision of the estimate or the margin of error. For a 
given standard error, increasing reliability means a larger reliability coefficient. But 
a larger reliability coefficient for a fixed standard error makes for a wider interval. 

On the other hand, if we fix the reliability coefficient, the only way to reduce 
the width of the interval is to reduce the standard error. Since the standard error is 
equal to o/ Viz, and since o is a constant, the only way to obtain a small standard 
error is to take a large sample. How large a sample? That depends on the size of o, 
the population standard deviation, the desired degree of reliability, and the desired 
interval width. 

Let us suppose we want an interval that extends d units on either side of the 
estimator. We can write 

d = (reliability coefficient) X (standard error) 	(6.7.1) 
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If sampling is to be with replacement, from an infinite population, or from a 
population that is sufficiently large to warrant our ignoring the finite population 
correction, Equation 6.7.1 becomes 

o- 
d = z— 

n 
(6.7.2) 

which, when solved for n, gives 

Z 
2
0- 

2 

n = 
d 2  

(6.7.3) 

When sampling is without replacement from a small finite population, the finite 
population correction is required and Equation 6.7.1 becomes 

	

Q 	— n 
d = z 

1172 	N — 1 	
(6.7.4) 

which, when solved for n, gives 

NZ 20- 2  
n — 	  

d 2 (N — 1) + Z2a2  
(6.7.5) 

If the finite population correction can be ignored, Equation 6.7.5 reduces to 
Equation 6.7.3. 

Estimating u2  The formulas for sample size require a knowledge of o.2  but, 
as has been pointed out, the population variance is, as a rule, unknown. As a result, 
o.2  has to be estimated. The most frequently used sources of estimates for u2  are 
the following: 

1. A pilot or preliminary sample may be drawn from the population and the 
variance computed from this sample may be used as an estimate of o.2. 
Observations used in the pilot sample may be counted as part of the final 
sample, so that n (the computed sample size) — n1  (the pilot sample size) = n 2  
(the number of observations needed to satisfy the total sample size require-
ment). 

2. Estimates of a-2  may be available from previous or similar studies. 

3. If it is thought that the population from which the sample is to be drawn is 
approximately normally distributed, one may use the fact that the range is 
approximately equal to 6 standard deviations and compute u 7-- R/6. This 
method requires some knowledge of the smallest and largest value of the 
variable in the population. 
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Example 
6.7.1 

A health department nutritionist, wishing to conduct a survey among a population 
of teenage girls to determine their average daily protein intake (measured in 
grams), is seeking the advice of a biostatistician relative to the size sample that 
should be taken. 

What procedure does the biostatistician follow in providing assistance to the 
nutritionist? Before the statistician can be of help to the nutritionist, the latter 
must provide three items of information: the desired width of the confidence 
interval, the level of confidence desired, and the magnitude of the population 
variance. 

Solution: Let us assume that the nutritionist would like an interval about 10 
grams wide; that is, the estimate should be within about 5 grams of the population 
mean in either direction. In other words, a margin of error of 5 grams is desired. 
Let us also assume that a confidence coefficient of .95 is decided on and that, from 
past experience, the nutritionist feels that the population standard deviation is 
probably about 20 grams. The statistician now has the necessary information to 
compute the sample size: z = 1.96, u = 20, and d = 5. Let us assume that the 
population of interest is large so that the statistician may ignore the finite 
population correction and use Equation 6.7.3. On making proper substitutions, the 
value of n is found to be 

(1.96)2(20)2  
n = (5)2 

= 61.47 

The nutritionist is advised to take a sample of size 62. When calculating a 
sample size by Equation 6.7.3 or Equation 6.7.5, we round up to the next largest 
whole number if the calculations yield a number that is not itself an integer. 

EXERCISES 

6.7.1 A hospital administrator wishes to estimate the mean weight of babies born in her 
hospital. How large a sample of birth records should be taken if she wants a 99 
percent confidence interval that is 1 pound wide? Assume that a reasonable estimate 
of u is 1 pound. What size sample is required if the confidence coefficient is lowered 
to .95? 

6.7.2 The director of the rabies control section in a city health department wishes to draw 
a sample from the department's records of dog bites reported during the past year in 
order to estimate the mean age of persons bitten. He wants a 95 percent confidence 
interval, he will be satisfied to let d = 2.5, and from previous studies he estimates the 
population standard deviation to be about 15 years. How large a sample should be 
drawn? 
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6.7.3 A physician would like to know the mean fasting blood glucose value (milligrams per 
100 ml) of patients seen in a diabetes clinic over the past 10 years. Determine the 
number of records the physician should examine in order to obtain a 90 percent 
confidence interval for Ix if the desired width of the interval is 6 units and a pilot 
sample yields a variance of 60. 

6.7.4 For multiple sclerosis patients we wish to estimate the mean age at which the disease 
was first diagnosed. We want a 95 percent confidence interval that is 10 years wide. If 
the population variance is 90, how large should our sample be? 

6.8 
Determination of Sample Size 
for Estimating Proportions 

The method of sample size determination when a population proportion is to be 
estimated is essentially the same as that described for estimating a population 
mean. We make use of the fact that one-half the desired interval, d, may be set 
equal to the product of the reliability coefficient and the standard error. 

Assuming random sampling and conditions warranting approximate normality 
of the distribution of ji leads to the following formula for n when sampling is with 
replacement, when sampling is from an infinite population, or when the sampled 
population is large enough to make the use of the finite population correction 
unnecessary: 

z2pq  
n = 

d 2  
(6.8.1) 

where q = 1 - p. 
If the finite population correction cannot be disregarded, the proper formula 

for n is 

Nz2pq 
n — 

	

	  
d 2(N — 1) + z2pq 

(6.8.2) 

When N is large in comparison to n (that is, n/N < .05) the finite population 
correction may be ignored, and Equation 6.8.2 reduces to Equation 6.8.1. 

Estimating p As we see, both formulas require a knowledge of p, the 
proportion in the population possessing the characteristic of interest. Since this is 
the parameter we are trying to estimate, it, obviously, will be unknown. One 
solution to this problem is to take a pilot sample and compute an estimate to be 
used in place of p in the formula for n. Sometimes an investigator will have some 
notion of an upper bound for p that can be used in the formula. For example, if it 
is desired to estimate the proportion of some population who have a certain 
condition, we may feel that the true proportion cannot be greater than, say, .30. 
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We then substitute .30 for p in the formula for n. If it is impossible to come up 
with a better estimate, one may set p equal to .5 and solve for n. Since p = .5 in 
the formula yields the maximum value of n, this procedure will give a large enough 
sample for the desired reliability and interval width. It may, however, be larger 
than needed and result in a more expensive sample than if a better estimate of p 
had been available. This procedure should be used only if one is unable to come up 
with a better estimate of p. 

Example 
6.8.1 

A survey is being planned to determine what proportion of families in a certain 
area are medically indigent. It is believed that the proportion cannot be greater 
than .35. A 95 percent confidence interval is desired with d = .05. What size 
sample of families should be selected? 

Solution: If the finite population correction can be ignored, we have 

(1.96)2(.35)( .65) 
	  = 349.6 

(.05)2  

The necessary sample size, then, is 350. 

EXERCISES 

6.8.1 An epidemiologist wishes to know what proportion of adults living in a large 
metropolitan area have subtype ay hepatitis B virus. Determine the size sample that 
would be required to estimate the true proportion to within .03 with 95 percent 
confidence. In a similar metropolitan area the proportion of adults with the charac-
teristic is reported to be .20. If data from another metropolitan area were not 
available and a pilot sample could not be drawn, what size sample would be required? 

6.8.2 A survey is planned to determine what proportion of the high school students in a 
metropolitan school system have regularly smoked marijuana. If no estimate of p is 
available from previous studies, a pilot sample cannot be drawn, a confidence 
coefficient of .95 is desired, and d = .04 is to be used, determine the appropriate 
sample size. What size sample would be required if 99 percent confidence were 
desired? 

6.8.3 A hospital administrator wishes to know what proportion of discharged patients are 
unhappy with the care received during hospitalization. How large a sample should be 
drawn if we let d = .05, the confidence coefficient is .95, and no other information is 
available? How large should the sample be if p is approximated by .25? 

6.8.4 A health planning agency wishes to know, for a certain geographic region, what 
proportion of patients admitted to hospitals for the treatment of trauma are 
discharged dead. A 95 percent confidence interval is desired, the width of the interval 
must be .06, and the population proportion, from other evidence, is estimated to be 
.20. How large a sample is needed? 
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6.9 
Confidence Interval for the Variance 
of a Normally Distributed Population 

Point Estimation of the Population Variance In previous sections it has 
been suggested that when a population variance is unknown, the sample variance 
may be used as an estimator. You may have wondered about the quality of this 
estimator. We have discussed only one criterion of goodness—unbiasedness—so let 
us see if the sample variance is an unbiased estimator of the population variance. 
To be unbiased, the average value of the sample variance over all possible samples 
must be equal to the population variance. That is, the expression E(s 2) = o.2  must 
hold. To see if this condition holds for a particular situation, let us refer to the 
example of constructing a sampling distribution given in Section 5.3. In Table 5.3.1 
we have all possible samples of size 2 from the population consisting of the values 
6, 8, 10, 12, and 14. It will be recalled that two measures of dispersion for this 
population were computed as follows: 

E(x, ih)2 	 E(xi - A)2  
= 8 	and 	S2  = 	 = 10 

N N— 1 

If we compute the sample variance s2  = E(x, — -i)2/(n — 1) for each of the 
possible samples shown in Table 5.3.1, we obtain the sample variances shown in 
Table 6.9.1. 

Sampling with Replacement If sampling is with replacement, the expected 
value of 52  is obtained by taking the mean of all sample variances in Table 6.9.1. 
When we do this, we have 

E(s 2 ) 
Esz2 	0 + 2 + • • • +2+0 	200 
	 = —  

N" 	 25 	 25 — 8 

and we see, for example, that when sampling is with replacement E(s 2) = 
where 52  = (x — 702 	— 1) and Q2  = E(X, - /..)2/N. 

TABLE 6.9.1 Variances Computed From Samples Shown in Table 5.3.1 

Second Draw 

6 	8 	10 	12 	14 

First draw 

	

6 	0 	2 	8 	18 	32 

	

8 	2 	0 	2 	8 	18 

	

10 	8 	2 	0 	2 	8 

	

12 	18 	8 	2 	0 	2 

	

14 	32 	18 	8 	2 	0 
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Sampling Without Replacement If we consider the case where sampling is 
without replacement, the expected value of s2  is obtained by taking the mean of all 
variances above (or below) the principal diagonal. That is, 

	

Es 	2 + 8 + • • • + 2 	100 
E(s 2) = 	 = 	 = — = 10 

	

NC 	 10 	10 n 

which, we see, is not equal to a-2, but is equal to S2  = ax, - /42/(N - 1). 

These results are examples of general principles, as it can be shown that, in 
general, 

E(s2) = (72  when sampling is with replacement 

E(s 2) = S 2  when sampling is without replacement 

When N is large, N — 1 and N will be approximately equal and, consequently, 
a-2  and S2  will be approximately equal. 

These results justify our use of s2  = E(x, — .X)2  /(n — 1) when computing the 
sample variance. In passing, let us note that although 52  is an unbiased estimator 
of a-2, s is not an unbiased estimator of Q. The bias, however, diminishes rapidly as 
n increases. Those interested in pursuing this point further are referred to the 
articles by Cureton (18), and Gurland and Tripathi (19). 

Interval Estimation of a Population Variance With a point estimate 
available to us, it is logical to inquire about the construction of a confidence 
interval for a population variance. Whether we are successful in constructing a 
confidence interval for 472  will depend on our ability to find an appropriate 
sampling distribution. 

The Chi-Square Distribution Confidence intervals for a 2  are usually based 
on the sampling distribution of (n — 0s2/cr 2. If samples of size n are drawn from 
a normally distributed population, this quantity has a distribution known as the 
chi-square distribution with n — 1 degrees of freedom. As we will say more about this 
distribution in a later chapter, we only say here that it is the distribution that the 
quantity (n — 1)s2 /472  follows and that it is useful in finding confidence intervals 
for a-2  when the assumption that the population is normally distributed holds true. 

In Figure 6.9.1 are shown some chi-square distributions for several values of 
degrees of freedom. Percentiles of the chi-square distribution, designated by the 
Greek letter X 2, are given in Table F. The column headings give the values of X2  to 
the left of which lies a proportion of the total area under the curve equal to the 
subscript of x2. The row labels are the degrees of freedom. 

To obtain a 100(1 — a) percent confidence interval for 472, we first obtain the 
100(1 — a) percent confidence interval for (n — 1)s2/o-2. To do this, we select the 
values of X 2  from Table F in such a way that a/2 is to the left of the smaller value 
and a/2 is to the right of the larger value. In other words, the two values of X 2  are 
selected in such a way that a is divided equally between the two tails of the 



< < (n — 1)s2 0.2  
A I —(a  /2)  

(n — 1)s2  

2 
A
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x2  

Figure 6.9.1 Chi-square distributions for several values of degrees of freedom k. 
(Source: Paul G. Hoel and Raymond J. Jessen, Basic Statistics for Business and 
Economics, Wiley, 1971. Used by permission.) 

distribution. We may designate these two values of )(2  as xa2 /2  and x;_(,,/2), 
respectively. The 100(1 — a) percent confidence interval for (n — 1)s 2/v2, then, is 
given by 

2 
(n — 1)S2 	

2 „ 	 „ 
A a /2 "" 	

o.2 
	A- (a / 2) 

We now manipulate this expression in such a way that we obtain an expression 
with o.2  alone as the middle term. First, let us divide each term by (n — 1)s2  to get 

If we take the reciprocal of this expression we have 

(n — 1)s2 	2 	(n — 1)s2  

2 	 > > 	2 „ 	
A 
„ 

/ta/2 	-(a/2) 

Note that the direction of the inequalities changed when we took the reciprocals. If 
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we reverse the order of the terms we have 

(n — 1) s 2 	(n — 1)s 2  	 < 0.2 < 	 
„2 

A I -(a/2) 	 A a/2 
(6.9.1) 

which is the 100(1 — a) percent confidence interval for o.2. If we take the square 
root of each term in Expression 6.9.1, we have the following 100(1 — a) percent 
confidence interval for a, the population standard deviation: 

i (n —  1)s2  
„2 
A -(a /2) 

< < 
(n — 1)s 2  

2 
A a/2 

(6.9.2) 

Example 
6.9.1 

In a study of the effect of diet on low-density lipoprotein cholesterol, Rassias et al. 
(A-21) used as subjects 12 mildly hypercholesterolemic men and women. The 
plasma cholesterol levels (mmo1/1) of the subjects were as follows: 6.0, 6.4, 7.0, 5.8, 
6.0, 5.8, 5.9, 6.7, 6.1, 6.5, 6.3, 5.8. Let us assume that these 12 subjects behave as a 
simple random sample of subjects from a normally distributed population of 
similar subjects. We wish to estimate, from the data of this sample, the variance of 
the plasma cholesterol levels in the population with a 95 percent confidence 
interval. 

Solution: The sample yielded a value of s2  = .391868. The degrees of freedom 
are n — I = 11. The appropriate values of x2  from Table F are 21.920 (a/2) =  
and ,ya2 /2  = 3.1816. Our 95 percent confidence interval for o.2  is 

11( .391868) 	11( .391868) 
	  < < 	  

21.920 	 3.1816 

.196649087 < o.2  < 1.35483656 

The 95 percent confidence interval for a is 

.4434 < o-  < 1.1640 

We say we are 95 percent confident that the parameters being estimated are 
within the specified limits, because we know that in the long run, in repeated 
sampling, 95 percent of intervals constructed as illustrated would include the 
respective parameters. 

Some Precautions Although this method of constructing confidence inter-
vals for a 2  is widely used, it is not without its drawbacks. First, the assumption of 
the normality of the population from which the sample is drawn is crucial, and 
results may be misleading if the assumption is ignored. 
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Another difficulty with these intervals results from the fact that the estimator 
is not in the center of the confidence interval, as is the case with the confidence 
interval for A. This is because the chi-square distribution, unlike the normal, is not 
symmetric. The practical implication of this is that the method for the construction 
of confidence intervals for cr 2, which has just been described, does not yield the 
shortest possible confidence intervals. Tate and Klett (20) give tables that may be 
used to overcome this difficulty. 

EXERCISES 

6.9.1 The objectives of a study by Kennedy and Bhambhani (A-22) were to use physiological 
measurements to determine the test—retest reliability of the Baltimore Therapeutic 
Equipment Work Simulator during three simulated tasks performed at light, medium, 
and heavy work intensities, and to examine the criterion validity of these tasks by 
comparing them to real tasks performed in a controlled laboratory setting. Subjects 
were 30 healthy men between the ages of 18 and 35. The investigators reported a 
standard deviation of .57 for the variable peak oxygen consumption (1/min) during 
one of the procedures. Describe the population about which data from this sample 
may be used to make inferences. Construct a 95 percent confidence interval for the 
population variance for the oxygen consumption variable. 

6.9.2 Kubic et al. (A-23) evaluated the hematologic parameters of 11 patients with 
documented Bordetella pertussis infection. The subjects consisted of 11 infected chil-
dren aged one month to 4.5 years. The white blood cell (WBC) counts (X 109/0 for 
the subjects were 20.2, 15.4, 8.4, 29.8, 40.9, 19.7, 49.5, 12.1, 32.0, 72.9, 13.5. (Source: 
Virginia L. Kubic, Paul T. Kubic, and Richard D. Brunning, "The Morphologic and 
Immunophenotypic Assessment of the Lymphocytosis Accompanying Bordetella pertus-
sis Infection," American Journal of Clinical Pathology, 95 (1991), 809-815.) Describe the 
population about which these data might be used to make inferences. Construct a 90 
percent confidence interval for the variance of the WBC counts for this population. 

6.9.3 Forced vital capacity determinations were made on 20 healthy adult males. The 
sample variance was 1,000,000. Construct 90 percent confidence intervals for o.2 
and Q. 

6.9.4 In a study of myocardial transit times, appearance transit times were obtained on a 
sample of 30 patients with coronary artery disease. The sample variance was found to 
be 1.03. Construct 99 percent confidence intervals for u2  and u. 

6.9.5 A sample of 25 physically and mentally healthy males participated in a sleep 
experiment in which the percentage of each participant's total sleeping time spent in 
a certain stage of sleep was recorded. The variance computed from the sample data 
was 2.25. Construct 95 percent confidence intervals for r 2  and o. 

6.9.6 Hemoglobin determinations were made on 16 animals exposed to a harmful chemi-
cal. The following observations were recorded: 15.6, 14.8, 14.4, 16.6, 13.8, 14.0, 17.3, 
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17.4, 18.6, 16.2, 14.7, 15.7, 16.4, 13.9, 14.8, 17.5. Construct 95 percent confidence 
intervals for u2  and u. 

6.9.7 Twenty air samples taken at the same site over a period of 6 months showed the 
following amounts of suspended particulate matter (micrograms per cubic meter of 
air). 

68 22 36 32 

42 24 28 38 

30 44 28 27 

28 43 45 50 

79 74 57 21 

Consider these measurements to be a random sample from a population of normally 
distributed measurements, and construct a 95 percent confidence interval for the 
population variance. 

6.10 
Confidence Interval for the Ratio 
of the Variances of Two Normally 
Distributed Populations 

It is frequently of interest to compare two variances, and one way to do this is to 
form their ratio, ai2/ol. If two variances are equal, their ratio will be equal to 1. 
We usually will not know the variances of populations of interest, and, conse-
quently, any comparisons we make will have to be based on sample variances. In 
other words, we may wish to estimate the ratio of two population variances. Again, 
since this is a form of inference, we must rely on some sampling distribution, and 
this time the distribution of (s2,/a12)/(4/4) is utilized provided certain assump-
tions are met. The assumptions are that si2  and 4 are computed from independent 
samples of size n 1  and n 2, respectively, drawn from two normally distributed 
populations. We use si2  to designate the larger of the two sample variances. 

The F Distribution If the assumptions are met (s2,/a;)/(4/01) follows a 
distribution known as the F distribution. We defer a more complete discussion of 
this distribution until a later chapter, but note that this distribution depends on 
two-degrees-of-freedom values, one corresponding to the value of n i  — 1 used in 
computing 4 and the other corresponding to the value of n 2  — 1 used in comput-
ing 4 These are usually referred to as the numerator degrees of freedom and the 
denominator degrees offreedom. Figure 6.10.1 shows some F distributions for several 
numerator and denominator degrees-of-freedom combinations. Table G contains, 
for specified combinations of degrees of freedom and values of a, F values to the 
right of which lies a/2 of the area under the curve of F. 
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Figure 6.10.1 The F distribution for various degrees of 
freedom. (From Documenta Geigy, Scientific Tables, 
Seventh Edition, 1970. Courtesy of Ciba-Geigy Limited, 
Basel, Switzerland.) 

A Confidence Interval for ol/cr? To find the 100(1 — a) percent confi- 
dence interval for cr/oq, we begin with the expression 

s; /a-12  
Fa/2 < 	

/ 

	

S2 	
< F I -(a /2) 

0-2  

	

2 	2 

where Fa/2  and Fi _ (a /2)  are the values from the F table to the left and right of 
which, respectively, lies a/2 of the area under the curve. The middle term of this 
expression may be rewritten so that the entire expression is 

2S 2 '2 

Fa/2 < 7  —2 < F I -(a /2) 
S2  Cr'  

If we divide through by 4/4, we have 

Fa/2 	
„r2 
'-' 2 	Fl -(a/2) 

/..2 S 2i  / 3 2 	0-12 	 2 

Taking the reciprocals of the three terms gives 

S i
2 
 /S22  
 u

2 / Si
2 
 /S22  

Fa/2 
2 r 
2 	̀ -(a/2) 

and if we reverse the order we have the following 100(1 — a) percent confidence 
interval for (3-2/cq: 

4/4  o 4/4 

	

2 		 
Fl -(a/2) 	0-2 	Fa/2 

	

2 	a/2 

(6.10.1) 
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Example 
6.10.1 

Goldberg et al. (A-24) conducted a study to determine if an acute dose of 
dextroamphetamine might have positive effects on affect and cognition in 
schizophrenic patients maintained on a regimen of haloperidol. Among the vari-
ables measured was the change in patients' tension—anxiety states. For n 2  = 4 
patients who responded to amphetamine, the standard deviation for this measure-
ment was 3.4. For n 1  = 11 patients who did not respond, the standard deviation 
was 5.8. Let us assume that these patients constitute independent simple random 
samples from populations of similar patients. Let us also assume that change 
scores in tension—anxiety state is a normally distributed variable in both popula-
tions. We wish to construct a 95 percent confidence interval for the ratio of the 
variances of these two populations. 

Solution: We have the following information: 

n 1 =11 	n 2 = 4 

4 = (5.8)2  = 33.64 	4 = (3.4)2  = 11.56 

df1  = numerator degrees of freedom = 10 

df2  = denominator degrees of freedom = 3 

a = .05 

	

FM25 = .20704 	F 975  = 14.42 

We are now ready to obtain our 95 percent confidence interval for o-12/4 by 
substituting appropriate values into Expression 6.10.1: 

	

33 .64/11 .56 	o 	33 .64/11 .56 

14.42 
	  < 2 < 	  

	

2 	.20704 

2 
.2018 <

0- 
 < 14.0554 
2 

We give this interval the appropriate probabilistic and practical interpretations. 

Finding Fl_( /2)  and F 12  At this point we must make a cumbersome, but 
unavoidable, digression and explain how the values F.975  = 14.42 and F.025  = .20704 
were obtained. The value of F.975  at the intersection of the column headed 
df1  = 10 and the row labeled df2  = 3 is 14.42. If we had a more extensive table of 
the F distribution, finding F 025  would be no trouble; we would simply find F 025  as 
we found F 975. We would take the value at the intersection of the column headed 
10 and the row headed 3. To include every possible percentile of F would make for 
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a very lengthy table. Fortunately, however, there exists a relationship that enables 
us to compute the lower percentile values from our limited table. The relationship 
is as follows: 

1 
F1 – a , dfi  , df2 	

Fa, df2, dfi 
	 (6.10.2) 

We proceed as follows. 
Interchange the numerator and denominator degrees of freedom and locate 

the appropriate value of F. For the problem at hand we locate 4.83, which is at the 
intersection of the column headed 3 and the row labeled 10. We now take the 
reciprocal of this value, 1/4.83 = .20704. In summary, the lower confidence limit 
(LCL) and upper confidence limit (UCL) for cr;/(4 are as follows: 

S
2 

UCL = 12 	  
S2 /FL –(a/2), di!, df2 

(6.10.4) 

Alternative procedures for making inferences about the equality of two vari-
ances when the sampled populations are not normally distributed may be found in 
the book by Daniel (21). 

EXERCISES 

6.10.1 The objective of a study by Hahn et al. (A-25) was to determine whether breath-
alcohol testing was a reliable method to monitor irrigant absorption during prosta-
tectomy in patients suffering from chronic obstructive pulmonary disease (COPD). 
Subjects were n1  = 7 patients suffering from severe COPD and n 2  = 7 control 
patients with essentially normal pulmonary function. One of the variables measured 
was weight (kg). The weights of the control subjects were 74, 82, 94, 90, 98, 97, and 
84. The weights of the COPD subjects were 81, 58, 93, 58, 51, 96, and 67. Let us 
assume that these samples constitute independent simple random samples from two 
populations of similar patients—those with severe COPD and those with essentially 
normal pulmonary function. Assume also that the weights of the subjects in these 
populations are normally distributed. Construct a 95 percent confidence interval for 
the ratio of the two population variances. 

6.10.2 The objective of a study by Southwick et al. (A-26) was to better characterize the 
affective component of posttraumatic stress disorder (PTSD). The subjects were 
male psychiatric inpatients at a Veterans Administration medical center. Twenty-
eight of the subjects met the criteria for PTSD and were veterans of the Vietnam 
conflict. The remaining 17 suffered from major depressive disorder. The 21-item 
Hamilton Rating Scale for Depression was used to assess state measures of symp-
tom severity in the 45 subjects. The standard deviation of the total scores for the 
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PTSD patients was 9.90, and for the patients with major depressive disorder the 
standard deviation was 6.30. State the necessary assumptions about the samples and 
the populations about which the sample data may be used to make inferences. 
Construct a 99 percent confidence interval for the ratio of the two population 
variances for the Hamilton Rating Scale for Depression scores. 

6.10.3 Stroke index values were statistically analyzed for two samples of patients suffering 
from myocardial infarction. The sample variances were 12 and 10. There were 21 
patients in each sample. Construct the 95 percent confidence interval for the ratio 
of the two population variances. 

6.10.4 Thirty-two adult aphasics seeking speech therapy were divided equally into two 
groups. Group 1 received treatment 1, and group 2 received treatment 2. Statistical 
analysis of the treatment effectiveness scores yielded the following variances: 3,2  = 8, 

= 15. Construct the 90 percent confidence interval for oVo-,2. 

6.10.5 Sample variances were computed for the tidal volumes (milliliters) of two groups of 
patients suffering from atrial septal defect. The results and sample sizes were as 
follows: 

n 1  = 31, s, = 35,000 

n 2  = 41, s2 = 20,000 

Construct the 95 percent confidence interval for the ratio of the two population 
variances. 

6.10.6 Glucose responses to oral glucose were recorded for 11 patients with Huntington's 
disease (group 1) and 13 control subjects (group 2). Statistical analysis of the results 
yielded the following sample variances: 	= 105, s2 = 148. Construct the 95 per- 
cent confidence interval for the ratio of the two population variances. 

6.10.7 Measurements of gastric secretion of hydrochloric acid (milliequivalents per hour) in 
16 normal subjects and 10 subjects with duodenal ulcer yielded the following results: 

Normal subjects: 6.3, 2.0, 2.3, 0.5, 1.9, 3.2, 4.1, 4.0, 6.2, 6.1, 

Ulcer subjects: 
3.5, 1.3, 1.7, 4.5, 

13.7, 20.6, 15.9, 
6.3, 

28.4, 
6.2 

29.4, 18.4, 21.1, 3.0, 
26.2, 13.0 

Construct a 95 percent confidence interval for the ratio of the two population 
variances. What assumptions must be met for this procedure to be valid? 

6.1 1 
Summary 

This chapter is concerned with one of the major areas of statistical 
inference—estimation. Both point and interval estimation are covered. The con-
cepts and methods involved in the construction of confidence intervals are illus-
trated for the following parameters: means, the difference between two means, 
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proportions, the difference between two proportions, variances, and the ratio of two 
variances. In addition, we learned in this chapter how to determine the sample size 
needed to estimate a population mean and a population proportion at specified 
levels of precision. 

We learned, also, in this chapter that interval estimates of population parame-
ters are more desirable than point estimates because statements of confidence can 
be attached to interval estimates. 

REVIEW QUESTIONS AND EXERCISES 
4 IN 

1. What is statistical inference? 

2. Why is estimation an important type of inference? 

3. What is a point estimate? 

4. Explain the meaning of unbiasedness. 

5. Define the following: 

a. Reliability coefficient 	b. Confidence coefficient 
c. Precision 	 d. Standard error 
e. Estimator 	 f. Margin of error 

6. Give the general formula for a confidence interval. 

7. State the probabilistic and practical interpretations of a confidence interval. 

8. Of what use is the central limit theorem in estimation? 

9. Describe the t distribution. 

10. What are the assumptions underlying the use of the t distribution in estimating a single 
population mean? 

11. What is the finite population correction? When can it be ignored? 

12. What are the assumptions underlying the use of the t distribution in estimating the 
difference between two population means? 

13. Arterial blood gas analyses performed on a sample of 15 physically active adult males 
yielded the following resting Pa02  values: 

75, 80, 80, 74, 84, 78, 89, 72, 83, 76, 75, 87, 78, 79, 88 

Compute the 95 percent confidence interval for the mean of the population. 

14. What proportion of asthma patients are allergic to house dust? In a sample of 140, 35 
percent had positive skin reactions. Construct the 95 percent confidence interval for the 
population proportion. 
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15. An industrial hygiene survey was conducted in a large metropolitan area. Of 70 
manufacturing plants of a certain type visited, 21 received a "poor" rating with respect 
to absence of safety hazards. Construct a 95 percent confidence interval for the 
population proportion deserving a "poor" rating. 

16. Refer to the previous problem. How large a sample would be required to estimate the 
population proportion to within .05 with 95 percent confidence (.3Q is the best available 
estimate of p): 

a. If the finite population correction can be ignored? 
b. If the finite population correction is not ignored and N = 1500? 

17. In a dental survey conducted by a county dental health team, 500 adults were asked to 
give the reason for their last visit to a dentist. Of the 220 who had less than a high 
school education, 44 said they went for preventive reasons. Of the remaining 280, who 
had a high school education or better, 150 stated that they went for preventive reasons. 
Construct a 95 percent confidence interval for the difference between the two popula-
tion proportions. 

18. A breast cancer research team collected the following data on tumor size: 

Type of 
Tumor 

A 	 21 	3.85 cm 	1.95 cm 
B 	 16 	2.80 cm 	1.70 cm 

Construct a 95 percent confidence interval for the difference between population means. 

19. A certain drug was found to be effective in the treatment of pulmonary disease in 180 of 
200 cases treated. Construct the 90 percent confidence interval for the population 
proportion. 

20. Seventy patients with stasis ulcers of the leg were randomly divided into two equal 
groups. Each group received a different treatment for edema. At the end of the 
experiment, treatment effectiveness was measured in terms of reduction in leg volume 
as determined by water displacement. The means and standard deviations for the two 
groups were as follows: 

Group (Treatment) 

A 	 95 cc 	25 
B 	 125 cc 	30 

Construct a 95 percent confidence interval for the difference in population means. 

21. What is the average serum bilirubin level of patients admitted to a hospital for 
treatment of hepatitis? A sample of 10 patients yielded the following results: 

20.5, 14.8, 21.3, 12.7, 15.2, 26.6, 23.4, 22.9, 15.7, 19.2 

Construct a 95 percent confidence interval for the population mean. 
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22. Determinations of saliva pH levels were made in two independent random samples of 
seventh grade schoolchildren. Sample A children were caries-free while sample B 
children had a high incidence of caries. The results were as follows: 

A:  7.14, 7.11, 7.61, 7.98, 7.21, 7.16, 7.89 

7.24, 7.86, 7.47, 7.82, 7.37, 7.66, 7.62, 7.65 

B:  7.36, 7.04, 7.19, 7.41, 7.10, 7.15, 7.36, 

7.57, 7.64, 7.00, 7.25, 7.19 

Construct a 90 percent confidence interval for the difference between the population 
means. Assume that the population variances are equal. 

23. Drug A was prescribed for a random sample of 12 patients complaining of insomnia. An 
independent random sample of 16 patients with the same complaint received drug B. 
The numbers of hours of sleep experienced during the second night after treatment 
began were as follows: 

A:  3.5, 5.7, 3.4, 6.9, 17.8, 3.8, 3.0, 6.4, 6.8, 3.6, 6.9, 5.7 

B:  4.5, 11.7, 10.8, 4.5, 6.3, 3.8, 6.2, 6.6, 7.1, 6.4, 4.5, 

5.1, 3.2, 4.7, 4.5, 3.0 

Construct a 95 percent confidence interval for the difference between the population 
means. Assume that the population variances are equal. 

24. Milliez et al. (A-27) conducted a study involving high-risk pregnancies. A sample of 23 
nulliparous women delivered babies whose mean weight was 2958 grams with a standard 
deviation of 620. The mean and standard deviation of the weights of babies born to a 
sample of 26 multiparous women were 3085 and 704, respectively. State the necessary 
assumptions about the samples and the populations about which the sample data may 
be used to make inferences and construct a 95 percent confidence interval for the 
difference between the mean birth weights for the two populations. 

25. The objective of a study by Martin et al. (A-28) was to compare the function of 
neutrophils in the pulmonary artery blood and lung lavage fluid of patients early in the 
course of adult respiratory distress syndrome. Of concern were three antibacterial 
functions: the release of reactive oxygen species, microbiocidal activity for a target 
organism, Staphylococcus aureus, and chemotaxis. For 18 of the subjects in the study the 
mean bronchoalveolar lavage fluid pH was 7.39 with a standard deviation of .39. 
Construct a 90 percent confidence interval for the population mean pH. State the 
assumptions necessary to make your procedure valid. 

26. Harrison et al. (A-29) conducted a study of dependent elderly people in a London 
borough. Along with other characteristics, they collected data on the extent of depres-
sion among borough residents. In a sample of 158 subjects who had a previous diagnosis 
of depression, 48 were rated during the survey as having depression. In a sample of 745 
subjects with no previous diagnosis of depression, 311 were rated by the survey as having 
depression. Construct a 99 percent confidence interval for the difference between 
population proportions. State the assumptions that make your procedure valid. 

27. The purpose of a study by Thurnau et al. (A-30) was to evaluate the accuracy of the 
fetal—pelvic index disproportion and delivery outcome in gravid women attempting 
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vaginal birth after previous cesarean delivery. Among the data reported were the 
following on birth weight (grams): 

Delivery Outcome n Mean Standard Deviation 

Cesarean delivery 18 3486 393 
Vaginal delivery 47 3325 514 

Construct a 95 percent confidence interval for the difference in population means. State 
the assumptions that make your procedure valid. 

28. In a study of the role of dietary fats in the etiology of ischemic heart disease the subjects 
were 60 males between 40 and 60 years of age who had recently had a myocardial 
infarction and 50 apparently healthy males from the same age group and social class. 
One variable of interest in the study was the proportion of linoleic acid (L.A.) in the 
subjects' plasma triglyceride fatty acids. The data on this variable were as follows: 

Subjects with Myocardial Infarction 

Subject L.A. Subject L.A. Subject L.A. Subject L.A. 

1 18.0 2 17.6 3 9.6 4 5.5 
5 16.8 6 12.9 7 14.0 8 8.0 
9 8.9 10 15.0 11 9.3 12 5.8 
13 8.3 14 4.8 15 6.9 16 18.3 
17 24.0 18 16.8 19 12.1 20 12.9 
21 16.9 22 15.1 23 6.1 24 16.6 
25 8.7 26 15.6 27 12.3 28 14.9 
29 16.9 30 5.7 31 14.3 32 14.1 
33 14.1 34 15.1 35 10.6 36 13.6 
37 16.4 38 10.7 39 18.1 40 14.3 
41 6.9 42 6.5 43 17.7 44 13.4 
45 15.6 46 10.9 47 13.0 48 10.6 
49 7.9 50 2.8 51 15.2 52 22.3 
53 9.7 54 15.2 55 10.1 56 11.5 
57 15.4 58 17.8 59 12.6 60 7.2 

Healthy Subjects 

Subject L.A. Subject L.A. Subject L.A. Subject L.A. 

1 17.1 2 22.9 3 10.4 4 30.9 
5 32.7 6 9.1 7 20.1 8 19.2 
9 18.9 10 20.3 11 35.6 12 17.2 

13 5.8 14 15.2 15 22.2 16 21.2 
17 19.3 18 25.6 19 42.4 20 5.9 
21 29.6 22 18.2 23 21.7 24 29.7 
25 12.4 26 15.4 27 21.7 28 19.3 
29 16.4 30 23.1 31 19.0 32 12.9 
33 18.5 34 27.6 35 25.0 36 20.0 
37 51.7 38 20.5 39 25.9 40 24.6 
41 22.4 42 27.1 43 11.1 44 32.7 
45 13.2 46 22.1 47 13.5 48 5.3 
49 29.0 50 20.2 
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Construct the 95 percent confidence interval for the difference between population 
means. What do these data suggest about the levels of linoleic acid in the two sampled 
populations? 

29. Osberg et al. (A-31) conducted a study to identify factors that predict whether or not 
similarly impaired children treated at trauma centers are discharged to inpatient 
rehabilitation. Among other findings by the investigators were the following: In a sample 
of 115 subjects discharged from a trauma center to rehabilitation, 98.3 percent had head 
injuries; 68.5 percent of 200 subjects discharged to home had head injuries. Construct a 
95 percent confidence interval for the difference between population proportions. State 
the assumptions that make your procedure valid. 

30. The objectives of a study by Steinhardt et al. (A-32) were (1) to determine if level of 
physical activity and cardiovascular fitness were significantly related to absenteeism and 
medical care claims among law enforcement officers over a one-year period and (2) to 
determine if moderate levels of physical activity and fitness were inversely associated 
with reduced absenteeism and medical care claims. Subjects for the study were law 
enforcement officers in the city of Austin, Texas. Among other findings, the investiga-
tors reported that 65 subjects whose physical activity level was categorized as sedentary 
were absent, on the average, 10.04 days per year with a standard deviation of 9.65. The 
mean and standard deviation for 275 subjects who were physically active three times per 
week were 6.04 and 6.59, respectively. Construct a 95 percent confidence interval for the 
difference in population means. State the assumptions that make your procedure valid. 
What do you conclude from your findings? 

31. In general, narrow confidence intervals are preferred over wide ones. We can make an 
interval narrow by using a small confidence coefficient. For a given set of other 
conditions, what happens to the level of confidence when we use a small confidence 
coefficient? What would happen to the interval width and the level of confidence if we 
were to use a confidence coefficient of zero? 

32. In general, a high level of confidence is preferred over a low level of confidence. For a 
given set of other conditions, suppose we set our level of confidence at 100 percent. 
What would be the effect of such a choice on the width of the interval? 

33. el Fiky et al. (A-33) measured shunt fraction invasively using a pulmonary artery 
catheter in 22 patients undergoing elective coronary artery surgery. From the results, 
the investigators computed a mean of 19.6 and constructed a 90 percent confidence 
interval for the population mean with endpoints of 18.8 and 20.4. Which would be the 
appropriate reliability factor for the interval, z or t? Justify your choice. What is the 
precision of the estimate? The margin of error? 

34. Duncan et al. (A-34) report on a study designed to assess the relation of exclusive 
breastfeeding, independent of recognized risk factors, to acute and recurrent otitis 
media in the first 12 months of life. The subjects were 1220 infants who used a health 
maintenance organization. What was the target population? The sampled population? 

35. The purpose of a study by Kay et al. (A-35) was to determine the safety and efficacy of 
radiofrequency ablation as definitive therapy for primary atrial tachycardias. Subjects 
were 15 consecutive patients with primary atrial arrhythmias that were refractory to 
medical management. The authors conclude that radiofrequency catheter ablation 
appears to be a safe and effective technique for the treatment of primary atrial 
arrhythmias that are refractory to antiarrhythmic medications. What was the target 
population? The sampled population? 
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36. Bellomo et al. (A-36) conducted a study to quantitate insulin losses and glucose 
absorption during acute continuous hemofiltration with dialysis and to assess the clinical 
importance of these changes. Subjects were 16 ICU patients with acute renal failure at a 
university medical center. The authors conclude that significant glucose absorption 
occurs during acute continuous hemofiltration with dialysis and is coupled with minor 
insulin losses through the filter. What was the target population? The sampled popula-
tion? As part of their analysis, the authors constructed confidence intervals for several 
means. Based on the information given here, what is the appropriate numerical value of 
the reliability factor for the intervals? 

Exercises for Use with Large Data Sets Available on Computer Disk from the Publisher 
1. Refer to the serum cholesterol levels for 1000 subjects (CHOLEST, Disk 1). Select a 

simple random sample of size 15 from this population and construct a 95 percent 
confidence interval for the population mean. Compare your results with those of your 
classmates. What assumptions are necessary for your estimation procedure to be valid? 

2. Refer to the serum cholesterol levels for 1000 subjects (CHOLEST, Disk 1). Select a 
simple random sample of size 50 from the population and construct a 95 percent 
confidence interval for the proportion of subjects in the population who have readings 
greater than 225. Compare your results with those of your classmates. 

3. Refer to the weights of 1200 babies born in a community hospital (BABYWGTS, Disk 1). 
Draw a simple random sample of size 20 from this population and construct a 95 percent 
confidence interval for the population mean. Compare your results with those of your 
classmates. What assumptions are necessary for your estimation procedure to be valid? 

4. Refer to the weights of 1200 babies born in a community hospital (BABYWGTS, Disk 1). 
Draw a simple random sample of size 35 from the population and construct a 95 percent 
confidence interval for the population mean. Compare this interval with the one con-
structed in Exercise 3. 

5. Refer to the heights of 1000 twelve-year-old boys (BOYHGTS, Disk 1). Select a simple 
random sample of size 15 from this population and construct a 99 percent confidence 
interval for the population mean. What assumptions are necessary for this procedure to 
be valid? 

6. Refer to the heights of 1000 twelve-year-old boys (BOYHGTS, Disk I). Select a simple 
random sample of size 35 from the population and construct a 99 percent confidence 
interval for the population mean. Compare this interval with the one constructed in 
Exercise 5. 
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7.1 
Introduction 
am 	Nam 

One type of statistical inference, estimation, is discussed in the preceding chapter. 

The other type, hypothesis testing, is the subject of this chapter. As is true with 
estimation, the purpose of hypothesis testing is to aid the clinician, researcher, or administra-

tor in reaching a conclusion concerning a population by examining a sample from that 

population. Estimation and hypothesis testing are not as different as they are made 

to appear by the fact that most textbooks devote a separate chapter to each. As we 

will explain later, one may use confidence intervals to arrive at the same conclu-

sions that are reached by using the hypothesis testing procedures discussed in this 
chapter. 
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Basic Concepts In this section some of the basic concepts essential to an 
understanding of hypothesis testing are presented. The specific details of particular 
tests will be given in succeeding sections. 

DEFINITION 

A hypothesis may be defined simply as a statement about- one or more populations. 

The hypothesis is frequently concerned with the parameters of the populations 
about which the statement is made. A hospital administrator may hypothesize that 
the average length of stay of patients admitted to the hospital is five days; a public 
health nurse may hypothesize that a particular educational program will result in 
improved communication between nurse and patient; a physician may hypothesize 
that a certain drug will be effective in 90 percent of the cases with which it is used. 
By means of hypothesis testing one determines whether or not such statements are 
compatible with available data. 

Types of Hypotheses Researchers are concerned with two types of hypothe-
ses—research hypotheses and statistical hypotheses. 

DEFINITION 

The research hypothesis is the conjecture or supposition that motivates the 
research. 

It may be the result of years of observation on the part of the researcher. A 
public health nurse, for example, may have noted that certain clients responded 
more readily to a particular type of health education program. A physician may 
recall numerous instances in which certain combinations of therapeutic measures 
were more effective than any one of them alone. Research projects often result 
from the desire of such health practitioners to determine whether or not their 
theories or suspicions can be supported when subjected to the rigors of scientific 
investigation. 

Research hypotheses lead directly to statistical hypotheses. 

DEFINITION 

Statistical hypotheses are hypotheses that are stated in such a way that 
they may be evaluated by appropriate statistical techniques. 

In this book the hypotheses that we will focus on are statistical hypotheses. We 
will assume that the research hypotheses for the examples and exercises have 
already been considered. 
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Hypothesis Testing Steps For convenience, hypothesis testing will be pre-
sented as a nine-step procedure. There is nothing magical or sacred about this 
particular format. It merely breaks the process down into a logical sequence of 
actions and decisions. 

1. Data The nature of the data that form the basis of the testing procedures 
must be understood, since this determines the particular test to be employed. 
Whether the data consist of counts or measurements, for example, must be 
determined. 

2. Assumptions As we learned in the chapter on estimation, different assumptions 
lead to modifications of confidence intervals. The same is true in hypothesis 
testing: A general procedure is modified depending on the assumptions. In 
fact, the same assumptions that are of importance in estimation are important 
in hypothesis testing. We have seen that these include, among others, assumes 
tions about the normality of the population distribution, equality of variances, 
and independence of samples. 

3. Hypotheses There are two statistical hypotheses involved in hypothesis testing, 
and these should be explicitly stated. The null hypothesis is the hypothesis to be 
tested. It is designated by the symbol Ho. The null hypothesis is sometimes 
referred to as a hypothesis of no difference, since it is a statement of agreement 
with (or no difference from) conditions presumed to be true in the population 
of interest. In general, the null hypothesis is set up for the express purpose of 
being discredited. Consequently, the complement of the conclusion that the 
researcher is seeking to reach becomes the statement of the null hypothesis. In 
the testing process the null hypothesis either is rejected or is not rejected. If 
the null hypothesis is not rejected, we will say that the data on which the test is 
based do not provide sufficient evidence to cause rejection. If the testing 
procedure leads to rejection, we will say that the data at hand are not 
compatible with the null hypothesis, but are supportive of some other hypothe-
sis. The alternative hypothesis is a statement of what we will believe is true if our 
sample data causes us to reject the null hypothesis. Usually the alternative 
hypothesis and the research hypothesis are the same, and in fact the two terms 
are used interchangeably. We shall designate the alternative hypothesis by the 
symbol HA. 

Rules for Stating Statistical Hypotheses When hypotheses are of the type 
considered in this chapter an indication of equality (either = , < , or 	must 
appear in the null hypothesis. Suppose, for example, that we want to answer the 
question: Can we conclude that a certain population mean is not 50? The null 
hypothesis is 

Ho: = 50 

HA:µ 50 

and the alternative is 
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Suppose we want to know if we can conclude that the population mean is greater 
than 50. Our hypotheses are 

Ho: /..t 50 	HA: > 50 

If we want to know if we can conclude that the population mean is less than 50, the 
hypotheses are 

Ho: 	50 	HA:µ < 50 

In summary, we may state the following rules of thumb for deciding what 
statement goes in the null hypothesis and what statement goes in the alternative 
hypothesis: 

*a. What you hope or expect to be able to conclude as a result of the test 
usually should be placed in the alternative hypothesis. 

*b. The null hypothesis should contain a statement of equality, either = , < , 
or > . 

• c. The null hypothesis is the hypothesis that is tested. 
The null and alternative hypotheses are complementary. That is, the two 

together exhaust all possibilities regarding the value that the hypothesized param-
eter can assume. 

A Precaution It should be pointed out that neither hypothesis testing nor 
statistical inference, in general, leads to theproof of a hypothesis; it merely 
indicates whether the hypothesis is supported 	is not supported by the available 
data. When we fail to reject a null hypothesis, therefore, we do not say that it is 
true, but that it may be true. When we speak of accepting a null hypothesis, we 
have this limitation in mind and do not wish to convey the idea that accepting 
implies proof. 

4. Test Statistic The test statistic is some statistic that may be computed from 
the data of the sample. As a rule, there are many possible values that the test 
statistic may assume, the particular value observed depending on the particu-
lar sample drawn. As we will see, the test statistic serves as a decision maker, 
since the decision to reject or not to reject the null hypothesis depends on the 
magnitude of the test statistic. An example of a test statistic is the quantity 

z= 	 
cr/Vii 

(7.1.1) 

where Ao  is a hypothesized value of a population mean. This test statistic is 
related to the statistic 

(7.1.2) 

with which we are already familiar. 
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General Formula for Test Statistic The following is a general formula for a 
test statistic that will be applicable in many of the hypothesis tests discussed in this 
book: 

elevant statistic — hypothesized parameter 

standard error of the relevant statistic  

In Equation 7.1.1, x is the relevant statistic, go  is the hypothesized parameter, and 

a/ viz is the standard error of 7c, the relevant statistic. 

5. Distribution of the Test Statistic It has been pointed out that the key to statis-
tical inference is the sampling distribution. We are reminded of this again 
when it becomes necessary to specify the probability distribution of the test 
statistic. The distribution of the test statistic 

o 
Z — 

for example, follows the standard normal distribution if the null hypothesis is 
true and the assumptions are met. 

6. Decision Rule All possible values that the test statistic can assume are points 
on the horizontal axis of the graph of the distribution of the test statistic and 
are divided into two groups; one group constitutes what is known as the 
rejection region and the other group makes up the nonrejection region. The values 
of the test statistic forming the rejection region are those values that are less 
likely to occur if the null hypothesis is true, while the values making up the 
acceptance region are more likely to occur if the null hypothesis is true. The 
decision rule tells us to reject the null hypothesis if the value of the test statistic that we 
compute from our sample is one of the values in the rejection region and to not reject the null 
hypothesis if the computed value of the test statistic is one of the values in the nonrejection 
region. 

Significance Level The decision as to which values go into the rejection 
region and which ones go into the nonrejection region is made on the basis of the 
desired level of significance, designated by a. The term level of significance reflects the 
fact that hypothesis tests are sometimes called significance tests, and a computed 
value of the test statistic that falls in the rejection region is said to be significant. 
The level of significance, a, specifies the area under the curve of the distribution of 
the test statistic that is above the values on the horizontal axis constituting the 
rejection region. 

DEFINITION 

The level of significance a is a probability and, in fact, is the probability of 
rejecting a true null hypothesis. 

test statistic = 
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Since to reject a true null hypothesis would constitute an error, it seems only 
reasonable that we should make the probability of rejecting a true null hypothesis 
small and, in fact, that is what is done. We selct a small value of a in order to 
make the probability of rejecting a true null 	small. The more frequently 
encountered values of a are .01, .05, and .10. 

Types of Errors The error committed when a true null hypothesis is rejected 
is called the type I error. The type II error is the error committed when a false null 
hypothesis is not rejected. The probability of committing a type II error is 
designated by /3. 

Whenever we reject a null hypothesis there is always the concomitant risk of 
committing a type I error, rejecting a true null hypothesis. Whenever we fail to 
reject a null hypothesis the risk of failing to reject a false null hypothesis is always 
present. We make a small, but we generally exercise no control over /3, although 
we know that in most practical situations it is larger than a. 

We never know whether we have committed one of these errors when we reject 
or fail to reject a null hypothesis, since the true state of affairs is unknown. If the 
testing procedure leads to rejection of the null hypothesis, we can take comfort 
from the fact that we made a small and, therefore, the probability of committing a 
type I error was small. If we fail to reject the null hypothesis, we do not know the 
concurrent risk of committing a type II error, since /3 is usually unknown but, as 
has been pointed out, we do know that, in most practical Situations, it is larger 
than a. 

Figure 7.1.1 shows for various conditions of a hypothesis test the possible 
actions that an investigator may take and the conditions under which each of the 
two types of error will be made. 

7. Calculation of the Test Statistic From the data contained in the sample we 
compute a value of the test statistic and compare it with the rejection and 
nonrejection regions that have already been specified. 

8. Statistical Decision The statistical decision consists of rejecting or of not 
rejecting the null hypothesis. It is rejected if the computed value of the test 
statistic falls in the rejection region, and it is not rejected if the computed 
value of the test statistic falls in the nonrejection region. 

9. Conclusion If 1/0  is rejected, we conclude that HA  is true. If 1/0  is not rejected, 
we conclude that 1/0  may be true. 

CONDITION OF NULL HYPOTHESIS 

Possible 
Action 

True False 

Fail to 
reject Ho  

Correct action Type II error 

Reject Ho  Type I error Correct action 

Figure 7.1.1 Conditions under which type I and type II errors 
may be committed. 
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We emphasize that when the null hypothesis is not rejected one should not say 
that the null hypothesis is accepted. We should say that the null hypothesis is "not 
rejected." We avoid using the word "accept" in this case because we may have 
committed a type II error. Since, frequently, the probability of committing a type II 
error can be quite high, we do not wish to commit ourselves to accepting the null 
hypothesis. 

Figure 7.1.2 is a flowchart of the steps that we follow when we perform a 
hypothesis test. 

Conclude Ho  
may be true 

Conclude HA 

is true 

Figure 7.1.2 Steps in the hypothesis testing procedure. 
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Purpose of Hypothesis Testing The purpose of ;hypothesis testing is to 
assist administrators and clinicians in making I decisions) The administrative or 
clinical decision usually depends on the statistical decision. If the null hypothesis is 
rejected, the administrative or clinical decision usually reflects this, in that the 
decision is compatible with the alternative hypothesis. The reverse is usually true if 
the null hypothesis is not rejected. The administrative or clinical decision, however, 
may take other forms, such as a decision to gather more data. 

We must emphasize at this point, however, that the outcome of the statistical 
test is only one piece of evidence that influences the administrative or clinical 
decision. The statistical decision should not be interpreted as definitive, but should 
be considered along with all the other relevant information available to the 
experimenter. 

With these general comments as background, we now discuss specific hypothe-
sis tests. 

7.2 
Hypothesis Testing: A Single 
Population Mean 

In this section we consider the testing of a hypothesis about a population mean 
under three different conditions: (1) when sampling is from A normally distributed 
population of values with known variance, (2) when sampling is from a normally 
distributed population with unknown variance, and (3) when sampling is from a 
population that is not normally distributed. Although the theory for conditions 1 
and 2 depends on normally distributed populations, it is common practice to make 
use of the theory when relevant populations are only approximately normally 
distributed. This is satisfactory as long as the departure from normality is not 
drastic. When sampling is from a normally distributed population and the popula-
tion variance is known, the test statistic for testing H0:µ = tro  is 

(7.2.1) 

which, when H0  is true, is distributed as the standard normal. Examples 7.2.1 and 
7.2.2 illustrate hypothesis testing under these conditions. 

Sampling from Normally Distributed Populations: Population Variances 
Known As we did in Chapter 6, we again emphasize that situations in which the 
variable of interest is normally distributed with a known variance are rare. The 
following example, however, will serve to illustrate the procedure. 

Example 
	

Researchers are interested in the mean age of a certain population. Let us say that 
7.2.1 	they are asking the following question: Can we conclude that the mean age of this 

population is different from 30 years? 
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Solution: Based on our knowledge of hypothesis testing, we reply that they can 
conclude that the mean age is different from 30 if they can reject the null 
hypothesis that the mean is equal to 30. Let us use the nine-step hypothesis testing 
procedure given in the previous section to help the researchers reach a conclusion. 

1. Data The data available to the researchers are the ages of a simple random 
sample of 10 individuals drawn from the population of interest. From this 
sample a mean of x = 27 has been computed. 

2. Assumptions It is assumed that the sample comes from a population whose 
ages are approximately normally distributed. Let us also assume that the 
population has a known variance of u2  = 20. 

3. Hypotheses The hypothesis to be tested, or null hypothesis, is that the mean 
age of the population is equal to 30. The alternative hypothesis is that the 
mean age of the population is not equal to 30. Notice that we are identifying 
with the alternative hypothesis the conclusion the researchers wish to reach, so 
that if the data permit rejection of the null hypothesis, the researchers' 
conclusion will carry more weight, since the accompanying probability of 
rejecting a true null hypothesis will be small. We will make sure of this by 
assigning a small value to a, the probability of committing a type I error. We 
may present the relevant hypotheses in compact form as follows: 

Ho: = 30 

HA:µ 30 

4. Test Statistic Since we are testing a hypothesis about a population mean, since 
we assume that the population is normally distributed, and since the popula-
tion variance is known, our test statistic is give by Equation 7.2.1. 

5. Distribution of Test Statistic Based on our knowledge of sampling distributions 
and the normal distribution, we know that the test statistic is normally 
distributed with a mean of 0 and a variance of 1, if Ho  is true. There are many 
possible values of the test statistic that the present situation can generate; one 
for every possible sample of size 10 that can be drawn from the population. 
Since we draw only one sample, we have only one of these possible values on 
which to base a decision. 

6. Decision Rule The decision rule tells us to reject Ho  if the computed value of 
the test statistic falls in the rejection region and to fail to reject H, if it falls in 
the nonrejection region. We must now specify the rejection and nonrejection 
regions. We can begin by asking ourselves what magnitude of values of the test 
statistic will cause rejection of Ho. If the null hypothesis is false, it may be so 
either because the population mean is less than 30 or because the population 
mean is greater than 30. Therefore, either sufficiently small values or suffi-
ciently large values of the test statistic will cause rejection of the null 
hypothesis. These extreme values we want to constitute the rejection region. 
How extreme must a possible value of the test statistic be to qualify for the 
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rejection region? The answer depends on the significance level we choose, that 
is, the size of the probability of committing a type I error. Let us say that we 
want the probability of rejecting a true null hypothesis to be a = .05. Since our 
rejection region is to consist of two parts, sufficiently small values and suffi-
ciently large values of the test statistic, part of a will have to be associated 
with the large values and part with the small values. It seems reasonable that 
we should divide a equally and let a/2 = .025 be associated with small values 
and a/2 = .025 be associated with large values. 

Critical Value of Test Statistic What value of the test statistic is so large that, 
when the null hypothesis is true, the probability of obtaining a value this large or 
larger is .025? In other words, what is the value of z to the right of which lies .025 
of the area under the standard normal distribution? The value of z to the right of 
which lies .025 of the area is the same value that has .975 of the area between it 
and —00. We look in the body of Table D until we find .975 or its closest value and 
read the corresponding marginal entries to obtain our z value. In the present 
example the value of z is 1.96. Similar reasoning will lead us to find — 1.96 as the 
value of the test statistic so small that when the null hypothesis is true, the 
probability of obtaining a value this small or smaller is .025. Our rejection region, 
then, consists of all values of the test statistic equal to or greater than 1.96 or less 
than or equal to — 1.96. The nonrejection region consists of all values in between. 
We may state the decision rule for this test as follows: Reject Ho  if the computed value 
of the test statistic is either 	1.96 or < — 1.96. Otherwise, do not reject Ho. The 
rejection and nonrejection regions are shown in Figure 7.2.1. The values of the test 
statistic that separate the rejection and nonrejection regions are called critical 
values of the test statistic, and the rejection region is sometimes referred to as the 
critical regioh. 

The decision rule tells us to compute a value of the test statistic from the data 
of our sample and to reject H0  if we get a value that is either equal to or greater 
than 1.96 or equal to or less than —1.96 and to fail to reject Ho  if we get any other 
value. The value of a and, hence, the decision rule should be decided on before 

a/2 = .025 	 a/2 = .025 

—1.96 	0 	1.96 

Rejection region 	Nonrejection 	Rejection region 
region 

Figure 7.2.1 Rejection and nonrejection regions for 
Example 7.2.1. 
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gathering the data. This prevents our being accused of allowing the sample results 
to influence our choice of a. This condition of objectivity is highly desirable and 
should be preserved in all tests. 

7. Calculation of Test Statistic From our sample we compute 

27 — 30 	—3 
z =  	= — 2.12 

V20/10 	1.4142 

8. Statistical Decision Abiding by the decision rule, we are able to reject the null 
hypothesis since — 2.12 is in the rejection region. We can say that the com-
puted value of the test statistic is significant at the .05 level. 

*9. Conclusion We conclude that a is not equal to 30 and let our administrative or 
clinical actions be in accordance with this conclusion. 

p Values Instead of saying that an observed value of the test statistic is 
significant or is not significant, most writers in the research literature prefer to 
report the exact probability of getting a value as extreme as or more extreme than 
that observed if the null hypothesis is true. In the present instance these writers 
would give the computed value of the test statistic along with the statement 
p = .0340. The statement p = .0340 means that the probability of getting a value 
as extreme as 2.12 in either direction, when the null hypothesis is true, is .0340. 
The value .0340 is obtained from Table D and is the probability of observing a 

z 	2.12 or a z < —2.12 when the null hypothesis is true. That is, when Ho  is true, 
the probability of obtaining a value of z as large as or larger than 2.12 is .0170, and 
the probability of observing a value of z as small as or smaller than —2.12 is .0170. 
The probability of one or the other of these events occurring, when H0  is true, is 
equal to the sum of the two individual probabilities, and hence, in the present 
example, we say that p = .0170 + .0170 = .0340. The quantity p is referred to as 
the p value for the test. 

DEFINITION 

The p value for a hypothesis test is the probability of obtaining, when H0  
is true, a value of the test statistic as extreme as or more extreme (in the 
appropriate direction) than the one actually computed. 

The p value for a test may be defined also as the smallest value of a for which 
the null hypothesis can be rejected. Since in Example 7.2.1, our p value is .0340, we 
know that we could have chosen an a value as small as .0340 and still have rejected 
the null hypothesis. If we had chosen an a smaller than .0340, we would not have 
been able to reject the null hypothesis. A general rule worth remembering then is 
this: If the p value is less than or equal to a, we reject the null hypothesis. If the p value is 
greater than a, we do not reject the null hypothesis. 
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The reporting of p values as part of the results of an investigation is more 
informative to the reader than such statements as "the null hypothesis is rejected 
at the .05 level of significance" or "the results were not significant at the .05 level." 
Reporting the p value associated with a test lets the reader know just how common 
or how rare is the computed value of the test statistic given that Ho  is true. 
Gibbons and Pratt (1), Bahn (2), and Daniel (3) may be consulted for a more 
extensive treatment of the subject of p values. Also of interest is a paper by 
Morgan and Morgan (4). 

Testing Ho  by Means of a Confidence Interval Earlier we stated that one 
can use confidence intervals to test hypotheses. In Example 7.2.1 we used a 
hypothesis testing procedure to test 1/0: µ = 30 against the alternative, HA: 

* 30. We were able to reject 1/0  because the computed value of the test statistic 
fell in the rejection region. 

Let us see how we might have arrived at this same conclusion by using a 
100(1 — a) percent confidence interval. The 95 percent confidence interval forµ is 

27 ± 1.96/20/10 

27 ± 1.96(1.4142) 

27 ± 2.7718 

24.2282, 29.7718 

Since this interval does not include 30, we say that 30 is not a candidate for the 
mean we are estimating and, therefore, p. is not equal to 30 and Ho  is rejected. 
This is the same conclusion reached by means of the hypothesis testing procedure. 

If the hypothesized parameter, 30, had been within the 95 percent confidence 
interval, we would have said that Ho  is not rejected at the .05 level of signifance. In 
general, when testing a null hypothesis by means of a two-sided confidence interval, we reject 
Ho  at the a level of significance if the hypothesized parameter is not contained within the 
100(1 — a) percent confidence interval. If the hypothesized parameter is contained within the 
interval, Ho  cannot be rejected at the a level of significance. 

One-Sided Hypothesis Tests The hypothesis test illustrated by Example 
7.2.1 is an example of a two-sided test, so called because the rejection region is split 
between the two sides or tails of the distribution of the test statistic. A hypothesis 
test may be one-sided, in which case all the rejection region is in one or the other 
tail of the distribution. Whether a one-sided or a two-sided test is used depends on 
the nature of the question being asked by the researcher. 

If both large and small values will cause rejection of the null hypothesis, a 
two-sided test is indicated. When either sufficiently "small" values only or suffi-
ciently "large" values only will cause rejection of the null 'hypothesis, a one-sided 
test is indicated. 
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Example 
7.2.2 

Refer to Exercise 7.2.1. Suppose, instead of asking if they could conclude that 
0 30, the researchers had asked: Can we conclude that u < 30? To this question 

we would reply that they can so conclude if they can reject the null hypothesis that 
30. 

Solution: Let us go through the nine-step procedure to reach a decision based on 
a one-sided test. 

1. Data See the previous example. 

2. Assumptions See the previous example. 

3. Hypotheses 

Ho: p. 30 

HA:µ < 30 

The inequality in the null hypothesis implies that the null hypothesis consists 
of an infinite number of hypotheses. The test will be made only at the point of 
equality, since it can be shown that if Ho  is rejected when the test is made at 
the point of equality it would be rejected if the test were done for any other 
value of kt indicated in the null hypothesis. 

4. Test Statistic 

o 
z — 

 

o-/ 

5. Distribution of Test Statistic See the previous example. 

6. Decision Rule Let us again let a = .05. To determine where to place the 
rejection region, let us ask ourselves what magnitude of values would cause 
rejection of the null hypothesis. If we look at the hypotheses, we see that 
sufficiently small values would cause rejection and that large values would tend 
to reinforce the null hypothesis. We will want our rejection region to be where 
the small values are—at the lower tail of the distribution. This time, since we 
have a one-sided test, all of a will go in the one tail of the distribution. By 
consulting Table D, we find that the value of z to the left of which lies .05 
of the area under the unit normal curve is —1.645 after interpolating. 
Our rejection and nonrejection regions are now specified and are shown in 
Figure 7.2.2. 

Our decision rule tells us to reject Ho  if the computed value of the test 
statistic is less than or equal to — 1.645. 

7. Calculation of Test Statistic From our data we compute 

27 — 30 
z 	 = —2.12 

V20/10  
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—1.645 

Rejection region 

 

z 

Y 
Nonrejection region 

 

Figure 7.2.2 Rejection and nonrejection regions for 
Example 7.2.2. 

8. Statistical Decision We are able to reject the null hypothesis since —2.12 < 
—1.645. 

9. Conclusion We conclude that the population mean is smaller than 30 and act 
accordingly. 

The p Value The p value for this test is .0170, since P(z < —2.12), when Ho  
is true, is .0170 as given by Table D when we determine the magnitude of the area 
to the left of —2.12 under the standard normal curve. One can test a one-sided 
null hypothesis by means of a one-sided confidence interval. However, we will not 
cover the construction and interpretation of this type of confidence interval in this 
book. The interested reader is referred to a discussion of the topic in the book by 
Daniel (5). 

If the researcher's question had been, "Can we conclude that the mean is 
greater than 30?," following the above nine-step procedure would have led to a 
one-sided test with all the rejection region at the upper tail of the distribution of 
the test statistic and a critical value of +1.645. 

Sampling from a Normally Distributed Population: Population Variance 
Unknown As we have already noted, the population variance is usually unknown 
in actual situations involving statistical inference about a population mean. When 
sampling is from a normally distributed population with and unknown variance, the 
test statistic for testing Ho: p, = p. is 

(7.2.2) 

which, when 1/0  is true, is distributed as Student's t with n — 1 degrees of 
freedom. The following example illustrates the hypothesis testing procedure when 
the population is assumed to be normally distributed and its variance is unknown. 
This is the usual situation encountered in practice. 
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Example 
7.2.3 

Castillo and Lillioja (A-1) describe a technique they developed for peripheral 
lymphatic cannulation in humans. The authors claim that their technique simpli-
fies the procedure and enables the collection of adequate volumes of lymph for 
kinetic and metabolic studies. The investigators' subjects were 14 healthy adult 
males representing a wide range of body weight. One of the variables on which 
measurements were taken was body mass index (BMI) = weight (kg)/height 2  (m2). 
The results are shown in Table 7.2.1. We wish to know if we can conclude that the 
mean BMI of the population from the sample was drawn is not 35. 

Solution: We will be able to conclude that the mean BMI for the population is 
not 35 if we can reject the null hypothesis that the population mean is equal to 35. 

1. Data The data consist of BMI measurements on 14 subjects as previously 
described. 

2. Assumptions The 14 subjects constitute a simple random sample from a 
population of similar subjects. We assume that BMI measurements in this 
population are approximately normally distributed. 

3. Hypotheses 

Ho: = 35  

HA: # 35 

4. Test Statistic Since the population variance is unknown, our test statistic is 
given by Equation 7.2.2. 

5. Distribution of Test Statistic Our test statistic is distributed as Student's t with 
n — 1 = 14 — 1 = 13 degrees of freedom if H0  is true. 

6. Decision Rule Let a = .05. Since we have a two-sided test, we put a/2 = .025 
in each tail of the distribution of our test statistic. The t values to the right 
and left of which .025 of the area lies are 2.1604 and —2.1604. These values 

TABLE 7.2.1 Body Mass Index (BMI) Measurements for Male Subjects 
Described in Example 7.2.3 

Subject BMI Subject BMI Subject BMI 

1 23 6 21 11 23 
2 25 7 23 12 26 
3 21 8 24 13 31 
4 37 9 32 14 45 
5 39 10 57 

SOURCE: Charles E. Castillo and Stephen Lillioja, "Peripheral Lymphatic Cannu-
lation for Physiological Analysis of Interstitial Fluid Compartment in Humans," 
American Journal of Physiology, 261 (Heart and Circulation Phisiology, 30), (October 
1991), H1324—H1328. 
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—2.1604 	0 	2.1604 

Rejection region 	 Nonrejection region 	 Rejection region 

Figure 7.2.3 Rejection and nonrejection regions for 
Example 7.2.3. 

are obtained from Table E. The rejection and nonrejection regions are shown 
in Figure 7.2.3. 

The decision rule tells us to compute a value of the test statistic and reject 
Ho  if the computed t is either greater than or equal to 2.1604 or less than or 
equal to — 2.1604. 

7. Calculation of Test Statistic From our sample data we compute a sample mean 
of 30.5 and a sample standard deviation of 10.6392. Substituting these statis-
tics into Equation 7.2.2 gives 

30.5 — 35 	—4.5 
t =     = —1.58 

10.6392/1/71 	2.8434 

8. Statistical Decision Do not reject Ho, since —1.58 falls in the nonrejection 
region. 

9. Conclusion Our conclusion, based on these data, is that the mean of the 
population from which the sample came may be 35. 

The p Value The exact p value for this test cannot be obtained from Table 
E since it gives t values only for selected percentiles. The p value can be stated as 
an interval, however. We find that —1.58 is less than —1.350, the value of t to the 
left of which lies .10 of the area under the t with 13 degrees of freedom, but 
greater than —1.7709, to the left of which lies .05 of the area. Consequently, when 
Ho  is true, the probability of obtaining a value of t as small as or smaller than 
— 1.58 is less than .10 but greater than .05. That is, .05 < P (t < — 1.58) < .10. 
Since the test was two-sided, we must allow for the possibility of a computed value 
of the test statistic as large in the opposite direction as that observed. Table E 
reveals that .05 < P (t 	1.58) < .10. The p value, then, is .10 < p < .20. 
Figure 7.2.4 shows the p value for this example. 



0 
.20>p> .10 

1.350 1.58 1.7709 —1.7709 —1.58 —1 350 

Area = .10 
	 A-- 

.10 >p/2 >.05 

= .05 

Area = .10 

.10 >p/2 > .05 

Area 
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Figure 7.2.4 Determination of p value for Example 7.2.3. 

If in the previous example the hypotheses had been 

1/0: ,u 	35 

HA:µ < 35 

the testing procedure would have led to a one-sided test with all the rejection 
region at the lower tail of the distribution, and if the hypotheses had been 

H0:µ<35 

HA: > 35 

we would have had a one-sided test with all the rejection region at the upper tail of 
the distribution. 

Sampling from a Population That Is Not Normally Distributed If, as is 
frequently the case, the sample on which we base our hypothesis test about a 
population mean comes from a population that is not normally distributed, we 
may, if our sample is large (greater than or equal to 30), take advantage of the 
central limit theorem and use z = 	— kt0)/(01 c) as the test statistic. If the 
population standard deviation is not known, the usual practice is to use the sample 
standard deviation as an estimate. The test statistic for testing H0:µ = Ao, then, 
is 

l-to 
z = 	 

s/1112 
(7.2.3) 

which, when Ho  is true, is distributed approximately as the standard normal 
distribution if n is large. The rationale for using s to replace a is that the large 
sample, necessary for the central limit theorem to apply, will yield a sample 
standard deviation that closely approximates u. 

Example 
	

The objectives of a study by Wilbur et al. (A-2) were to describe the menopausal 
7.2.4 	status, menopausal symptoms, energy expenditure, and aerobic fitness of healthy 

midlife women and to determine relationships among these factors. Among the 



218 	 Chapter 7 • Hypothesis Testing 

variables measured was maximum oxygen uptake (Vo2max). The mean Vo2 „,a„ 
score for a sample of 242 women was 33.3 with a standard deviation of 12.14. 
(Source: Family and Community Health, Vol. 13:3, p. 73, Aspen Publishers, Inc., © 
1990.) We wish to know if, on the basis of these data, we may conclude that the 
mean score for a population of such women is greater than 30. 

Solution: We will say that the data do provide sufficient evidence to conclude that 
the population mean is greater than 30 if we can reject the null hypothesis that the 
mean is less than or equal to 30. The following test may be carried out: 

1. Data The data consist of Vol max  scores for 242 women with x = 33.3 and 
s = 12.14. 

2. Assumptions The data constitute a simple random sample from a population of 
healthy midlife women similar to those in the sample. We are unwilling to 
assume that Vo2max  scores are normally distributed in such a population. 

3. Hypotheses 

Ho: p, < 30 

HA: > 30 

4. Test Statistic The test statistic is given by Equation 7.2.3, since u is unknown. 

5. Distribution of Test Statistic Because of the central limit theorem, the test 
statistic is at worst approximately normally distributed with µ = 0 if 1/0  is 
true. 

6. Decision Rule Let a = .05. The critical value of the test statistic is 1.645. The 
rejection and nonrejection regions are shown in Figure 7.2.5. Reject Ho  if 
computed z > 1.645. 

.05 

1.645 

	 —Y 	 
Nonrejection region 	Rejection region 

Figure 7.2.5 Rejection and nonrejection regions for 
Example 7.2.4. 
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7. Calculation of Test Statistic 

	

33.3 — 30 	3.3 
	  

12.14/ 242 	
.7804 = 4.23 

8. Statistical Decision Reject Ho  since 4.23 > 1.645. 

9. Conclusion Conclude that the mean Vol max  score for the sampled population 
is greater than 30. The p value for this test is < .001, since 4.23 is greater 
than 3.89. 

Procedures for Other Conditions If the population variance had been 
known, the procedure would have been identical to the above except that the 
known value of a , instead of the sample value s, would have been used in the 
denominator of the computed test statistic. 

Depending on what the investigators wished to conclude, either a two-sided 
test or a one-sided test, with the rejection region at the lower tail of the 
distribution, could have been made using the above data. 

When testing a hypothesis about a single population mean, we may use Figure 
6.3.3 to decide quickly whether the test statistic is z or t. 

Computer Analysis To illustrate the use of computers in testing hypotheses 
we consider the following example. 

Example 	The following are the head circumferences (centimeters) at birth of 15 infants. 
7.2.5 

33.38 32.15 33.99 34.10 33.97 
34.34 33.95 33.85 34.23 32.73 
33.46 34.13 34.45 34.19 34.05 

We wish to test H0:µ = 34.5 against HA: p, # 34.5. 

Solution: We assume that the assumptions for use of the t statistic are met. 
We enter the data into column 1 and issue the following MINITAB command. 

TTEST 34.5 C1 

We obtain the following printout. 

TEST OF MU= 34.500 VS MU N.E. 34.500 
N 	MEAN 	STDEV 	SE MEAN 	T 	 P VALUE 
15 	33.798 	0.630 	0.163 	-4.31 	0.0007 
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The MINITAB commands for one-sided tests each require a subcommand. The 
subcommand is +1 for a one-sided test with the rejection region in the right tail of 
the distribution of t and is —1 for a one-sided test with the rejection region in the 
left tail of the distribution. For example, if the alternative hypothesis for our 
example had been p > 34.5, the MINITAB command would have been 

TTEST 34.5 C1; 
ALTERNATIVE +1. 

If the alternative hypothesis had been A < 34.5, the MINITAB command would 
have been 

TTEST 34.5 C1; 

ALTERNATIVE -1. 

If z is the appropriate test statistic, the first word of the MINITAB commands is 
ZTEST. The remainder of the commands are the same as for the t test. 

We learn from the printout that the computed value of the test statistic is 
—4.31 and the p value for the test is .0007. SAS®  users may use the output from 
PROC MEANS or PROC UNIVARIATE to perform hypothesis tests. 

When both the z statistic and the t statistic are inappropriate test statistics for 
use with the available data, one may wish to use a nonparametric technique to test 
a hypothesis about a single population measure of central tendency. One such 
procedure, the sign test, is discussed in Chapter 13. 

EXERCISES 

For each of the following exercises carry out the nine-step hypothesis testing procedure for 
the given significance level. Compute the p value for each test. 

7.2.1 Bertino et al. (A-3) conducted a study to examine prospectively collected data on 
gentamicin in pharmacokinetics in three populations over 18 years of age: patients 
with acute leukemia, patients with other nonleukemic malignancies, and patients 
with no underlying malignancy or pathophysiology other than renal impairment 
known to alter gentamicin pharmacokinetics. Among other statistics reported by the 
investigators were a mean initial calculated creatinine clearance value of 59.1 with a 
standard deviation of 25.6 in a sample of 211 patients with malignancies other than 
leukemia. We wish to know if we may conclude that the mean for a population of 
similar subjects is less than 60. Let a = .10. 

7.2.2 The purpose of a study by Klesges et al. (A-4) was to investigate factors associated 
with discrepancies between self-reported smoking status and carboxyhemoglobin 
levels. A sample of 3918 self-reported nonsmokers had a mean carboxyhemoglobin 
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level of .9 with a standard deviation of .96. We wish to know if we may conclude that 
the population mean is less than 1.0. Let a = .01. 

7.2.3 Dr. Jeffrey M. Barrett of Lakeland, Florida, reported data on eight cases of 
umbilical cord prolapse (A-5). The maternal ages were 25, 28, 17, 26, 27, 22, 25, and 
30. We wish to know if we may conclude that the mean age of the population from 
which the sample may be presumed to have been drawn is greater than 20 years. Let 
a = .01. 

7.2.4 A study was made of a sample of 25 records of patients seen at a chronic disease 
hospital on an outpatient basis. The mean number of outpatient visits per patient 
was 4.8, and the sample standard deviation was 2. Can it be concluded from these 
data that the population mean is greater than four visits per patient? Let the 
probability of committing a type I error be .05. What assumptions are necessary? 

7.2.5 In a sample of 49 adolescents who served as the subjects in an immunologic study, 
one variable of interest was the diameter of skin test reaction to an antigen. The 
sample mean and standard deviation were 21 and 11 mm erythema, respectively. 
Can it be concluded from these data that the population mean is less than 30? Let 
a = .05. 

7.2.6 Nine laboratory animals were infected with a certain bacterium and then immuno-
suppressed. The mean number of organisms later recovered from tissue specimens 
was 6.5 (coded data) with a standard deviation of .6. Can one conclude from these 
data that the population mean is greater than 6? Let a = .05. What assumptions 
are necessary? 

7.2.7 A sample of 25 freshman nursing students made a mean score of 77 on a test 
designed to measure attitude toward the dying patient. The sample standard 
deviation was 10. Do these data provide sufficient evidence to indicate, at the .05 
level of significance, that the population mean is less than 80? What assumptions are 
necessary? 

7.2.8 We wish to know if we can conclude that the mean daily caloric intake in the adult 
rural population of a developing country is less than 2000. A sample of 500 had a 
mean of 1985 and a standard deviation of 210. Let a = .05. 

7.2.9 A survey of 100 similar-sized hospitals revealed a mean daily census in the pediatrics 
service of 27 with a standard deviation of 6.5. Do these data provide sufficient 
evidence to indicate that the population mean is greater than 25? Let a = .05. 

7.2.10 Following a week-long hospital supervisory training program, 16 assistant hospital 
administrators made a mean score of 74 on a test administered as part of the 
evaluation of the training program. The sample standard deviation was 12. Can it 
be concluded from these data that the population mean is greater than 70? Let 
a = .05. What assumptions are necessary? 

7.2.11 A random sample of 16 emergency reports was selected from the files of an 
ambulance service. The mean time (computed from the sample data) required for 
ambulances to reach their destinations was 13 minutes. Assume that the population 
of times is normally distributed with a variance of 9. Can we conclude at the .05 
level of significance that the population mean is greater than 10 minutes? 
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7.2.12 The following data are the oxygen uptakes (milliliters) during incubation of a 
random sample of 15 cell suspensions. 

14.0, 14.1, 14.5, 13.2, 11.2, 14.0, 14.1, 12.2 

11.1, 13.7, 13.2, 16.0, 12.8, 14.4, 12.9 

Do these data provide sufficient evidence at the .05 level of significance that the 
population mean is not 12 ml? What assumptions are necessary? 

7.2.13 Can we conclude that the mean maximum voluntary ventilation value for appar-
ently healthy college seniors is not 110 liters per minute? A sample of 20 yielded the 
following values: 

132, 33, 91, 108, 67, 169, 54, 203, 190, 133 
96, 30, 187, 21, 63, 166, 84, 110, 157, 138 

Let a = .01. What assumptions are necessary? 

7.2.14 The following are the systolic blood pressures (mm Hg) of 12 patients undergoing 
drug therapy for hypertension: 

183, 152, 178, 157, 194, 163, 144, 114, 178, 152, 118, 158 

Can we conclude on the basis of these data that the population mean is less than 
165? Let a = .05. What assumptions are necessary? 

7.2.15 Can we conclude that the mean age at death of patients with homozygous sickle-cell 
disease is less than 30 years? A sample of 50 patients yielded the following ages in 
years: 

15.5, 2.0, 45.1, 1.7, .8, 1.1, 18.2, 9.7, 28.1, 18.2 
27.6, 45.0, 1.0, 66.4, 2.0, 67.4, 2.5, 61.7, 16.2, 31.7 
6.9, 13.5, 1.9, 31.2, 9.0, 2.6, 29.7, 13.5, 2.6, 14.4, 

20.7, 30.9, 36.6, 1.1, 23.6, .9, 7.6, 23.5, 6.3, 40.2 
23.7, 4.8, 33.2, 27.1, 36.7, 3.2, 38.0, 3.5, 21.8, 2.4 

Let a = .05. What assumptions are necessary? 

7.2.16 The following are intraocular pressure (mm Hg) values recorded for a sample of 21 
elderly subjects. 

14.5, 12.9, 14.0, 16.1, 12.0, 17.5, 14.1, 12.9, 17.9, 12.0 

16.4, 24.2, 12.2, 14.4, 17.0, 10.0, 18.5, 20.8, 16.2, 14.9 

19.6 

Can we conclude from these data that the mean of the population from which the 
sample was drawn is greater than 14? Let a = .05. What assumptions are necessary? 

7.2.17 Suppose it is known that the IQ scores of a certain population of adults are 
approximately normally distributed with a standard deviation of 15. A simple 
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random sample of 25 adults drawn from this population had a mean IQ score of 105. 
On the basis of these data can we conclude that the mean IQ score for the 
population is not 100? Let the probability of committing a type I error be .05. 

7.2.18 A research team is willing to assume that systolic blood pressures in a certain 
population of males is approximately normally distributed with a standard deviation 
of 16. A simple random sample of 64 males from the population had a mean systolic 
blood pressure reading of 133. At the .05 level of significance, do these data provide 
sufficient evidence for us to conclude that the population mean is greater than 130? 

7.2.19 A simple random sample of 16 adults drawn from a certain population of adults 
yielded a mean weight of 63 kg. Assume that weights in the population are 
approximately normally distributed with a variance of 49. Do the sample data 
provide sufficient evidence for us to conclude that the mean weight for the 
population is less than 70 kg? Let the probability of committing a type I error be .01. 

7.3 
Hypothesis Testing: 
The Difference Between 
Two Po • ulation Means 

Hypothesis testing involving the difference between two population means is most 
frequently employed to determine whether or not it is reasonable to conclude that 
the two population means are unequal. In such cases, one or the other of the 
following hypotheses may be formulated: 

1. H0: j. — ti2  = 0, HA: 	ik2 0  0 

2. Ho: — /.1, 2  0, HA: µi -µ2 < 0  

3. Ho: — 	15. 0, HA: 11,1 - 112 > 0 

It is possible, however, to test the hypothesis that the difference is equal to, 
greater than or equal to, or less than or equal to some value other than zero. 

As was done in the previous section, hypothesis testing involving the difference 
between two population means will be discussed in three different contexts: (1) 
when sampling is from normally distributed populations with known population 
variances, (2) when sampling is from normally distributed populations with un-
known population variances, and (3) when sampling is from populations that are 
not normally distributed. 

Sampling from Normally Distributed Populations: Population Variances 
Known When each of two independent simple random samples has been drawn 
from a normally distributed population with a known variance, the test statistic for 
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testing the null hypothesis of equal population means is 

(7.3.1) 

where the subscript 0 indicates that the difference is a hypothesized parameter. 
When Ho  is true the test statistic of Equation 7.3.1 is distributed as the standard 
normal. 

Example 
7.3.1 

Researchers wish to know if the data they have collected provide sufficient evidence 
to indicate a difference in mean serum uric acid levels between normal individ-
uals and individuals with Down's syndrome. The data consist of serum uric acid 
readings on 12 individuals with Down's syndrome and 15 normal individuals. The 
means are x l  = 4.5 mg/100 ml and x2  = 3.4 mg/mi. 

Solution: We will say that the sample data do provide evidence that the popula-
tion means are not equal if we can reject the null hypothesis that the population 
means are equal. Let us reach a conclusion by means of the nine-step hypothesis 
testing procedure. 

1. Data See problem statement. 

2. Assumptions The data constitute two independent simple random samples 
each drawn from a normally distributed population with a variance equal to 1 
for the Down's syndrome population and 1.5 for the normal population. 

3. Hypotheses 

1/0: 	— /.1.2  = 0 

HA: 111 	2 	0 

An alternative way of stating the hypotheses is as follows: 

Ho: µ i  = 112 

HA: t 1  0 2  

4. Test Statistic The test statistic is given by Equation 7.3.1. 

5. Distribution of Test Statistic When the null hypothesis is true, the test statistic 
follows the standard normal distribution. 

6. Decision Rule Let a = .05. The critical values of z are +1.96. Reject 1/0  
unless —1.96 < Zcomputed < 1.96. The rejection and nonrejection regions are 
shown in Figure 7.3.1. 
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—1.96 
	

1.96 

Rejection region 	Nonrejection region 	Rejection region 

Figure 7.3.1 Rejection and nonrejection regions for 
Example 7.3.1. 

7. Calculation of Test Statistic 

(4.5 — 3.4) — 0 	1.1 
Z   = 2.57 

V1/12 + 1.5/15 	.4282 

8. Statistical Decision Reject 1/0, since 2.57 > 1.96. 

9. Conclusion Conclude that, on the basis of these data, there is an indication 
that the two population means are not equal. For this test, p = .0102. 

A 95 Percent Confidence Interval for p. In the previous chapter the 
95 percent confidence interval for 	— /12, computed from the same data, was 
found to be .26 to 1.94. Since this interval does not include 0, we say that 0 is not a 
candidate for the difference between population means, and we conclude that the 
difference is not zero. Thus we arrive at the same conclusion by means of a 
confidence interval. 

Sampling from Normally Distributed Populations: Population Variances 
Unknown As we have learned, when the population variances are unknown, two 
possibilities exist. The two population variances may be equal or they may be 
unequal. We consider first the case where it is known, or it is reasonable to assume, 
that they are equal. 

Population Variances Equal When the population variances are unknown, 
but assumed to be equal, we recall from Chapter 6 that it is appropriate to pool 
the sample variances by means of the following formula: 
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TABLE 7.3.1 Lung Destructive Index Scores for Example 7.3.2 

Nonsmokers: 
Smokers: 

18.1, 
16.6, 

6.0, 
13.9, 

10.8, 
11.3, 

11.0, 
26.5, 

7.7, 
17.4, 

17.9, 
15.3, 

8.5, 
15.8, 

13.0, 
12.3, 

18.9 
18.6, 

12.0, 24.1, 16.5, 21.8, 16.3, 23.4, 18.8 

SOURCE: D. H. Eidelman, H. Ghezzo, W. D. Kim, and M. G. Cosio, "The Destructive 
Index and Early Lung Destruction in Smokers," American Review of Respiratory Disease, 
144 (1991), 156-159. 

When each of two independent simple random sample has been drawn from a 
normally distributed population and the two populationi have equal but unknown 
variances, the test statistic for testing 1/0: p = 142 is given by 

(7.3.2) 

which, when 1/0  is true, is distributed as Student's t with n + n 2  — 2 degrees of 
freedom. 

Example 
7.3.2 

The purpose of a study by Eidelman et al. (A-6) was to investigate the nature of 
lung destruction in the lungs of cigarette smokers before the development of 
marked emphysema. Three lung destructive index measurements were made on 
the lungs of lifelong nonsmokers and smokers who died suddenly outside the 
hospital of nonrespiratory causes. A larger score indicates greater lung damage. 
For one of the indexes the scores yielded by the lungs of a sample of nine 
nonsmokers and a sample of 16 smokers are shown in Table 7.3.1. We wish to know 
if we may conclude, on the basis of these data, that smokers, in general, have 
greater lung damage as measured by this destructive index than do nonsmokers. 

Solution: 

1. Data See statement of problem. 

2. Assumptions The data constitute two independent simple random samples of 
lungs, one sample from a population of nonsmokers (NS) and the other sample 
from a population of smokers (S). The lung destructive index scores in both 
populations are approximately normally distributed. The population variances 
are unknown but are assumed to be equal. 

3. Hypotheses Ho: /is < ILNs, HA:  AS > ANS' 

4. Test Statistic The test statistic is given by Equation 7.3.2. 

5. Distribution of Test Statistic When the null hypothesis is true, the test statistic 
follows Student's t distribution with n i  + n 2  — 2 degrees of freedom. 

6. Decision Rule Let a = .05. The critical values of t are ±2.0687. Reject Ho  
unless — 2.0687 < tcomputed < 2.0687. 



S2 
— 

P 

15(4.4711)2  + 8(4.8492)2  

15 + 8 	
= 21.2165 
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7. Calculation of Test Statistic From the sample data we compute 

xs  = 17.5, ss  = 4.4711, X NS 	12.4, sNs  = 4.8492 

Next we pool the sample variances to obtain 

We now compute 

(17.5 — 12.4) — 0 
t —   = 2.6573 

,/ 21.2165 	21.2165 

V 	16 	9 

8. Statistical Decision We reject H0, since 2.6573 > 2.0687; that is, 2.6573 falls in 
the rejection region. 

9. Conclusion On the basis of these data we conclude that the two population 
means are different; that is, we conclude that, as measured by the index used 
in the study, smokers have greater lung damage than nonsmokers. For this test 
.01 > p > .005, since 2.500 < 2.6573 < 2.8073. 

Population Variances Unequal When two independent simple random 
samples have been drawn from normally distributed populations with unknown and 
unequal variances, the test statistic for testing H0: ,u, = /12  is 

t' — 
,2 	,2 

— A2)0 	
(7.3.3) 

'I 	J2 

n l 	n 2  

The critical value of t' for an a level of significance and a two-sided test is 
approximately 

ti-(a/ = 
W i t ' + w2t2 

(7.3.4) 
WI + W2 

where w1  = 4/n 1, w2 = 4/n2, t1 = t1 _(a/2)  for n1  — 1 degrees of freedom, and 
t2 = t1 _(a /2)  for n 2  — 1 degrees of freedom. The critical value of t' for a one-sided 
test is found by computing ti_a  by Equation 7.3.4, using t1  = t,_„ for n1  — 1 
degrees of freedom and t2  = t i _a  for n 2  — 1 degrees of freedom. 

For a two-sided test reject H0  if the computed value of t' is either greater 
than or equal to the critical value given by Equation 7.3.4 or less than or equal to 
the negative of that value. 
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For a one-sided test with the rejection region in the right tail of the sampling 
distribution, reject H0  if the computed t' is equal to or greater than the critical t'. 
For a one-sided test with a left-tail rejection region, reject Ho  if the computed 
value of t' is equal to or smaller than the negative of the critical t' computed by 
the indicated adaptation of Equation 7.3.4. 

Example 
7.3.3 

Researchers wish to know if two populations differ with respect to the mean value 
of total serum complement activity (CHO. The data consist of C H50 determina-
tions on n 2  = 20 apparently normal subjects and n, = 10 subjects with disease. 
The sample means and standard deviations are 

= 62.6, 	s, = 33.8 

= 47.2, 	s2 = 10.1 

Solution: 

1. Data See statement of problem. 

2. Assumptions The data constitute two independent random samples, one from a 
population of apparently normal subjects and the other from a population of 
subjects with disease. We assume that C H50  values are approximately normally 
distributed in both populations. The population variances are unknown and 
unequal. 

3. Hypotheses 

1/0: p, — p,2  = 0 

HA: ti 1 	I.L 2 	0 

4. Test Statistic The test statistic is given by Equation 7.3.3. 

5. Distribution of the Test Statistic The statistic given by Equation 7.3.3 does not 
follow Student's t distribution. We, therefore, obtain its critical values by 
Equation 7.3.4. 

6. Decision Rule Let a = .05. Before computing t' we calculate w, = (33.8)2 /10 
= 114.244 and w2  = (10.1)2/20 = 5.1005. In Table Ewe find that t, = 2.2622 
and t2  = 2.0930. By Equation 7.3.4 we compute 

114.244(2.2622) + 5.1005(2.0930) 
t' — 	  = 2.255 

114.244 + 5.1005 

Our decision rule, then, is reject H0  if the computed t is either 	2.255 or 
—2.255. 
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7. Calculations of the Test Statistic By Equation 7.3.3 we compute 

(62.6 — 47.2) — 0 	15.4 
1.41 

(33.8)2 	(10.1)2 	10.92 

10 + 20 

8. Statistical Decision Since —2.255 < 1.41 < 2.255, we cannot reject H0. 

9. Conclusion On the basis of these results we cannot conclude that the two 
population means are different. 

Sampling from Populations That Are Not Normally Distributed When 
sampling is from populations that are not normally distributed, the results of the 
central limit theorem may be employed if sample sizes are large (say 	30). This 
will allow the use of normal theory since the distribution of the difference between 
sample means will be approximately normal. When each of two large independent 
simple random samples has been drawn from a population that is not normally 
distributed, the test statistic for testing H0: p = kt2  is 

(7.3.5) 

which, when H0  is true, follows the standard normal distribution. If the population 
variances are known, they are used; but if they are unknown, as is the usual case, 
the sample variances, which are necessarily based on large samples, are used as 
estimates. Sample variances are not pooled, since equality of population variances 
is not a necessary assumption when the z statistic is used. 

Example 
7.3.4 

An article by Becker et al. in the American Journal of Health Promotion (A-7) describes 
the development of a tool to measure barriers to health promotion among persons 
with disabilities. The authors state that the issue of barriers is especially salient for 
disabled persons who experience barriers in such contexts as employment, trans-
portation, housing, education, insurance, architectural access, entitlement pro-
grams, and society's attitudes. Studies suggest that measurement of barriers can 
enhance health workers' understanding of the likelihood of people engaging in 
various health-promoting behaviors and may be a relevant construct in assessing 
the health behaviors of disabled persons. To measure this construct the authors 
developed the Barriers to Health Promotion Activities for Disabled Persons Scale 



(31.83 — 25.07) — 0 
— 8.42 

  

(7.93)2 	(4.80)2  

132 	137 
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(BHADP). The scale was administered to a sample of 132 disabled (D) and 137 

nondisabled (ND) subjects with the following results: 

Sample 	Mean Score 	Standard Deviation 

D 	 31.83 	 7.93 
ND 	 25.07 	 4.80 

SOURCE: Heather Becker, Alexa K. Stuifbergen, and Dolores 
Sands, "Development of a Scale to Measure Barriers to Health 
Promotion Activities Among Persons with Disabilities," American 
Journal of Health Promotion, 5 (1991), 449-454. Used by permission. 

We wish to know if we may conclude, on the basis of these results, that, in general, 
disabled persons, on the average, score higher on the BHADP scale. 

Solution: 

1. Data See statement of example. 

2. Assumption The statistics were computed from two independent samples that 
behave as simple random samples from a population of disabled persons and a 
population of nondisabled persons. Since the population variances are un-
known, we will use the sample variances in the calculation of the test statistic. 

3. Hypotheses 

: µD A ND 

HA :  AD — AND > 

or, alternatively, 

	

HO : 	AND 

HA :  AD > AND 

4. Test Statistic Since we have large samples, the central limit theorem allows us 
to use Equation 7.3.5 as the test statistic. 

5. Distribution of Test Statistic When the null hypothesis is true, the test statistic 
is distributed approximately as the standard normal. 

6. Decision Rule Let a = .01. This is a one-sided test with a critical value of z 

	

equal to 2.33. Reject 1/0  if Zcomputed 	2.33. 

7. Calculation of Test Statistic 
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8. Statistical Decision Reject Ho, since z = 8.42 is in the rejection region. 

9. Conclusion These data indicate that on the average disabled persons score 
higher on the BHADP scale than do nondisabled persons. For this test 
p < .0001, since 8.42 > 3.89. When testing a hypothesis about the difference 
between two population means, we may use Figure 6.4.1 to decide quickly 
whether the test statistic should be z or t. 

Alternatives to z and t Sometimes neither the z statistic nor the t statistic 
is an appropriate test statistic for use with the available data. When such is the 
case, one may wish to use a nonparametric technique for testing a hypothesis about 
the difference between two population measures of central tendency. The 
Mann—Whitney test statistic and the median test, discussed in Chapter 13, are 
frequently used alternatives to the z and t statistics. 

EXERCISES 

In each of the following exercises complete the nine-step hypothesis testing procedure and 
compute the p value for each test. State the assumptions that are necessary for your 
procedure to be valid. 

7.3.1 Evans et al. (A-8) conducted a study to determine if the prevalence and nature of 
podiatric problems in elderly diabetic patients are different from those found in a 
similarly aged group of nondiabetic patients. Subjects, who were seen in outpatient 
clinics, were 70 to 90 years old. Among the investigators' findings were the following 
statistics with respect to scores on the measurement of deep tendon reflexes: 

Sample n Mean Standard Deviation 

Nondiabetic patients 79 2.1 1.1 
Diabetic patients 74 1.6 1.2 

SOURCE: Scott L. Evans, Brent P. Nixon, Irvin Lee, David Yee, and Arshag D. 
Mooradian, "The Prevalence and Nature of Podiatric Problems in Elderly Diabetic 
Patients," Journal of the American Geriatrics Society, 39 (1991), 241-245. ©American 
Geriatrics Society, 1991. 

We wish to know if we can conclude, on the basis of these data, that, on the average, 
diabetic patients have reduced deep tendon reflexes when compared to nondiabetic 
patients of the same age. Let a = .01. 

7.3.2 The twofold purpose of a study by Hommes et al. (A-9) was (1) to investigate 
whether resting energy expenditure (REE) is increased in the early asymptomatic 
stage of HIV infection and (2) to study the relative contributions of carbohydrate 
and fat oxidation to REE in these patients. Subjects consisted of 11 clinically 
asymptomatic male HIV-infected outpatients between the ages of 23 and 50 years. A 
control group was made up of 11 healthy, male volunteers aged 25 to 51 years who 
had normal physical examinations and medical histories. Among other findings were 
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the following statistics on the measurement of REE: 

Sample 
	

Mean 	Standard Error of the Mean 

HIV subjects 	7116 	 173 
Controls 	7058 	 205 

SOURCE: Mirjam J. T. Hommes, Johannes A. Romijn, Erik Endert, and 
Hans P. Sauerwein, "Resting Energy Expenditure and Substrate Oxida-
tion in Human Immunodeficiency Virus (HIV)-infected Asymptomatic 
Men: HIV Affects Host Metabolism in the Early Asymptomatic Stage," 

American Journal of Clinical Nutrition, 54 (1991), 311-315. 

Do these data provide sufficient evidence to allow you to conclude that REE is 
increased in the early asymptomatic stage of HIV infection? Let a = .05. 

7.3.3 Frigerio et al. (A-10) measured the energy intake in 32 Gambian women. Sixteen of 
the subjects were lactating (L) and the remainder were nonpregnant and nonlactat-
ing (NPNL). The following data were reported: 

Sample Energy Intake (kJ / 

L 5289, 6209, 6054, 6665, 6343, 7699, 5678, 6954 
6916, 4770, 5979, 6305, 6502, 6113, 6347, 5657 

NPNL 9920, 8581, 9305, 10765, 8079, 9046, 7134, 8736, 
10230, 7121, 8665, 5167, 8527, 7791, 8782, 6883 

SOURCE: Christian Frigerio, Yves Schutz, Roger Whitehead, and Eric Jequier, 
"A New Procedure to Assess the Energy Requirements of Lactation in 
Gambian Women," American Journal of Clinical Nutrition, 54 (1991), 526-533. © 
Am. J. Clin. Nut. American Society for Clinical Nutrition. 

Do these data provide sufficient evidence to allow us to conclude that the two 
sampled populations differ with respect to mean energy intake? Let a = .01. Do 
these data provide sufficient evidence to indicate that the means of the populations 
represented by the samples differ? Let a = .05. 

7.3.4 Can we conclude that chronically ill children tend, on the average, to be less 
self-confident than healthy children? A test designed to measure self-confidence was 
administered to 16 chronically ill and 21 healthy children. The mean scores and 
standard deviations were as follows: 

Ill group 	22.5 	4.1 
Well group 	26.9 	3.2 

Let a = .05. 

7.3.5 A nurse researcher wished to know if graduates of baccalaureate nursing programs 
and graduates of associate degree nursing programs differ with respect to mean 
scores on a personality inventory. A sample of 50 associate degree graduates (sample 
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A) and a sample of 60 baccalaureate graduates (sample B) yielded the following 
means and standard deviations. 

Sample 

A 	52.5 	10.5 
B 	49.6 	11.2 

On the basis of these data, what should the researcher conclude? Let a = .05. 

7.3.6 A test designed to measure mothers' attitudes toward their labor and delivery 
experiences was given to two groups of new mothers. Sample 1 (attenders) had 
attended prenatal classes held at the local health department. Sample 2 (nonat-
tenders) did not attend the classes. The sample sizes and means and standard 
deviations of the test scores were as follows: 

Sample 

15 	4.75 	1.0 
2 	22 	3.00 	1.5 

Do these data provide sufficient evidence to indicate that attenders, on the average, 
score higher than nonattenders? Let a = .05. 

7.3.7 Cortisol level determinations were made on two samples of women at childbirth. 
Group 1 subjects underwent emergency cesarean section following induced labor. 
Group 2 subjects delivered by either cesarean section or the vaginal route following 
spontaneous labor. The sample sizes, mean cortisol levels, and standard deviations 
were as follows: 

Sample 

1 10 435 65 
2 12 645 80 

Do these data provide sufficient evidence to indicate a difference in the mean 
cortisol levels in the populations represented? Let a = .05. 

7.3.8 Protoporphyrin levels were measured in two samples of subjects. Sample 1 consisted 
of 50 adult male alcoholics with ring sideroblasts in the bone marrow. Sample 2 
consisted of 40 apparently healthy adult nonalcoholic males. The mean protopor-
phyrin levels and standard deviations for the two samples were as follows: 

Sample 

1 	340 	250 
2 
	

45 	25 

Can one conclude on the basis of these data that protoporphyrin levels are higher in 
the represented alcoholic population than in the nonalcoholic population? Let 
a = .01. 

7.3.9 A researcher was interested in knowing if preterm infants with late metabolic 
acidosis and preterm infants without the condition differ with respect to urine levels 
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of a certain chemical. The mean levels, standard deviations, and sample sizes for the 
two samples studied were as follows: 

Sample 

With condition 35 8.5 5.5 
Without condition 40 4.8 3.6 

What should the researcher conclude on the basis of these results? Let a = .05. 

7.3.10 Researchers wished to know if they could conclude that two populations of infants 
differ with respect to mean age at which they walked alone. The following data (ages 
in months) were collected: 

Sample from population A: 

9.5, 10.5, 9.0, 9.75, 10.0, 13.0, 10.0, 13.5, 10.0, 

Sample from population B: 

9.5, 10.0, 9.75 

12.5, 9.5, 13.5, 13.75, 12.0, 13.75, 12.5, 9.5, 12.0, 13.5, 12.0, 12.0 

What should the researchers conclude? Let a = .05. 

7.3.11 Does sensory deprivation have an effect on a person's alpha-wave frequency? Twenty 
volunteer subjects were randomly divided into two groups. Subjects in group A were 
subjected to a 10-day period of sensory deprivation, while subjects in group B served 
as controls. At the end of the experimental period the alpha-wave frequency 
component of subjects' electroencephalograms were measured. The results were as 
follows: 

Group A: 	10.2, 9.5, 10.1, 10.0, 9.8, 10.9, 11.4, 10.8, 9.7, 10.4 
Group B: 	11.0, 11.2, 10.1, 11.4, 11.7, 11.2, 10.8, 11.6, 10.9, 10.9 

Let a = .05. 

7.3.12 Can we conclude that, on the average, lymphocytes and tumor cells differ in size? 
The following are the cell diameters (p.m) of 40 lymphocytes and 50 tumor cells 
obtained from biopsies of tissue from patients with melanoma. 

Lymphocytes 

9.0 9.4 4.7 4.8 8.9 4.9 8.4 5.9 
6.3 5.7 5.0 3.5 7.8 10.4 8.0 8.0 
8.6 7.0 6.8 7.1 5.7 7.6 6.2 7.1 
7.4 8.7 4.9 7.4 6.4 7.1 6.3 8.8 
8.8 5.2 7.1 5.3 4.7 8.4 6.4 8.3 

Tumor Cells 

12.6 14.6 16.2 23.9 23.3 17.1 20.0 21.0 19.1 19.4 
16.7 15.9 15.8 16.0 17.9 13.4 19.1 16.6 18.9 18.7 
20.0 17.8 13.9 22.1 13.9 18.3 22.8 13.0 17.9 15.2 
17.7 15.1 16.9 16.4 22.8 19.4 19.6 18.4 18.2 20.7 
16.3 17.7 18.1 24.3 11.2 19.5 18.6 16.4 16.1 21.5 

Let a = .05. 
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7.4 
Paired Comparisons 

In our previous discussion involving the difference between two population means, 
it was assumed that the samples were independent. A method frequently employed 
for assessing the effectiveness of a treatment or experimental procedure is one that 
makes use of related observations resulting from nonindependent samples. A 
hypothesis test based on this type of data is known as a paired comparisons test. 

Reasons for Pairing It frequently happens that true differences do not exist 
between two populations with respect to the variable of interest, but the presence 
of extraneous sources of variation may cause rejection of the null hypothesis of no 
difference. On the other hand, true differences also may be masked by the presence 
of extraneous factors. 

Suppose, for example, that we wish to compare two sunscreens. There are at 
least two ways in which the experiment may be carried out. One method would be 
to select a simple random sample of subjects to receive sunscreen A and an 
independent simple random sample of subjects to receive sunscreen B. We send the 
subjects out into the sunshine for a specified length of time, after which we will 
measure the amount of damage from the rays of the sun. Suppose we employ this 
method, but inadvertently, most of the subjects receiving sunscreen A have darker 
complexions that are naturally less sensitive to sunlight. Let us say that after the 
experiment has been completed we find that subjects receiving sunscreen A had 
less sun damage. We would not know if they had less sun damage because 
sunscreen A was more protective than sunscreen B or because the subjects were 
naturally less sensitive to the sun. 

A better way to design the experiment would be to select just one simple 
random sample of subjects and let each member of the sample receive both 
sunscreens. We could, for example, randomly assign the sunscreens to the left or 
the right side of each subject's back with each subject receiving both sunscreens. 
After a specified length of exposure to the sun, we would measure the amount of 
sun damage to each half of the back. If the half of the back receiving sunscreen A 
tended to be less damaged, we could more confidently attribute the result to the 
sunscreen, since in each instance both sunscreens were applied to equally pig-
mented skin. 

The objective in paired comparisons tests is to eliminate a maximum number 
of sources of extraneous variation by making the pairs similar with respect to as 
many variables as possible. 

Related or paired observations may be obtained in a number of ways. The same 
subjects may be measured before and after receiving some treatment. Litter mates 
of the same sex may be randomly assigned to receive either a treatment or a 
placebo. Pairs of twins or siblings may be randomly assigned to two treatments in 
such a way that members of a single pair receive different treatments. In compar-
ing two methods of analysis, the material to be analyzed may be equally divided so 
that one half is analyzed by one method and one half is analyzed by the other. Or 
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pairs may be formed by matching individuals on some characteristic, for example, 
digital dexterity, which is closely related to the measurement of interest, say, 
posttreatment scores on some test requiring digital manipulation. 

+Instead of performing the analysis with individual observations, we use d1, the 
difference between pairs of observations, as the variable of interest. 

When the n sample differences computed from the n pairs of measurements 
constitute a simple random sample from a normally distributed population of 
differences, the test statistic for testing hypotheses about the population mean 
difference Ad  is 

gdo  
t = 	 

S - d 

(7.4.1) 

where d is the sample mean difference, /Ado  is the hypothesized population mea 
difference, ,s‘,7 sd/ 	n is the number of Sample differences, and sd  is di 
standard deviation of the sample differences. When Ho  is true the test statistic is 
distributed as Student's t with n — 1 degrees of freedom. 

Although, to begin with we have two samples—say, before levels and after 
levels—we do not have to worry about equality of variances, as with independent 
samples, since our variable is the difference between readings in the same individ-
ual, or matched individuals, and, hence, only one variable is involved. The arith-
metic involved in performing a paired comparisons test, therefore, is the same as 
for performing a test involving a single sample as described in Section 7.2. 

The following example illustrates the procedures involved in a paired compar-
isons test. 

Example 
7.4.1 

Nancy Stearns Burgess (A-11) conducted a study to determine weight loss, body 
composition, body fat distribution, and resting metabolic rate in obese subjects 
before and after 12 weeks of treatment with a very-low-calorie diet (VLCD) and to 
compare hydrodensitometry with bioelectrical impedance analysis. The 17 subjects 
(9 women and 8 men) participating in the study were from an outpatient, 
hospital-based treatment program for obesity. The women's weights before and 
after the 12-week VLCD treatment are shown in Table 7.4.1. We wish to know if 
these data provide sufficient evidence to allow us to conclude that the treatment is 
effective in causing weight reduction in obese women. 

Solution: We will say that sufficient evidence is provided for us to conclude that 
the diet program is effective if we can reject the null hypothesis that the population 

TABLE 7.4.1 Weights (kg) of Obese Women Before and After 12-Week VLCD Treatment 

B: 117.3 111.4 98.6 104.3 105.4 100.4 81.7 89.5 78.2 
A: 83.3 85.9 75.8 82.9 82.3 77.7 62.7 69.0 63.9 

SOURCE: Nancy Stearns Burgess. Used by permission. 
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mean change µd  is zero or positive. We may reach a conclusion by means of the 
nine-step hypothesis testing procedure. 

1. Data The data consist of the weights of nine individuals, before and after an 
experimental diet program. We shall perform the statistical analysis on the 
differences between the before and after weights. We may obtain the differ-
ences in one of two ways: by subtracting the before weights 
from the after weights (A — B), or by subtracting the after weights from the 
before weights (B — A). Let us obtain the differences by subtracting the before 
weights from the after weights. The d = A — B differences are 
—34.0, —25.5, —22.8, —21.4, —23.1, —22.7, —19.0, —20.5, —14.3. 

2. Assumptions The observed differences constitute a simple random sample from 
a normally distributed population of differences that could be generated under 
the same circumstances. 

3. Hypotheses The way we state our null and alternative hypotheses must be 
consistent with the way in which we subtract measurements to obtain the 
differences. In the present example, we want to know if we can conclude that 
the VLCD program is effective in reducing weight. If it•is effective in reducing 
weight, we would expect the after weights to tend to be less than the before 
weights. If, therefore, we subtract the before weights from the after weights 
(A — B), we would expect the differences to tend to be negative. Furthermore, 
we would expect the mean of a population of such differences to be negative. 
So, under these conditions, asking if we can conclude that the VLCD program 
is effective is the same as asking if we can conclude that the population mean 
difference is negative (less than zero). 

The null and alternative hypotheses are as follows: 

µd > 0  

HA: 12 d <0 

If we had obtained the differences by subtracting the after weights from the 
before weights (B — A) our hypotheses would have been 

Ho: kld  :5_ 0 

HA : elLd > 0 

If the question had been such that a two-sided test was indicated, the 
hypotheses would have been 

H0 : µ d =0 

HA: Ad  # 0 

regardless of the way we subtracted to obtain the differences. 
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a= .05 

Figure 7.4.1 Rejection and nonrejection regions for 
Example 7.4.1. 

4. Test Statistic The appropriate test statistic is given by Equation 7.4.1. 

5. Distribution of Test Statistic If the null hypothesis is true, the test statistic is 
distributed as Student's t with n — 1 degrees of freedom. 

6. Decision Rule Let a = .05. The critical value of t is — 1.8595. Reject H0  if 
computed t is less than or equal to the critical value. The rejection and 
nonrejection regions are shown in Figure 7.4.1. 

7. Calculation of Test Statistic From the n = 9 differences clz , we compute the 
following descriptive measures: 

_ 	Ed, 	( — 34.0) + ( — 25.5) + • • • +( — 14.3) 	— 203.3 
d = — = 	

9 	 9 
	 = —22.5889

n

2 	E(di  :1)2 	nEd,2  — (Ed,)2 	9(4818.69) — ( — 203.3)2  
Sd 	  — 28.2961 

n — 1 	n(n — 1) 	 9(8)  

— 22.5889 — 0 	— 22.5889 
t =     = 12.7395 

V28.2961/9 	1.77314 

8. Statistical Decision Reject H0, since — 12.7395 is in the rejection region. 

9. Conclusion We may conclude that the diet program is effective. For this test, 
p < .005, since — 12.7395 < — 3.3554. 

A Confidence Interval for pc, A 95 percent confidence interval for Ad  may 
be obtained as follows: 

± tl _(a /2)Sd 

— 22.5889 ± 2.30601/28.2961/9 

— 22.5889 + 4.0888 

— 26.68, —18.50 



7.4 Paired Comparisons 	 239 

The Use of z If, in the analysis of paired data, the population variance of the 
differences is known, the appropriate test statistic is 

d — 
(7.4.2) z — 	 

ad/Irn 

It is unlikely that ad  will be known in practice. 
If the assumption of normally distributed d,'s cannot be made, the central 

limit theorem may be employed if n is large. In such cases, the test statistic IS 
Equation 7.4.2, with sd  used to estimate ad  when, as is generally the case, the 
latter is unknown. 

Disadvantages The use of the paired comparisons test is not without its 
problems. If different subjects are used and randomly assigned to two treatments, 
considerable time and expense may be involved in our trying to match individuals 
on one or more relevant variables. A further price we pay for using paired 
comparisons is a loss of degrees of freedom, If we do not use paired observations we 
have 2n — 2 degrees of freedom available as compared to n — 1 when we use the 
paired comparisons procedure. 

In general, in deciding whether or not to use the paired comparisons proce-
dure, one should be guided by the economics involved as well as by a consideration 
of the gains to be realized in terms of controlling extraneous variation. 

Alternatives If neither z nor t is an appropriate test statistic for use wit+ 
available data, one may wish to consider using some nonparametric technique bto 

test a hypothesis about a median difference. The sign test, discussed in Chapter 13, 
is a candidate for use in such cases. 

EXERCISES 

In the following exercises carry out the nine-step hypothesis testing procedure at the 
specified significance level. Determine the p value for each test. 

7.4.1 A journal article by Kashima et al. (A-12) describes research with parents of mentally 
retarded children in which a media-based program presented, primarily through 
videotapes and instructional manuals, information on self-help skill teaching. As part 
of the study 17 families participated in a training program led by experienced staff 
members of a parent training project. Before and after the training program the 
Behavioral Vignettes Test was administered to the primary parent in each family. 
The test assesses knowledge of behavior modification principles. A higher score 
indicates greater knowledge. The following are the pre- and post-training scores 
made by the primary parent on the test: 

Pre: 7 6 10 16 8 13 8 14 16 11 12 13 9 10 17 8 	5 
Post: 11 14 16 17 9 15 9 17 20 12 14 15 14 15 18 15 	9 
SOURCE: Bruce L. Baker, Ph.D. Used by permission. 

May we conclude, on the basis of these data, that the training program increases 
knowledge of behavior modification principles? Let a = .01. 
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7.4.2 Schwartz et al. (A-13) conducted a study to test the hypotheses that weight loss in 
apneic patients results in decreases in upper airway critical pressure (Pcrit) and that 
these decreases are associated with reductions in apnea severity. The study subjects 
were patients referred to the Johns Hopkins Sleep Disorder Center and in whom 
obstructive sleep apnea was newly diagnosed. Patients were invited to participate in 
either a weight loss program (experimental group) or a "usual care" program 
(control group). Among the data collected during the course of the study were the 
following before and after Pcrit (cm H2O) scores for the weight-loss subjects: 

Before: —2.3 5.4 4.1 12.5 .4 — .6 2.7 2.7 — .3 3.1 4.9 8.9 —1.5 

After: —6.3 .2 —5.1 6.6 —6.8 — 6.9 —2.0 — 6.6 —5.2 3.5 2.2 —1.5 —3.2 

SOURCE: Alan R. Schwartz, M.D. Used by permission. 

May we conclude on the basis of these data that the weight-loss program was 
effective in decreasing upper airway Pcrit? Let a = .01. 

7.4.3. The purpose of an investigation by Alahuhta et al. (A-14) was to evaluate the 
influence of extradural block for elective caesarean section simultaneously on several 
maternal and fetal hemodynamic variables and to determine if the block modified 
fetal myocardial function. The study subjects were eight healthy parturients in 
gestational weeks 38-42 with uncomplicated singleton pregnancies undergoing elec-
tive caesarean section under extradural anesthesia. Among the measurements taken 
were maternal diastolic arterial pressures during two stages of the study. The 
following are the lowest values of this variable at the two stages. 

Stage 1: 70 87 72 70 73 66 63 57 
Stage 2: 79 87 73 77 80 64 64 60 

SOURCE: Seppo Alahuhta, M.D. Used by permission. 

Do these data provide sufficient evidence, at the .05 level, to indicate that, in general 
under similar conditions, mean maternal diastolic arterial pressure is different at the 
two stages? 

7.4.4. Wolin et al. (A-15) demonstrated that long-wavelength ultraviolet (UV) light pro-
motes relaxation, promotes increased metabolism of H202  via catalase, and stimu-
lates nonmitochondrial consumption of 02  in the vascular smooth muscle of the 
bovine pulmonary artery. They also demonstrate that hypoxia and cyanide inhibit UV 
light-elicited relaxation and catalase-dependent H202  metabolism by bovine pul-
monary arterial smooth muscle. Among the measurements made by the investigators 
were the following measurements (nmoles/g/min) of formaldehyde production from 
methanol by pulmonary arterial smooth muscle during irradiation with UV light in 
the absence (A) and presence (P) of cyanide (1 mM NaCN). 

A: 1.850 .177 .564 .140 .128 .500 .000 .759 .332 

P: .000 .000 .000 .140 .000 .000 .000 .000 .332 

SOURCE: Michael S. Wolin, Ph.D. Used by permission. 
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Do these data provide sufficient evidence, at the .05 level, to support the investiga-
tors' claim that cyanide inhibits UV light-elicited relaxation? 

7.4.5. The purposes of an investigation by Mancebo et al. (A-16) were (1) to evaluate the 
acute effects of /32-agonist bronchodilator albuterol inhalation on the work of breath-
ing (WOB), gas exchange, and ventilatory pattern in spontaneously breathing intu-
bated patients during weaning from mechanical ventilation and (2) to ascertain 
whether or not the changes in WOB induced by such inhalation are related to a 
specific bronchodilator effect. Subjects were intubated adult patients (mean age, 59.5 
years) recovering from acute respiratory failure and meeting other technical criteria. 
The following WOB values (Joules/min) were obtained from the subjects before (1) 
and after (2) inhalation of albuterol: 

Patient COND WOB 

1 1 6.972 
1 2 5.642 
2 1 4.850 
2 2 3.634 
3 1 8.280 
3 2 5.904 
4 1 19.437 
4 2 18.865 
5 1 14.500 
5 2 13.400 
6 1 10.404 
6 2 8.832 
7 1 9.856 
7 2 7.560 
8 1 4.531 
8 2 4.546 
9 1 6.732 
9 2 5.893 

10 1 7.371 
10 2 5.512 
11 1 6.037 
11 2 4.239 
12 1 12.600 
12 2 11.784 
13 1 11.067 
13 2 12.621 
14 1 5.959 
14 2 4.978 
15 1 11.739 
15 2 11.590 

SOURCE: Dr. Jorge Mancebo. Used by permis-
sion. 

Do these data provide sufficient evidence to allow us to conclude that, in general 
under similar conditions, albuterol inhalation has an effect on mean WOB? Let 
a = .01. 
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7.5 
Hypothesis Testing: A Single 
Population Proportion 

Testing hypotheses about population proportions is carried out in much the same 
way as for means when the conditions necessary for using the normal curve are 
met. One-sided or two-sided tests may be made, depending on the question being 
asked. When a sample sufficiently large for application of the central limit theorem 
is available for analysis, the test statistic is 

p  — Po 

z — j Pogo  

V n 

(7.5.1) 

which, when 1/0  is true, is distributed approximately as the standard normal. 

Example 
7.5.1 

In a survey of injection drug users in a large city, Coates et al. (A-17) found that 18 
out of 423 were HIV positive. We wish to know if we can conclude that fewer than 5 
percent of the injection drug users in the sampled population are HIV positive. 

Solution: 

1. Data The data are obtained from the responses of 423 individuals of which 18 
possessed the characteristic of interest, that is, :p = 18/423 = .0426. 

2. Assumptions The sampling distribution of fi is approximately normally dis-
tributed in accordance with the central limit theorem. 

3. Hypotheses 

Ho: p 	.05 

HA: p < .05 

We conduct the test at the point of equality. The conclusion we reach will be 
the same that we would reach if we conducted the test using any other 
hypothesized value of p greater than .05. If 1/0  is true, p = .05 and the 

standard error, a);  = (.05)(.95)/423. Note that we use the hypothesized 
value of p in computing op. We do this because the entire test is based on the 
assumption that the null hypothesis is true. To use the sample proportion, fi, 
in computing o-p would not be consistent with this concept. 

4. Test Statistic The test statistic is given by Equation 7.5.1. 

5. Distribution of Test Statistic If the null hypothesis is true, the test statistic is 
approximately normally distributed with a mean of zero. 
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6. Decision Rule Let a = .05. The critical value of z is —1.645. Reject 1/0  if the 
computed z is < —1.645. 

7. Calculation of Test Statistic 

.0426 — .05 

  

— .70 

  

(.05)(.95) 

423 

 

8. Statistical Decision Do not reject Ho  since —.70 > — 1.645. 

9. Conclusion We conclude that in the population the proportion who are HIV 

positive may be .05 or more. 

EXERCISES 

For each of the following exercises, carry out the nine-step hypothesis testing procedure at 
the designated level of significance. Compute the p value for each test. 

7.5.1 Diana M. Bailey conducted a study to examine the reasons why occupational 
therapists have left the field of occupational therapy (A-18). Her sample consisted of 
female certified occupational therapists who had left the profession either perma-
nently or temporarily. Out of 696 subjects who responded to the data-gathering 
survey, 63 percent had planned to take time off from their jobs to have and raise 
children. On the basis of these data can we conclude that, in general, more than 60 
percent of the subjects in the sampled population had planned to take time off to 
have and raise children? Let a = .05. What is the sampled population? What 
assumptions are necessary to make your procedure valid? 

7.5.2 In an article in the American Journal of Public Health, Colsher et al. (A-19) describe the 
results of a health survey of 119 male inmates 50 years of age and older residing in a 
state's correctional facilities. They found that 21.6 percent of the respondents 
reported a history of venereal disease. On the basis of these findings, can we 
conclude that in the sampled population more than 15 percent have a history of a 
venereal disease? Let a = .05. 

7.5.3 Henning et al. (A-20) found that 66 percent of a sample of 670 infants had 
completed the hepatitis B vaccine series. Can we conclude on the basis of these data 
that, in the sampled population, more than 60 percent have completed the series? 
Let a = .05. 

7.5.4 The following questionnaire was completed by a simple random sample of 250 
gynecologists. The number checking each response is shown in the appropriate box. 

1. When you have a choice, which procedure do you prefer for obtaining samples of 
endometrium? 

a. Dilation and curettage 

b. Vobra aspiration 

175 

75 
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2. Have you seen one or more pregnant women during the past year whom you 
knew to have elevated blood lead levels? 

a. Yes 

b. No  

25 

225 
3. Do you routinely acquaint your pregnant patients who smoke with the suspected 

hazards of smoking to the fetus? 

a. Yes 

b. No 12 

  

Can we conclude from these data that in the sampled population more than 60 
percent prefer dilation and curettage for obtaining samples of endometrium? Let 
a = .01. 

7.5.5 Refer to Exercise 7.5.4. Can we conclude from these data that in the sampled 
population fewer than 15 percent have seen (during the past year) one or more 
pregnant women with elevated blood lead levels? Let a = .05. 

7.5.6 Refer to Exercise 7.5.4. Can we conclude from these data that more than 90 percent 
acquaint their pregnant patients who smoke with the suspected hazards of smoking 
to the fetus? Let a = .05. 

7.6 
Hypothesis Testing: 
The Difference Between 
Two Population Pro•ortions 

The most frequent test employed relative to the difference between two population 
proportions is that their difference is zero. It is possible, however, to test that the 
difference is equal to some other value. Both one-sided and two-sided tests may be 
made. 

When the null hypothesis to be tested is p, - p 2  = 0, we are hypothesizing 
that the two population proportions are equal. We use this as justification for 
combining the results of the two samples to come up with a pooled estimate of the 
hypothesized common proportion. If this procedure is adopted, one computes 

x1 + x 2 
+ n 2  

where x, and x2  are the numbers in the first and second samples, respectively, 
possessing the characteristic of interest. This pooled estimate of p = p, = p 2  is 
used in computing "(1% 4;2, the estimated standard error of the estimator, as follows 

238 

/p( 1  fi)  + p(1  = PI—P2 	n i 	 n 2  
(7.6.1) 
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The test statistic becomes 

CA -132) - (p1 -p2)0  z - 
Pi -P2 

(7.6.2) 

which is distributed approximately as the standard normal if the null hypothesis is 
true. 

Example 
7.6.1 

In a study of nutrition care in nursing homes Lan and Justice (A-21) found that 
among 55 patients with hypertension, 24 were on sodium-restricted diets. Of 149 
patients without hypertension, 36 were on sodium-restricted diets. May we con-
clude that in the sampled populations the proportion of patients on sodium-re-
stricted diets is higher among patients with hypertension than among patients 
without hypertension? 

Solution: 

1. Data The data consist of information regarding the sodium status of the diets 
of nursing-home patients with and without hypertension as described in the 
statement of the example. 

2. Assumptions We assume that the patients in the study constitute independent 
simple random samples from populations of patients with and without hyper-
tension. 

3. Hypotheses 

Ho: pH 	or PH 	0 

HA: P H > pH  or pH  - P H  > 0 

where pH  is the proportion on sodium-restricted diets in the population of 
hypertensive patients and pH  is the proportion on sodium-restricted diets in 
the population of patients without hypertension. 

4. Test Statistic The test statistic is given by Equation 7.6.2. 

5. Distribution of the Test Statistic If the null hypothesis is true, the test statistic is 
distributed approximately as the standard normal. 

6. Decision Rule Let a = .05. The critical value of z is 1.645. Reject H0  if 
computed z is greater than 1.645. 

7. Calculation of Test Statistic From the sample data we compute pH  = 24/55 = 
.4364, pH  = 36/149 = .2416, and p = (24 + 36)/(55 + 149) = .2941. The 
computed value of the test statistic, then, is 

(.4364 — .2416) 

 

= 2.71 

  

(.2941)( .7059) 	( .2941)( .7059) 

55 	+ 	149 
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8. Statistical Decision Reject Ho  since 2.71 > 1.645. 

9. Conclusion The proportion of patients on sodium-restricted diets is higher 
among hypertensive patients than among patients without hypertension (p = 
.0034). 

EXERCISES 

In each of the following exercises use the nine-step hypothesis testing procedure. Determine 
the p value for each test. 

7.6.1 Babaian and Camps (A-22) state that prostate-specific antigen (PSA), found in the 
ductal epithelial cells of the prostate, is specific for prostatic tissue and is detectable 
in serum from men with normal prostates and men with either benign or malignant 
diseases of this gland. They determined the PSA values in a sample of 124 men who 
underwent a prostate biopsy. Sixty-seven of the men had elevated PSA values 
(> 4 ng/m1). Of these, 46 were diagnosed as having cancer. Ten of the 57 men with 
PSA values < 4 ng/ml had cancer. On the basis of these data may we conclude that, 
in general, men with elevated PSA values are more likely to have prostate cancer? Let 
a = .01. 

7.6.2 Most people who quit smoking complain of subsequent weight gain. Hall et al. (A-23) 
designed an innovative intervention for weight gain prevention, which they compared 
to two other conditions including a standard treatment control condition designed to 
represent standard care of cessation-induced weight gain. One of the investigators' 
hypotheses was that smoking abstinence rates in the innovative intervention would be 
greater than those in the other two conditions. Of 53 subjects assigned to the 
innovative condition, 11 were not smoking at the end of 52 weeks. Nineteen of the 54 
subjects assigned to the control condition were abstinent at the end of the same time 
period. Do these data provide sufficient evidence to support, at the .05 level, the 
investigators' hypothesis? 

7.6.3 Research has suggested a high rate of alcoholism among patients with primary 
unipolar depression. An investigation by Winokur and Coryell (A-24) further explores 
this possible relationship. In 210 families of females with primary unipolar major 
depression, they found that alcoholism was present in 89. Of 299 control families, 
alcoholism was present in 94. Do these data provide sufficient evidence for us to 
conclude that alcoholism is more likely to be present in families of subjects with 
unipolar depression? Let a = .05. 

7.6.4 In a study of obesity the following results were obtained from samples of males and 
females between the ages of 20 and 75: 

n 	Number Overweight 

Males 	150 	 21 
Females 	200 	 48 

Can we conclude from these data that in the sampled populations there is a 
difference in the proportions who are overweight? Let a = .05. 
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7.7 
Hypothesis Testing: A Single 
Po ulation Variance 

In Section 6.9 we examined how it is possible to construct a confidence interval for 
the variance of a normally distributed population. The general principles presented 
in that section may be employed to test a hypothesis about a population variance. 
When the data available for analysis consist of a simple random sample drawn 
from a normally distributed population, the test statistic for testing hypotheses 
about a population variance is 

x 2  = (n — 1) s 2  /cr 2 
	

(7.7.1) 

which, when H0  is true, is distributed as x2  with n — 1 degrees of freedom. 

Example 
7.7.1 

The purpose of a study by Gundel et al. (A-25) was to examine the release of 
preformed and newly generated mediators in the immediate response to allergen 
inhalation in allergic primates. Subjects were 12 wild-caught, adult male cynomol-
gus monkeys meeting certain criteria of the study. Among the data reported by the 
investigators was a standard error of the sample mean of .4 for one of the 
mediators recovered from the subjects by bronchoalveolar lavage (BAL). We wish 
to know if we may conclude from these data that the population variance is not 4. 

Solution: 

1. Data See statement in the example. 

2. Assumptions The study sample constitutes a simple random sample from a 
population of similar animals. The values of the mediator are normally 
distributed. 

3. Hypotheses 

Ho: cr 2  = 4 

HA: Cr 2  # 4 

4. Test Statistic The test statistic is given by Equation 7.7.1 

5. Distribution of Test Statistic When the null hypothesis is true, the test statistic 
is distributed as ,y2  with n — 1 degrees of freedom. 

6. Decision Rule Let a = .05. Critical values of x2  are 3.816 and 21.920. Reject 
H0  unless the computed value of the test statistic is between 3.816 and 21.920. 
The rejection and nonrejection regions are shown in Figure 7.7.1. 
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41116 A 	 ? / 

.025 .025 

3.816 	 21.920 	 x211  

Rejection region 	 Nonrejection region 
	 Rejection region 

Figure 7.7.1 Rejection and nonrejection regions for Example 7.7.1. 

7. Calculation of Test Statistic 

s2  = 12(.4)2  = 1.92 

X2— 
	

4 
	 =5.28 
(11)(1.92) 

8. Statistical Decision Do not reject 1/0  since 3.816 < 5.28 < 21.920. 

9. Conclusion Based on these data we are unable to conclude that the population 
variance is not 4. 

One-Sided Tests Although this was an example of a two-sided test, one-sided 
tests may also be made by logical modification of the procedure given here. 

For HA: u2  > 4, reject Ho  if computed X2  )d-cr• 

For HA: cr2  < (4, reject Ho  if computed X2  Xa2 . 

Determining the p Value The determination of the p value for this test is 
complicated by the fact that we have a two-sided test and an asymmetric sampling 
distribution. When we have a two-sided test and a symmetric sampling distribution 
such as the standard normal or 1, we may, as we have seen, double the one-sided p 
value. Problems arise when we attempt to do this with an asymmetric sampling 
distribution such as the chi-square distribution. Gibbons and Pratt (1) suggest that 
in this situation the one-sided p value be reported along with the direction of the 
observed departure from the null hypothesis. In fact, this procedure may be 
followed in the case of symmetric sampling distributions. Precedent, however, 
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seems to favor doubling the one-sided p value when the test is two-sided and 
involves a symmetric sampling distribution. 

For the present example, then, we may report the p value as follows: 

p > .05 (two-sided test). A population variance less than 4 is suggested by the 
sample data, but this hypothesis is not strongly supported by the test. 

If the problem is stated in terms of the population standard deviation, one may 
square the sample standard deviation and perform the test as indicated above. 

EXERCISES 

In each of the following exercises carry out the nine-step testing procedure. Determine the p 
value for each test. 

7.7.1 Infante et al. (A-26) carried out a validation study of the dose-to-mother deuterium 
dilution method to measure breastmilk intake. Subjects were 10 infants hospitalized 
in a Nutrition Recovery Centre in Santiago, Chile. Among the data collected and 
analyzed was a measure of water intake from which the investigators computed a 
standard deviation of 124 (ml/day). We wish to know if we may conclude that the 
population standard deviation is less than 175? Let a = .05. 

7.7.2 Greenwald and Henke (A-27) compared treatment and mortality risks between 
prostate cancer patients receiving care in fee-for-service settings and those receiving 
care in a health maintenance organization (HMO). Among other findings, the 
investigators reported, for a sample of 44 HMO patients, a value of 2.33 for the 
standard error of the sample mean income. Do these data provide sufficient evidence 
to indicate that the population standard deviation is less than 18? Let a = .01. 

7.7.3 Vital capacity values were recorded for a sample of 10 patients with severe chronic 
airway obstruction. The variance of the 10 observations was .75. Test the null 
hypothesis that the population variance is 1.00. Let a = .05. 

7.7.4 Hemoglobin (gm %) values were recorded for a sample of 20 children who were part 
of a study of acute leukemia. The variance of the observations was 5. Do these data 
provide sufficient evidence to indicate that the population variance is greater than 4? 
Let a = .05. 

7.7.5 A sample of 25 administrators of large hospitals participated in a study to investigate 
the nature and extent of frustration and emotional tension associated with the job. 
Each participant was given a test designed to measure the extent of emotional 
tension he or she experienced as a result of the duties and responsibilities associated 
with the job. The variance of the scores was 30. Can it be concluded from these data 
that the population variance is greater than 25? Let a = .05. 

7.7.6 In a study in which the subjects were 15 patients suffering from pulmonary sarcoid 
disease, blood gas determinations were made. The variance of the Pa02  (mm Hg) 
values was 450. Test the null hypothesis that the population variance is greater than 
250. Let a = .05. 
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7.7.7 Analysis of the amniotic fluid from a simple random sample of 15 pregnant women 
yielded the following measurements on total protein (grams per 100 ml) present: 

.69, 1.04, .39, .37, .64, .73, .69, 1.04 

.83, 1.00, .19, .61, .42, .20, .79 

Do these data provide sufficient evidence to indicate that the population variance is 
greater than .05? Let a = .05. What assumptions are necessary? 

7.8 
Hypothesis Testing: The Ratio of 
Two Population Variances 

As we have seen, the use of the t distribution in constructing confidence intervals 
and in testing hypotheses for the difference between two population means assume 
that the population variances are equal. As a rule, the only hints available about 
the magnitudes of the respective variances are the variances computed from 
samples taken from the populations. We would like to know if the difference that, 
undoubtedly, will exist between the sample variances is indicative of a real 
difference in population variances, or if the difference is of such magnitude that it 
could have come about as a result of chance alone when the population variances 
are equal. 

Two methods of chemical analysis may give the same results on the average. It 
may be, however, that the results produced by one method are more variable than 
the results of the other. We would like some method of determining whether this is 
likely to be true. 

Variance Ratio Test Decisions regarding the comparability of two popula-
tion variances are usually based on the variance ratio test, which is a test of the null 
hypothesis that two population variances are equal. When we test the hypothesis 
that two population variances are equal, we are, in effect, testing the hypothesis 
that their ratio is equal to 1. 

We learned in the preceding chapter that, when certain assumptions are met, 
the quantity (4/cr,2)/(4/4) is distributed as F with n, — 1 numerator degrees 
of freedom and n 2  — 1 denominator degrees of freedom. If we are hypothesizing 
that cr2 = 4, we assume that the hypothesis is true, and the two variances cancel 
out in the above expression leaving 4/4, which follows the same F distribution. 
The ratio 4/4 will be designated V.R. for variance ratio. 

For a two-sided test, we follow the convention of placing the larger sample 
variance in the numerator and obtaining the critical value of F for a/2 and the 
appropriate degrees of freedom. However, for a one-sided test, which of the two 
sample variances is to be placed in the numerator is predetermined by the 
statement of the null hypothesis. For example, for the null hypothesis that 
cr,2  < cq, the appropriate test statistic is V.R. = s2, /4. The critical value of F is 
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obtained for a (not a/2) and the appropriate degrees of freedom. In like manner, 
if the null hypothesis is that o > c4, the appropriate test statistic is V.R. = s22/s21. 

In all cases, the decision rule is to reject the null hypothesis if the computed V.R. is 
equal to or greater than the critical value of F. 

Example 
7.8.1 

Behr et al. (A-28) investigated alterations of thermoregulation in patients with 
certain pituitary adenomas (P). The standard deviation of the weights of a sample 
of 12 patients was 21.4 kg. The weights of a sample of five control subjects (C) 
yielded a standard deviation of 12.4 kg. We wish to know if we may conclude that 
the weights of the population represented by the sample of patients are more 
variable than the weights of the population represented by the sample of control 
subjects. 

Solution 

1. Data See the statement of the example. 

2. Assumptions Each sample constitutes a simple random sample of a population 
of similar subjects. The samples are independent. The weights in both popula-
tions are approximately normally distributed. 

3. Hypotheses 

Ho: r < 

HA: 4 > U 

4. Test Statistic 

V.R. = 

5. Distribution of Test Statistic When the null hypothesis is true, the test statistic 
is distributed as F with np  — 1 numerator and nc  — 1 denominator degrees of 
freedom. 

6. Decision Rule Let a = .05. The critical value of F, from Table G, is 5.91. Note 
that Table G does not contain an entry for 11 numerator degrees of freedom 
and, therefore, 5.91 is obtained by using 12, the closest value to 11 in the table. 
Reject 1/0  if V.R. 5.91. The rejection and nonrejection regions are shown in 
Figure 7.8.1. 

7. Calculation of Test Statistic 

(21.4)2  
V.R. 	 — 2.98 

(12.4)2  

8. Statistical Decision We cannot reject Ho, since 2.98 < 5.91; that is, the com-
puted ratio falls in the nonrejection region. 
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.05 

5.91 F(11,4) 

V 
Nonrejection region 
	

Rejection region 

Figure 7.8.1 Rejection and nonrejection regions, 
Example 7.8.1. 

9. Conclusion The weights of the population of patients may not be any more 
variable than the weights of control subjects. Since the computed V.R. of 2.98 
is less than 3.90, the p value for this test is greater than .10. 

EXERCISES 

In the following exercises perform the nine-step test. Determine the p value for each test. 

7.8.1 Perry et al. (A-29) conducted a study to determine whether a correlation exists 
between clozapine concentrations and therapeutic response. The subjects were pa-
tients with a diagnosis of schizophrenia who met other criteria. At the end of four 
weeks of clozapine treatment they were classified as responders or nonresponders. 
The standard deviation of scores on the Brief Psychiatric Rating Scale (BPRS) was 2.6 
among 11 responders and 7.7 among 18 nonresponders at the end of the treatment 
period. May we conclude on the basis of these data that, in general, the variance of 
BPRS scores among nonresponders is greater than among responders? Let a = .05. 

7.8.2 Studenski et al. (A-30) conducted a study in which the subjects were older persons 
with unexplained falls (fallers) and well elderly persons (controls). Among the 
findings reported by the investigators were statistics on tibialis anterior (TA) latency 
(msec). The standard deviation was 23.7 for a sample of 10 fallers and 15.7 for a 
sample of 24 controls. Do these data provide sufficient evidence for us to conclude 
that the variability of the scores on this variable differ between the populations 
represented by the fallers and the controls? Let a = .05. 

7.8.3 A test designed to measure level of anxiety was administered to a sample of male and 
a sample of female patients just prior to undergoing the same surgical procedure. 
The sample sizes and the variances computed from the scores were as follows: 

Males: n = 16, s2  = 150 

Females: n = 21, s2  = 275 

Do these data provide sufficient evidence to indicate that in the represented popula-
tions the scores made by females are more variable than those made by males? Let 
a = .05. 
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7.8.4 In an experiment to assess the effects on rats of exposure to cigarette smoke, 11 
animals were exposed and 11 control animals were not exposed to smoke from 
unfiltered cigarettes. At the end of the experiment measurements were made of the 
frequency of the ciliary beat (beats/min at 20°  C) in each animal. The variance for 
the exposed group was 3400 and 1200 for the unexposed group. Do these data 
indicate that in the populations represented the variances are different? Let a = .05. 

7.8.5 Two pain-relieving drugs were compared for effectiveness on the basis of length of 
time elapsing between administration of the drug and cessation of pain. Thirteen 
patients received drug 1 and 13 received drug 2. The sample variances were 	= 64 
and 4 = 16. Test the null hypothesis that the two population variances are equal. 
Let a = .05. 

7.8.6 Packed cell volume determinations were made on two groups of children with 
cyanotic congenital heart disease. The sample sizes and variances were as follows: 

Group 	n 	s2  

1 	10 	40 
2 	16 	84 

Do these data provide sufficient evidence to indicate that the variance of population 2 
is larger than the variance of population 1? Let a = .05. 

7.8.7. Independent simple random samples from two strains of mice used in an experiment 
yielded the following measurements on plasma glucose levels following a traumatic 
experience: 

Strain A: 
	

54, 99, 105, 46, 70, 87, 55, 58, 139, 91 

Strain B: 
	

93, 91, 93, 150, 80, 104, 128, 83, 88, 95, 94, 97 

Do these data provide sufficient evidence to indicate that the variance is larger in the 
population of strain A mice than in the population of strain B mice? Let a = .05. 

What assumptions are necessary? 

7.9 
The Type II Error and the Power 
of a Test 

In our discussion of hypothesis testing our focus has been on a, the probability of 
committing a type I error (rejecting a true null hypothesis). We have paid scant 
attention to /3, the probability of committing a type II error (failing to reject a false 
null hypothesis). There is a reason for this difference in emphasis. For a given test, 
a is a single number assigned by the investigator in advance of performing the test. 
It is a measure of the acceptable risk of rejecting a true null hypothesis. On the 
other hand, /3 may assume one of many values. Suppose we wish to test the null 
hypothesis that some population parameter is equal to some specified value. If Ho  
is false and we fail to reject it, we commit a type II error. If the hypothesized value 
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of the parameter is not the true value, the value of p (the probability of 
committing a type II error) depends on several factors: (1) the true value of the 
parameter of interest, (2) the hypothesized value of the parameter, (3) the value of 
a, and (4) the sample size, n. For fixed a and n, then, we may, before performing a 
hypothesis test, compute many values of /3 by postulating many values for the 
parameter of interest given that the hypothesized value is false. 

For a given hypothesis test it is of interest to know how well the test controls 
type II errors. If 1/0  is in fact false, we would like to know the probability that we 
will reject it. The power of a test, designated 1 — /3, provides this desired informa-
tion. The quantity 1 — /3 is the probability that we will reject a false null 
hypothesis; it may be computed for any alternative value of the parameter about 
which we are testing a hypothesis. Therefore, 1 — /3 is the probability that we will 
take the correct action when 1/0  is false because the true parameter value is equal 
to the one for which we computed 1 — /3. For a given test we may specify any 
number of possible values of the parameter of interest and for each compute the 
value of 1 — /3. The result is called a power function. The graph of a power function, 
called a power curve, is a helpful device for quickly assessing the nature of the power 
of a given test. The following example illustrates the procedures we use to analyze 
the power of a test. 

Example 
7.9.1 

Suppose we have a variable whose values yield a population standard deviation of 
3.6. From the population we select a simple random sample of size n = 100. We 
select a value of a = .05 for the following hypotheses 

Ho:µ = 17.5, 	HA: ti # 17.5 

Solution: When we study the power of a test, we locate the rejection and 
nonrejection regions on the x scale rather than the z scale. We find the critical 
values of x for a two-sided test using the following formulas: 

and 

o- 
= kto + 

n 

Q 
= 

n 

(7.9.1) 

(7.9.2) 

where xu  and xL  are the upper and lower critical values, respectively, of Tx; +z and 
—z are the critical values of z; and /.4.0  is the hypothesized value of A. For our 
example, we have 

(3.6 
xu 	

) 
= 17.50 + 1.96 	(10) — 17.50 + 1.96(.36) 

= 17.50 + .7056 = 18.21 
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and 

xL  = 17.50 — 1.96(.36) = 17.50 — .7056 = 16.79 

Suppose that Ho  is false, that is, that /.4, is not equal to 17.5. In that case,µ is 
equal to some value other than 17.5. We do not know the actual value of j.t. But if 
1/0  is false, p, is one of the many values that are greater than or smaller than 17.5. 
Suppose that the true population mean is kt i  = 16.5. Then the sampling distribu-
tion of x1  is also approximately normal, with A, = µ = 16.5. We call this sampling 
distribution AO, and we call the sampling distribution under the null hypothesis 

Figure 7.9.1 Size of f3 for selected values for H1  for Example 7.9.1. 
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TABLE 7.9.1 Values of /3 and 1 -p for Selected Alternative Values 
of hi i , Example 7.9.1 

Possible Values of n Under 
H1  When Ho  is False 13  1 - 13 

16.0 0.0143 0.9857 
16.5 0.2090 0.7910 
17.0 0.7190 0.2810 
18.0 0.7190 0.2810 
18.5 0.2090 0.7910 
19.0 0.0143 0.9857 

13, the probability of the type II error of failing to reject a false null hypothesis, 
is the area under the curve of f(.0 that overlaps the nonrejection region specified 
under Ho. To determine the value of 0, we find the area under f(7,c,), above the X. 
axis, and between .i. = 16.79 and ,:v = 18.21. The value of 13 is equal to P(16.79 5_ : i 

5_ 18.21) when ,u = 16.5. This is the same as 

( 16.79 - 16.5 	18.21 - 16.5 \ 	/ .29 	1.71 1 
P 

.36 	- 
 z < 	

) = 1736 5' z 5-  .36 	 .36 ) 

= P(.81 < z < 4.75) 

.t.--; 1 - .7910 - .2090 

Thus the probability of taking an appropriate action (that is, rejecting H0) 
when the null hypothesis states that ,u, = 17.5, but in fact p. = 16.5, is 1 - .2090 = 
.7910. As we noted, kr, may be one of a large number of possible values when Ho  is 
false. Figure 7.9.1 shows a graph of several such possibilities. Table 7.9.1 shows the 
corresponding values of (3 and 1 - /3 (which are approximate), along with the 
values of /3 for some additional alternatives. 

Note that in Figure 7.9.1 and Table 7.9.1 those values of A under the 
alternative hypothesis that are closer to the value of m, specified by Ho  have larger 
associated /3 values. For example, when pi, = 18 under the alternative hypothesis, 
/3 = .7190; and when p, = 19.0 under HI , /3 = .0143. The power of the test for 
these two alternatives, then, is 1 - .7190 = .2810 and 1 - .0143 = .9857, respec-
tively. We show the power of the test graphically in a power curve, as in Figure 
7.9.2. Note that the higher the curve, the greater the power. 

Although only one value of a is associated with a given hypothesis test, there are 
many values of /3, one for each possible value of A if /.1,0  is not the true value of A 
as hypothesized. Unless alternative values of p. are much larger or smaller than 
Ao, /3 is relatively large compared with a. Typically, we use hypothesis-testing 
procedures more often in those cases in which, when Ho  is false, the true value of 
the parameter is fairly close to the hypothesized value. In most cases, /3, the 
computed probability of failing to reject a false null hypothesis, is larger than a, 
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16.0 	17.0 	18.0 	19.0 
Alternative values of g 

Figure 7.9.2 Power curve for Example 7.9.1. 

the probability of rejecting a true null hypothesis. These facts are compatible with 
our statement that a decision based on a rejected null hypothesis is more conclu-
sive than a decision based on a null hypothesis that is not rejected. The probability 
of being wrong in the latter case is generally larger than the probability of being 
wrong in the former case. 

Figure 7.9.2 shows the V-shaped appearance of a power curve for a two-sided 
test. In general, a two-sided test that discriminates well between the value of the 
parameter in Ho  and values in H1  results in a narrow V-shaped power curve. A 
wide V-shaped curve indicates that the test discriminates poorly over a relatively 
wide interval of alternative values of the parameter. 

Power Curves for One-Sided Tests The shape of a power curve for a 
one-sided test with the rejection region in the upper tail is an elongated S. If the 
rejection of a one-sided test is located in the lower tail of the distribution, the 
power curve takes the form of a reverse elongated S. The following example shows 
the nature of the power curve for a one-sided test. 

Example 
7.9.2 

The mean time laboratory employees now take to do a certain task on a machine is 
65 seconds, with a standard deviation of 15 seconds. The times are approximately 
normally distributed. The manufacturers of a new machine claim that their 
machine will reduce the mean time required to perform the task. The quality-con-
trol supervisor designs a test to determine whether or not she should believe the 
claim of the makers of the new machine. She chooses a significance level of 
a = 0.01 and randomly selects 20 employees to perform the task on the new 
machine. The hypotheses are 

Ho: /.2, 	65, 	HA: 	< 65 

The quality-control supervisor also wishes to construct a power curve for the test. 



1-R 

1.00 

0.90 

0.80 

0.70 

0.60 

0.50 

0.40 

0.30 

0.20 

0.10 

51 	53 	55 	57 	59 	61 	63 
	

65 
Alternative values of p. 

Figure 7.9.4 Power curve for Example 7.9.2. 

258 	Chapter 7 • Hypothesis Testing 

55 57 	65 

Figure 7.9.3 /3 calculated for A = 55. 

Solution: The quality control supervisor computes, for example, the following 
value of 1 — /3 for the alternative A = 55. The critical value of Tx for the test is 

65 — 2.33 ( 
l
a  = 57 

We find /3 as follows: 

57 — 55  ) 
p = P(i > 57IA = 55) = 13(z> 

15/ /Y) 
— P(Z> .60) 

1  

= 1 — .7257 = .2743 

Consequently, 1 — /3 = 1 — .2743 = .7257. Figure 7.9.3 shows the calculation of /3. 
Similar calculations for other alternative values of kt, also yield values of 1 — /3. 
When plotted against the values of p, these give the power curve shown in 
Figure 7.9.4. 
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Operating Characteristic Curves Another way of evaluating a test is to 
look at its operating characteristic (OC) curve. To construct an OC curve, we plot 
values of /3, rather than 1 — /3, along the vertical axis. Thus an OC curve is the 
complement of the corresponding power curve. 

EXERCISES 

Construct and graph the power function for each of the following situations. 

7.9.1 Ho: :5_ 516, HA: A > 516, 	n = 16, a-  = 32, a = 0.05. 

7.9.2 Ho: = 3, HA: A 0 3, 	n = 100, o-  = 1, a = 0.05. 

7.9.3 Ho: 4.25, HA: A > 4.25, 	n= 81, a = 1.8, a = 0.01. 

7.10 
Determining Sample Size to 
Control Both Type I and 
T •e II Errors 

You learned in Chapter 6 how to find the sample sizes needed to construct 
confidence intervals for population means and proportions for specified levels of 
confidence. You learned in Chapter 7 that confidence intervals may be used to test 
hypotheses. The method of determining sample size presented in Chapter 6 takes 
into account the probability of a type I error, but not a type II error since the level 
of confidence is determined by the confidence coefficient, 1 — a. 

In many statistical inference procedures, the investigator wishes to consider 
the type II error as well as the type I error when determining the sample size. To 
illustrate the procedure, we refer again to Example 7.9.2. 

Example 	In Example 7.9.2, the hypotheses are 
7.10.1 

Ho : ea 65, 	HA: < 65 

The population standard deviation is 15, and the probability of a type I error is set 
at .01. Suppose that we want the probability of failing to reject Ho  (p) to be .05 if 
H0  is false because the true mean is 55 rather than the hypothesized 65. How large 
a sample do we need in order to realize, simultaneously, the desired levels of a 
and /3. 

Solution: For a = .01 and n = 20, /3 is equal to .2743. The critical value is 57. 
Under the new conditions, the critical value is unknown. Let us call this new 
critical value C. Let "to  be the hypothesized mean and p. the mean under the 
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1-11 	C 	No 
I 	 I 
I 	I 	I 

0 	z1  

Zo 	0 

Figure 7.10.1 Graphic representation of relationships in 
determination of sample size to control both type I and type II errors. 

alternative hypothesis. We can transform each of the relevant sampling distribu-
tions of x, the one with a mean of go  and the one with a mean of gi, to a z 
distribution. Therefore we can convert C to a z value on the horizontal scale of 
each of the two standard normal distributions. When we transform the sampling 
distribution of x that has a mean of go  to the standard normal distribution, we call 
the z that results zo. When we transform the sampling distribution of x-  that has a 
mean of g, to the standard normal distribution, we call the z that results z,. 
Figure 7.10.1 represents the situation described so far. 

We can express the critical value C as a function of zo  and go  and also as a 
function of z, and g i . This gives the following equations: 

o- 
C = go  — zo 	 (7.10.1) 

C = p,, + z, —,— 	 (7.10.2) 
Vn 

We set the right-hand sides of these equations equal to each other and solve for n, 
to obtain 

n = 
(Zo 	ZI)(r  12  

(AO 
(7.10.3) 

To find n for our illustrative example, we substitute appropriate quantities 
into Equation 7.10.3. We have go  = 65, g i  = 55, and o = 15. From Table D of 
Appendix II, the value of z that has .01 of the area to its left is —2.33. The value of 
z that has .05 of the area to its right is 1.645. Both zo  and z, are taken as positive. 
We determine whether C lies above or below either go  or p,, when we substitute 
into Equations 7.10.1 and 7.10.2. Thus, we compute 

(2.33 + 1.645)(15) 2  
n — 	  — 35.55 

(65 — 55) 
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We would need a sample of size 36 to achieve the desired levels of a and f3 when 
we choose p, = 55 as the alternative value of p.. 

We now compute C, the critical value for the test, and state an appropriate 
decision rule. To find C, we may substitute known numerical values into either 
Equation 7.10.1 or Equation 7.10.2. For illustrative purposes, we solve both equa-
tions for C. First we have 

15 
C = 65 — 2.33( —) = 59.175

36  

From Equation 7.10.2, we have 

15 
C = 55 + 1.645( — R = 59.1125 

1/ -  

The difference between the two results is due to rounding error. 
The decision rule, when we use the first value of C, is as follows. 

Select a sample of site 36 and compute x. If x < 59.175, reject Ho. If x > 59.175, 
do not reject Ho. 

We have limited our discussion of the type II error and the power of a test to 
the case involving a population mean. The concepts extend to cases involving other 
parameters. 

EXERCISES 

7.10.1 Given Ho: A < 516, 	HA: A > 516, 	n = 16, a = 32, a = .05. Let /3 = .10 
and p. = 520, and find n and C. State the appropriate decision rule. 

7.10.2 Given Ho: A < 4.500, 	HA:µ > 4.500, 	n = 16, a.  = .020, a = .01. Let p = 
.05 and A I  = 4.52, and find n and C. State the appropriate decision rule. 

7.10.3 Given 1/0: 	4.25, 	HA:µ > 4.25, 	n = 81, o = 1.8, a = .01. Let /3 = .03 
and A I  = 5.00, and find n and C. State the appropriate decision rule. 

7.11 
Summar 

In this chapter the general concepts of hypothesis testing are discussed. A general 
procedure for carrying out a hypothesis test consisting of the following nine steps is 
suggested. 
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1. Description of data. 

2. Statement of necessary assumptions. 

3. Statement of null and alternative hypotheses. 

4. Specification of the test statistic. 

5. Specification of the distribution of the test statistic. 

6. Statement of the decision rule. 

7. Calculation of test statistic from sample data. 

8. The statistical decision based on sample results. 

9. Conclusion. 

A number of specific hypothesis tests are described in detail and are illustrated 
with appropriate examples. These include tests concerning population means, the 
difference between two population means, paired comparisons, population propor-
tions, the difference between two population proportions, a population variance, 
and the ratio of two population variances. In addition we discuss the power of a test 
and the determination of sample size for controlling both type I and type II errors. 

REVIEW QUESTIONS AND EXERCISES 

1. What is the purpose of hypothesis testing? 

2. What is a hypothesis? 

3. List and explain each step in the nine-step hypothesis testing procedure. 

4. Define 

a. Type I error 
	

b. Type II error 
c. The power of a test 
	

d. Power function 
e. Power curve 
	

f. Operating characteristic curve 

5. Explain the difference between the power curves for one-sided tests and two-sided tests. 

6. Explain how one decides what statement goes into the null hypothesis and what 
statement goes into the alternative hypothesis. 

7. What are the assumptions underlying the use of the t statistic in testing hypotheses 
about a single mean? The difference between two means? 

8. When may the z statistic be used in testing hypotheses about 

a. A single population mean? 
b. The difference between two population means? 
c. A single population proportion? 
d. The difference between two population proportions? 

9. In testing a hypothesis about the difference between two population means, what is the 
rationale behind pooling the sample variances? 
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10. Explain the rationale behind the use of the paired comparisons test. 

11. Give an example from your field of interest where a paired comparisons test would be 
appropriate. Use real or realistic data and perform an appropriate hypothesis test. 

12. Give an example from your field of interest where it would be appropriate to test a 
hypothesis about the difference between two population means. Use real or realistic data 
and carry out the nine-step hypothesis testing procedure. 

13. Do Exercise 12 for a single population mean. 

14. Do Exercise 12 for a single population proportion. 

15. Do Exercise 12 for the difference between two population proportions. 

16. Do Exercise 12 for a population variance. 

17. Do Exercise 12 for the ratio of two population variances. 

18. Dr. Yue Chen (A-31), in an article in the American Journal of Public Health, presents 
information on some factors associated with the infant-feeding practices of mothers in 
Shanghai. This investigator found that, among 1706 male infants, 35.9 percent were 
artificially fed. Among 1579 female infants, 32.9 percent were artificially fed. Is the 
proportion of artificially fed infants significantly higher among males than females? Let 
a  = .10. 

19. Rodriguez-Roisin et al. (A-32) state that methacholine (MTH) inhalation challenge is by 
far one of the most widely used tools for the diagnosis of asthma. They investigated the 
pattern and time course of ventilation-profusion (VA/Q) inequality after challenge to 
better define the model of MTH bronchial challenge in patients with asymptomatic mild 
asthma. Among the data collected from the 16 subjects in the study were the following 
Pa„, measurements before (B) and after (A) challenge by MTH. 

Case# B A 

1 88.2 70.6 
2 100.9 70.0 
3 96.0 71.0 
4 99.1 64.1 
5 86.9 79.5 
6 103.7 79.5 
7 76.0 72.2 
8 81.8 70.6 
9 72.1 66.9 

10 93.7 67.0 
11 98.3 67.2 
12 77.5 71.6 
13 73.5 71.5 
14 91.7 71.1 
15 97.4 77.0 
16 73.5 66.4 

SOURCE: Robert Rodriguez-Roisin, M.D. 
Used with permission. 

Do these data provide sufficient evidence to indicate that MTH causes a decrease in 
Pao2  Let a = .05. 
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20. Darko et al. (A-33) evaluated the utility of mitogen-induced lymphocyte proliferation 
assays in clinical research in psychoimmunology. Study respondents were patients with a 

diagnosis of major depressive disorder who met other study criteria and medically and 
psychiatrically healthy comparison subjects. Among the data collected were scores on 
the Brief Psychiatric Rating Scale (BPRS) by two groups of subjects. Group A patients fit 
the hypothesis of lessened immune response in depression and group B patients 
responded better than their matched comparison subjects. The BPRS depression sub-
scales scores by subjects in the two groups were as follows: 

Group A 	Group B 

	

12 	 17 

	

13 	 14 

	

12 	 19 

	

12 	 15 

	

9 	 8 

	

7 	 19 

	

8 	 12 

	

5 	 20 

	

10 	 9 

	

13 	 10 

	

15 	 12 
11 

7 

SOURCE: Denis F. Darko, M. D. 
Used with permission. 

May we conclude on the basis of these data that, in general, group B patients, on the 
average, score higher on the BPRS depression subscale? Let a = .05. 

21. Nace et al. (A-34) conducted a study to assess the complex relationship between 
substance abuse and personality disorders. The authors determined the prevalence of 
personality disorders in a group of middle-class substance abusers and compared the 
subjects who had personality disorders with those who did not. Among the data reported 
were the following statistics on the depression component of the Minnesota Multiphasic 
Personality Inventory (MMPI). 

With 	 Without 
Personality Disorders 	Personality Disorders 

57 	70.63 	16.27 	43 	64.33 	12.99 

SOURCE: Edgar P. Nace, Carlos W. Davis, and Joseph P. Gaspari, "Axis 
I Comorbidity in Substance Abusers," American Journal of Psychiatg, 148 
(1991), 118-120. 

May we conclude on the basis of these data that, in general, substance abusers with and 
without personality disorders differ with respect to their mean scores on the depression 
component of the MMPI? Let a = .05. 

22. Researchers wish to know if urban and rural adult residents of a developing country 
differ with respect to the prevalence of blindness. A survey revealed the following 
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information: 

Group 	Number in Sample 	Number Blind 

Rural 	 300 	 24 
Urban 	 500 	 15 

Do these data provide sufficient evidence to indicate a difference in the prevalence of 
blindness in the two populations? Let a = .05. Determine the p value. 

23. During an experiment using laboratory animals the following data on renal cortical 
blood flow during control conditions and during the administration of a certain anes-
thetic were recorded. 

Animal 
Number 

Renal Cortical Blood Flow 
(ml / g / min) 

Control 
During Administration 

of Anesthetic 

1 2.35 2.00 
2 2.55 1.71 
3 1.95 2.22 
4 2.79 2.71 
5 3.21 1.83 
6 2.97 2.14 
7 3.44 3.72 
8 2.58 2.10 
9 2.66 2.58 

10 2.31 1.32 
11 3.43 3.70 
12 2.37 1.59 
13 1.82 2.07 
14 2.98 2.15 
15 2.53 2.05 

Can one conclude on the basis of these data that the anesthetic retards renal cortical 
blood flow? Let a = .05. Determine the p value. 

24. An allergy research team conducted a study in which two groups of subjects were used. 
As part of the research, blood eosinophil determinations were made on each subject with 
the following results: 

Eosinophil Value (no./ mm3) 

Sample 

A 14 584 225 
B 16 695 185 

Do these data provide sufficient evidence to indicate that the population means are 
different? Let a = .05. Determine the p value. 

25. A survey of 90 recently delivered women on the rolls of a county welfare department 
revealed that 27 had a history of intrapartum or postpartum infection. Test the null 
hypothesis that the population proportion with a history of intrapartum or postpartum 
infection is less than or equal to .25. Let a = .05. Determine the p value. 
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26. In a sample of 150 hospital emergency admissions with a certain diagnosis, 128 listed 
vomiting as a presenting symptom. Do these data provide sufficient evidence to indicate, 
at the .01 level of significance, that the population proportion is less than .92? 
Determine the p value. 

27. A research team measured tidal volume in 15 experimental animals. The mean and 
standard deviation were 45 and 5 cc, respectively. Do these data provide sufficient 
evidence to indicate that the population mean is greater than 40 cc? Let a = .05. 

28. A sample of eight patients admitted to a hospital with a diagnosis of biliary cirrhosis had 
a mean IgM level of 160.55 units per milliliter. The sample standard deviation was 50. 
Do these data provide sufficient evidence to indicate that the population mean is greater 
than 150? Let a = .05. Determine the p value. 

29. Some researchers have observed a greater airway resistance in smokers than in non-
smokers. Suppose a study, conducted to compare the percent tracheobronchial retention 
of particles in smoking-discordant monozygotic twins, yielded the following results: 

Percent Retention 

Smoking Twin Nonsmoking Twin 

60.6 47.5 
12.0 13.3 
56.0 33.0 
75.2 55.2 
12.5 21.9 
29.7 27.9 
57.2 54.3 
62.7 13.9 
28.7 8.9 
66.0 46.1 
25.2 29.8 
40.1 36.2 

Do these data support the hypothesis that tracheobronchial clearance is slower in 
smokers? Let a = .05. Determine the p value for this test. 

30. Circulating levels of estrone were measured in a sample of 25 postmenopausal women 
following estrogen treatment. The sample mean and standard deviation were 73 and 16, 
respectively. At the .05 significance level can one conclude on the basis of these data that 
the population mean is higher than 70? 

31. Systemic vascular resistance determinations were made on a sample of 16 patients with 
chronic, congestive heart failure while receiving a particular treatment. The sample 
mean and standard deviation were 1600 and 700, respectively. At the .05 level of 
significance do these data provide sufficient evidence to indicate that the population 
mean is less than 2000? 

32. The mean length at birth of 14 male infants was 53 cm with a standard deviation of 9 
cm. Can one conclude on the basis of these data that the population mean is not 50 cm? 
Let the probability of committing a type I error be .10. 
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For each of the studies described in Exercises 33 through 38, answer as many of the 
following questions as possible: (a) What is the variable of interest? (b) Is the parameter of 
interest a mean, the difference between two means (independent samples), a mean differ-
ence (paired data), a proportion, or the difference between two proportions (independent 
samples)? (c) What is the sampled population? (d) What is the target population? (e) What 
are the null and alternative hypotheses? (f) Is the alternative hypothesis one-sided (left tail), 
one-sided (right tail), or two-sided? (g) What type I and type II errors are possible? (h) Do 
you think the null hypothesis was rejected? Explain why or why not. 

33. Jara et al. (A-35) conducted a study in which they found that the potassium concentra-
tion in the saliva from Down's syndrome patients was significantly lower than that of 
control individuals. 

34. In a study by Hemming et al. (A-36), 50 consecutive patients undergoing segmental 
hepatic resection during a three-year time period were reviewed. Student's t tests were 
used to analyze the data. Among the findings was the fact that cirrhotic patients showed 
a significantly increased transfusion requirement of 2.0 ± 1.3 U versus 0.7 ± 1.3 U. 

35. Sokas et al. (A-37) reported on a study in which second-year medical students partici-
pated in a training program that focused on the risks of bloodborne-disease exposure 
and the techniques of phlebotomy and intravenous insertion using universal precautions. 
The students answered pre- and posttraining knowledge questions and rated their 
preparedness on a five-point scale. The researchers found that the students' knowledge 
and self-assessed preparedness scores increased. 

36. Wu et al. (A-38) conducted a study to determine the effect of zidovudine on functional 
status and well-being in patients with early symptomatic human immunodeficiency virus 
(HIV). Thirty-four subjects were assigned at random to placebo and 36 subjects to 
zidovudine. The mean changes from baseline for zidovudine versus placebo groups were 
compared. Subjects receiving a placebo reported better quality of life compared to 
baseline than subjects receiving zidovudine at 24 weeks for all dimensions of well-being, 
including overall health, energy, mental health, health distress, pain, and quality of life. 

37. Stockwell et al. (A-39) categorized 15 establishments licensed to sell alcohol in 
metropolitan Perth, Western Australia, as either high risk (seven establishments) or low 
risk (eight establishments) on the basis of incidence of customers involved in road traffic 
accidents and drunk-driving offences. Subjects were 414 customers exiting from the 
chosen establishments between 8 P.M. and midnight on Friday and Saturday nights. They 
found that high-risk establishments had three times more customers whose breathalyser 
readings were in excess of 0.15 mg/ml (p < 0.01). They also found that significantly 
more patrons from high-risk establishments than from low-risk establishments were 
rated as appearing moderately or severely intoxicated but refused to be breath-tested. 

38. Is the frequency of biotinidase deficiency greater in children with unexplained develop-
mental delay or neurologic abnormalities than in the general population? This question 
was investigated by Sutherland et al. (A-40). They studied 274 children seen at a large 
outpatient clinic over a four-year period who had one or more of these neurologic 
abnormalities and for whom no specific cause for their abnormalities could be found. 
None of the patients with nonclassic biotinidase-deficiency findings had a deficiency of 
biotinidase activity. 
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39. For each of the following situations, identify the type I and type II errors and the correct 
actions. 

(a) Ho: A new treatment is not more effective than the traditional one. 

(1) Adopt the new treatment when the new one is more effective. 
(2) Continue with the traditional treatment when the new one is more effective. 
(3) Continue with the traditional treatment when the new one is not more 

effective. 
(4) Adopt the new treatment when the new one is not more effective. 

(b) 1/0: A new physical therapy procedure is satisfactory. 

(1) Employ a new procedure when it is unsatisfactory. 
(2) Do not employ a new procedure when it is unsatisfactory. 
(3) Do not employ a new procedure when it is satisfactory. 
(4) Employ a new procedure when it is satisfactory. 

(c) Ho: A production run of a drug is of satisfactory quality. 

(1) Reject a run of satisfactory quality. 
(2) Accept a run of satisfactory quality. 
(3) Reject a run of unsatisfactory quality. 
(4) Accept a run of unsatisfactory quality. 

Exercises for Use With Large Data Sets Available on Computer Disk from the Publisher 

1. Refer to the creatine phosphokinase data on 1005 subjects (PCKDATA, Disk 1). Re-
searchers would like to know if psychologically stressful situations cause an increase in 
serum creatine phosphokinase (CPK) levels among apparently healthy individuals. To 
help the researchers reach a decision, select a simple random sample from this popula-
tion, perform an appropriate analysis of the sample data, and give a narrative report of 
your findings and conclusions. Compare your results with those of your classmates. 

2. Refer to the prothrombin time data on 1000 infants (PROTHROM, Disk 1). Select a 
simple random sample of size 16 from each of these populations and conduct an 
appropriate hypothesis test to determine whether one should conclude that the two 
populations differ with respect to mean prothrombin time. Let a = .05. Compare your 
results with those of your classmates. What assumptions are necessary for the validity of 
the test? 

3. Refer to the head circumference data of 1000 matched subjects (HEADCIRC, Disk 1). 
Select a simple random sample of size 20 from the population and perform an appropri-
ate hypothesis test to determine if one can conclude that subjects with the sex chromo-
some abnormality tend to have smaller heads than normal subjects. Let a = .05. 
Construct a 95 percent confidence interval for the population mean difference. What 
assumptions are necessary? Compare your results with those of your classmates. 

4. Refer to the hemoglobin data on 500 children with iron deficiency anemia and 500 
apparently healthy children (HEMOGLOB, Disk 1). Select a simple random sample of 
size 16 from population A and an independent simple random sample of size 16 from 
population B. Do your sample data provide sufficient evidence to indicate that the two 
populations differ with respect to mean Hb value? Let a = .05. What assumptions are 
necessary for your procedure to be valid? Compare your results with those of your 
classmates. 

5. Refer to the manual dexterity scores of 500 children with learning disabilities and 500 
children with no known learning disabilities (MANDEXT, Disk 1). Select a simple 
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random sample of size 10 from population A and an independent simple random sample 

of size 15 from population B. Do your samples provide sufficient evidence for you to 

conclude that learning-disabled children, on the average, have lower manual dexterity 
scores than children without a learning disability? Let a = .05. What assumptions are 

necessary in order for your procedure to be valid? Compare your results with those of 
your classmates. 
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8.1 
Introduction 

In the preceding chapters the basic concepts of statistics have been examined, and 

they provide a foundation for the present and succeeding chapters. 

This chapter is concerned with analysis of variance, which may be defined as a 

technique whereby the total variation present in a set of data is partitioned into two or more 

components. Associated with each of these components is a specc source of variation, so that in 

the analysis it is possible to ascertain the magnitude of the contributions of each of these sources 

to the total variation. 

The development of analysis of variance (ANOVA) is due mainly to the work of 
R. A. Fisher (1), whose contributions to statistics, spanning the years 1912 to 1962, 

have had a tremendous influence on modern statistical thought (2, 3). 

Applications Analysis of variance finds its widest application in the analysis 
of data derived from experiments. The principles of the design of experiments are 
well covered in several books, including those of Cochran and Cox (4), Cox (5), 
Davies (6), Federer (7), Finney (8), Fisher (1), John (9), Kempthorne (10), Li (11), 
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and Mendenhall (12). We do not study this topic in detail, since to do it justice 
would require a minimum of an additional chapter. Some of the important 
concepts in experimental design, however, will become apparent as we discuss 
analysis of variance. 

Analysis of variance is used for two different purposes: (1) to estimate and test 
hypotheses about population variances and (2) to estimate and test hypotheses 
about population means. We are concerned here with the latter use. However, as 
we will see, our conclusions regarding the means will depend on the magnitudes of 
the observed variances. 

As we shall see the concepts and techniques that we cover under the heading of 
analysis of variance are extensions of the concepts and techniques covered in 
Chapter 7. In Chapter 7 we learned to test the null hypothesis that two means are 
equal. In this chapter we learn to test the null hypothesis that three or more means 
are equal. Whereas, for example, what we learned in Chapter 7 enables us to 
determine if we can conclude that two treatments differ in effectiveness, what we 
learn in this chapter enables us to determine if we can conclude that three or more 
treatments differ in effectiveness. The following example illustrates some basic 
ideas involved in the application of analysis of variance. These will be extended and 
elaborated on later in this chapter. 

Example 
8.1.1 

Suppose we wish to know if three drugs differ in their effectiveness in lowering 
serum cholesterol in human subjects. Some subjects receive drug A, some drug B, 
and some drug C. After a specified period of time measurements are taken to 
determine the extent to which serum cholesterol was reduced in each subject. We 
find that the amount by which serum cholesterol was lowered is not the same in all 
subjects. In other words, there is variability among the measurements. Why, we ask 
ourselves, are the measurements not all the same? Presumably, one reason they are 
not the same is that the subjects received different drugs. We now look at the 
measurements of those subjects who received drug A. We find that the amount by 
which serum cholesterol was lowered is not the same among these subjects. We 
find this to be the case when we look at the measurements for subjects who 
received drug B and those subjects who received drug C. We see that there is 
variability among the measurements within the treatment groups. Why, we ask 
ourselves again, are these measurements not the same? Among the reasons that 
come to mind are differences in the genetic makeup of the subjects and differences 
in their diets. Through an analysis of the variability that we have observed we will 
be able to reach a conclusion regarding the equality of the effectiveness of the 
three drugs. To do this we employ the techniques and concepts of analysis of 
variance. 

  

Variables In our example we alluded to three kinds of variables. We find 
these variables to be present in all situations in which the use of analysis of 
variance is appropriate. First we have the treatment variable, which in our example 
was "drug." We had three "values" of this variable, drug A, drug B, and drug C. 
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The second kind of variable we referred to is the response variable. In the example it 
is change in serum cholesterol. The response variable is the variable that we expect 
to exhibit different values when different "values" of the treatment variable are 
employed. Finally, we have the other variables that we mentioned—genetic compo-
sition and diet. These are called extraneous variables. These variables may have an 
effect on the response variable, but they are not the focus of our attention in the 
experiment. The treatment variable is the variable of primary concern, and the 
question to be answered is do the different "values" of the treatment variable 
result in differences, on the average, in the response variable? 

Assumptions Underlying the valid use of analysis of variance as a tool of 
statistical inference are a set of fundamental assumptions. For a detailed discussion 
of these assumptions, refer to the paper by Eisenhart (13). Although an experi-
menter must not expect to find all the assumptions met to perfection, it is 
important that the user of analysis of variance techniques be aware of the 
underlying assumptions and be able to recognize when they are substantially 
unsatisfied. The consequences of the failure to meet the assumptions are discussed 
by Cochran (14) in a companion paper to that of Eisenhart. Because experiments in 
which all the assumptions are perfectly met are rare, Cochran suggests that 
analysis of variance results be considered as approximate rather than exact. These 
assumptions are pointed out at appropriate points in the following sections. 

We discuss analysis of variance as it is used to analyze the results of two 
different experimental designs, the completely randomized and the randomized 
complete block designs. In addition to these, the concept of a factorial experiment 
is given through its use in a completely randomized design. These do not exhaust 
the possibilities. A discussion of additional designs will be found in the references 
(4-12). 

The ANOVA Procedure In our presentation of the analysis of variance for 
the different designs, we follow the nine-step procedure presented in Chapter 7. 
The following is a restatement of the steps of the procedure, including some new 
concepts necessary for its adaptation to analysis of variance. 

1. Description of Data In addition to describing the data in the usual way, we 
display the sample data in tabular form. 

2. Assumptions Along with the assumptions underlying the analysis, we present the 
model for each design we discuss. The model consists of a symbolic representa-
tion of a typical value from the data being analyzed. 

3. Hypotheses 

4. Test Statistic 

5. Distribution of the Test Statistic 

6. Decision Rule 
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7. Calculation of Test Statistic The results of the arithmetic calculations will be 
summarized in a table called the analysis of variance (ANOVA) table. The 
entries in the table make it easy to evaluate the results of the analysis. 

8. Statistical Decision 

9. Conclusion 

We discuss these steps in greater detail in Section 8.2. 

The Use of Computers The calculations required by analysis of variance are 
lengthier and more complicated than those we have encountered in preceding 
chapters. For this reason the computer assumes an important role in analysis of 
variance. All the exercises appearing in this chapter are suitable for computer 
analysis and may be used with the statistical packages mentioned in Chapter 1. 
The output of the statistical packages may vary slightly from that presented in this 
chapter, but this should pose no major problem to those who use a computer to 
analyze the data of the exercises. The basic concepts of analysis of variance that we 
present here should provide the necessary background for understanding the 
description of the programs and their output in any of the statistical packages. 

8.2 
The Com letel Randomized Desi. n 

We saw in Chapter 7 how it is possible to test the null hypothesis of no difference 
between two population means. It is not unusual for the investigator to be 
interested in testing the null hypothesis of no difference among several population 
means. The student first encountering this problem might be inclined to suggest 
that all possible pairs of sample means be tested separately by means of the 
Student t test. Suppose there are five populations involved. The number of possible 
pairs of sample means is 5C2  = 10. As the amount of work involved in carrying out 
this many t tests is substantial, it would be worthwhile if a more efficient 
alternative for analysis were available. A more important consequence of perform-
ing all possible t tests, however, is that it is very likely to lead to a false conclusion. 

Suppose we draw five samples from populations having equal means. As we 
have seen, there would be 10 tests if we were to do each of the possible tests 
separately. If we select a significance level of a = .05 for each test, the probability 
of failing to reject a hypothesis of no difference in each case would be .95. By the 
multiplication rule of probability, if the tests were independent of one another, the 
probability of failing to reject a hypothesis of no difference in all 10 cases would be 
(.95)10 = .5987. The probability of rejecting at least one hypothesis of no difference, 
then, would be 1 — .5987 = .4013. Since we know that the null hypothesis is true in 
every case in this illustrative example, rejecting the null hypothesis constitutes the 
committing of a type I error. In the long run, then, in testing all possible pairs of 
means from five samples, we would commit a type I error 40 percent of the time. 
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The problem becomes even more complicated in practice, since three or more t 
tests based on the same data would not be independent of one another. 

It becomes clear, then, that some other method for testing for a significant 
difference among several means is needed. Analysis of variance provides such a 
method. 

One-Way ANOVA The simplest type of analysis of variance is that known as 
one-way analysis of variance, in which only one source of variation, or factor, is 
investigated. It is an extension to three or more samples of the t-test procedure 
(discussed in Chapter 7) for use with two independent samples. Stated another 
way, we can say that the t test for use with two independent samples is a special 
case of one-way analysis of variance. 

In a typical situation we want to use one-way analysis of variance to test the 
null hypothesis that three or more treatments are equally effective. The necessary 
experiment is designed in such a way that the treatments of interest are assigned 
completely at random to the subjects or objects on which the measurements to 
determine treatment effectiveness are to be made. For this reason the design is 
called the completely randomized experimental design. 

We may randomly allocate subjects to treatments as follows. Suppose we have 
16 subjects available to participate in an experiment in which we wish to compare 
four drugs. We number the subjects from 01 through 16. We then go to a table of 
random numbers and select 16 consecutive, unduplicated, numbers between 01 and 
16. To illustrate, let us use Table D and a random starting point which, say, is at 
the intersection of row 4 and columns 11 and 12. The two-digit number at this 
intersection is 98. The succeeding (moving downward) 16 consecutive two digit 
numbers between 01 and 16 are 16, 09, 06, 15, 14, 11, 02, 04, 10, 07, 05, 13, 03, 12, 
01, and 08. We allocate subjects 16, 09, 06, and 15 to drug A; subjects 14, 11, 02, 
and 04 to drug B; subjects 10, 07, 05, and 13 to drug C; and subjects 03, 12, 01, and 
08 to drug D. We emphasize that the number of subjects in each treatment group 
does not have to be the same. Figure 8.2.1 illustrates the scheme of random 
allocation. 

Available 
subjects 

01 02 03 04 05 06 07 08 09 10 Fl I NT' ci 

           

Random 
numbers 

Treatment A B C D 

Figure 8.2.1 Allocation of subjects to treatments, completely randomized design. 
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Hypothesis Testing Steps Once we decide that the completely randomized 
design is the appropriate design we may proceed with the hypothesis testing steps. 
We discuss these in detail first, and follow with an example. 

1. Description of Data The measurements (or observations) resulting from a 
completely randomized experimental design, along with the means and totals 
that can be computed from them, may be displayed for convenience as in Table 
8.2.1. The symbols used in Table 8.2.1 are defined as follows: 

= the ith observation resulting from the jth treatment 
(there are a total of k treatments) 

i = 1,2,...,n1, j = 1,2,...,k 

nj  

= E x j  = total of the jth treatment 
i = 1 

T , 
= 	= mean of the jth treatment 

J 	
n1 

k 

T..= E T.  
j=1 

_ 

k nj 

= E E x = total of all observations 
j I i = I 

T 
x =— 

k 

N= E nt  
j = 1  

2. Assumptions Before stating the assumptions, let us specify the model for the 
experiment described here. 

TABLE 8.2.1 Table of Sample Values for the Completely Randomized Design 

Treatment 

1 	2 	3 

X11 	 X12 	 X13 	 Xlk 

X 2I 	 X22 	 X23 	 X2k 
X31 	 X32 	 X33 	 X3k 

• . 	 . 
. 	 . 	 . 

X „1 	X n22 	Xn33 	 X  nkk 

T.1 	T.  2 	 T.  k 	T..  

Mean 	 2 	 X.3 	 X. k 

Total 
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The Model As already noted, a model is a symbolic representation of a typical 
value of a data set. To write down the model for the completely randomized 
experimental design, let us begin by identifying a typical value from the set of data 
represented by the sample displayed in Table 8.2.1. We use the symbol xv  to 
represent this typical value. 

Within each treatment group (or population) represented by our data, any 
particular value bears this relationship to the true mean, Ai, of that group: it is 
equal to the true group mean plus some amount that is either zero, a positive 
amount, or a negative amount. This means that a particular value in a given group 
may be equal to the group mean, larger than the group mean, or smaller than the 
group mean. Let us call the amount by which any value differs from its group mean 

	

the error and represent this error by the symbol 	By By the term error, we do not 
mean a mistake. The term is used to refer to the extraneous variation that exists 
among members of any population. Given a population of adult males, for exam-
ple, we know that the heights of some individuals are above the true mean height 
of the population, while some heights are below the population mean. This 
variation is caused by a myriad of hereditary and environmental factors. If to any 
group mean, p,j, we add a given error, ey, the result will be xu, the observation 
that deviates from the group mean by the amount eu. 

We may write this relationship symbolically as 

	

xii = µj  + eij 	 (8.2.1) 

Solving for e we have 

e = x. + 
1.1 	J (8.2.2) 

If we have in mind k populations, we may refer to the grand mean of all the 
observations in all the populations as p.. Given k populations of equal size, we 
could computeµ by taking the average of the k population means, that is, 

= 
Elk] 
	

(8.2.3) 

Just as a particular observation within a group, in general, differs from its 
group mean by some amount, a particular group mean differs from the grand 
mean by some amount. The amount by which a group mean differs from the grand 
mean we refer to as the treatment effect. We may write the jth treatment effect as 

T J • = IL J• - 
	

(8.2.4) 

rj  is a measure of the effect on p,j  of having been computed from observations 
receiving the jth treatment. 

We may solve Equation 8.2.4 for p,1  to obtain 

= 	+ Ti 	 (8.2.5) 
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If we substitute the right-hand portion of Equation 8.2.5 for Ai  in Equation 

8.2.1 we have 

xii = 	+ T 	eii ; 	i = 1, 2, ... , nj , 	j = 1,2,..., k 	(8.2.6) 

and our model is specified. 

Components of the Model By looking at our model we can see that a 
typical observation from the total set of data under study is composed of (1) the 
grand mean, (2) a treatment effect, and (3) an error term representing the 
deviation of the observation from its group mean. 

In most situations we are interested only in the k treatments represented in 
our experiment. Any inferences that we make apply only to these treatments. We 
do not wish to extend our inference to any larger collection of treatments. When 
Nve place such a restriction on our inference goals, we refer to our model as the 
fixed-effects model, or model I. The discussion in this book is limited to this model. 

Information on other models will be found in the articles by Eisenhart (13), 
Wilk and Kempthorne (15), Crump (16), Cunningham and Henderson (17), Hen-
derson (18), Rutherford (19), Schultz (20), and Searle (21). 

Assumptions of the Model The assumptions for the fixed effects model are as 
follows: 

a. The k sets of observed data constitute k independent random samples from 
the respective populations. 

b. Each of the populations from which the samples come is normally dis-
tributed with mean kti  and variance 0:12. 

C. Each of the populations has the same variance. That is, o = cr22  -- 
Uk2  = o.2, the common variance. 

d. The T 's are unknown constants and ET = 0, since the sum of all deviations 
of the mi  from their mean, 	is zero. 

Three consequences of the relationship 

eii = 

specified in Equation 8.2.2 are 

a. The eU have a mean of 0, since the mean of x is µj. J 
b. The eu  have a variance equal to the variance of the xu, since the eu  and x i j  

differ only by a constant; that is, the error variance is equal to cr 2, the 
common variance specified in assumption c. 

c. The e are normally (and independently) distributed. zi   

3. Hypotheses We test the null hypothesis that all population or treatment means 
are equal against the alternative that the members of at least one pair are not 
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equal. We may state the hypotheses formally as follows: 

Ho:µ  1= /12 = • • • = 

HA: not all p , are equal 

If the population means are equal, each treatment effect is equal to zero, so 
that, alternatively, the hypotheses may be stated as 

Ho: 	= 0, 	j = 1,2,...,k 

HA : not all T>  = 0 •  

If Ho  is true and the assumption of equal variances and normally distributed 
populations are met, a picture of the populations will look like Figure 8.2.2. When 
Ho  is true the population means are all equal, and the populations are centered at 
the same point (the common mean) on the horizontal axis. If the populations are 
all normally distributed with equal variances the distributions will be identical, so 
that in drawing their pictures each is superimposed on each of the others, and a 
single picture sufficiently represents them all. 

When Ho  is false it may be false because one of the population means is 
different from the others, which are all equal. Or, perhaps, all the population 
means are different. These are only two of the possibilities when Ho  is false. There 
are many other possible combinations of equal and unequal means. Figure 8.2.3 
shows a picture of the populations when the assumptions are met, but Ho  is false 
because no two population means are equal. 

4. Test Statistic The test statistic for one-way analysis of variance is a computed 
variance ratio, which we designate by V.R. as we did in Chapter 7. The two 
variances from which V.R. is calculated are themselves computed from the 

• Pk 

Figure 8.2.2 Picture of the populations represented in 
a completely randomized design when Ho  is true and 
the assumptions are met. 
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• • 

Figure 8.2.3 Picture of the populations represented in a 
completely randomized design when the assumptions of equal 
variances and normally distributed populations are met, but 
Ho  is false because none of the population means are equal. 

sample data. The methods by which they are calculated will be given in the 
discussion that follows. 

5. Distribution of the Test Statistic As discussed in Section 7.8, V.R. is distributed 
as the F distribution when Ho  is true and the assumptions are met. 

6. Decision Rule In general, the decision rule is: Reject the null hypothesis if the 
computed value of V.R. is equal to or greater than the critical value of F for 
the chosen a level. 

7. Calculation of the Test Statistic We have defined analysis of variance as a process 
whereby the total variation present in a set of data is partitioned into 
components that are attributable to different sources. The term variation used 
in this context refers to the sum of squared deviations of observations from their mean, 
or sum of squares for short. 

Those who use a computer for calculations may wish to skip the following 
discussion of the computations involved in obtaining the test statistic. 

The Total Sum of Squares Before we can do any partitioning, we must first 
obtain the total sum of squares. The total sum of squares is the sum of the squares 
of the deviations of individual observations from the mean of all the observations 
taken together. This total sum of squares is defined as 

k n  

SST = E E (x,, - 	 (8.2.7) 
j=1 z =1 

where E:9_, tells us to sum the squared deviations for each treatment group, and 
E;= tells us to add the k group totals obtained by applying E7t.. i . The reader will 
recognize Equation 8.2.7 as the numerator of the variance that may be computed 
from the complete set of observations taken together. 

We may rewrite Equation 8.2.7 as 

k 

SST = E E x2 	 (8.2.8) zj  
1=1 z=1 

which is more convenient for computational purposes. 

T2  

N 



SST = E E (x..tj  - 	+ E E . - 
j=1 i=1 	 j=1 i=1 

k "i 	 k n  2 
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We now proceed with the partitioning of the total sum of squares. We may, 
without changing its value, insert 	+ x j  in the parentheses of Equation 8.2.7. 
The reader will recognize this added quantity as a well-chosen zero that does not 
change the value of the expression. The result of this addition is 

k 

SST = E L (x - x. I  + x J  - x-  )2  • • • 
j = 1 i = 1 

If we group terms and expand, we have 

k _ 	2 
SST = E L [(x.. - j) + 	x - ..)I 

j=- 1 i-=1 

(8.2.9) 

k n 
	

k ni 

	

= E E 	..1)2 +2 E E( 
ij 

	

j = 1 i = 1 
	

j=1 

+ E E - 2 
(8.2.10) 

j=1 i=1 

The middle term may be written as 

	

k 	 nj 

	

2 E 	- 	E (xi; - 
i=i 

(8.2.11) 

Examination of Equation 8.2.11 reveals that this term is equal to zero, since the 
sum of the deviations of a set of values from their mean as in EL 	— Tx.) is 
equal to zero. 

We now may write Equation 8.2.10 as 

k "i 

k ni 
= EL(Xtj 	.)2 	E nJ•J  — )

2 
(8.2.12) 

j 1 i = 1 
	

1= 

When the number of observations is the same in each group the last term on 
the right may be rewritten to give 

k n 

	

SST = E E (x z  — x )2  + n E 	- 	2 	
(8.2.13) 

j=1 i=1 	 j=1 

where n =n 1 = n 2  =- • • • = n k. 



SSA = E 
=1 

-
2 

= E 	T2/N 
ni  

(8.2.15) 
k T2 
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The Within Groups Sum of Squares The partitioning of the total sum of 
squares is now complete, and we see that in the present case there are two 
components. Let us now investigate the nature and source of these two components 
of variation. 

If we look at the first term on the right of the Equation 8.2.12, we see that the 
first step in the indicated computation calls for performing certain calculations 
within each group. These calculations involve computing within each group the sum 
of the squared deviations of the individual observations from their mean. When 
these calculations have been performed within each group, the symbol Ejk _ i  tells us 
to obtain the sum of the individual group results. This component of variation is 
called the within groups sum of squares and may be designated SSW. This quantity is 
sometimes referred to as the residual or error sum of squares. The expression may 
be written in a computationally more convenient form as follows: 

	

k nj 	 k nj 	
k 

	

SSW = E E 	(xi; 
-2 

= E E 	- E 	(8.2.14) 

	

j=1 i=i 	 j= i=1 	j=1 

The Among Groups Sum of Squares Now let us examine the second term 
on the right in Equation 8.2.12. The operation called for by this term is to obtain 
for each group the squared deviation of the group mean from the grand mean and 
to multiply the result by the size of the group. Finally, we must add these results 
over all groups. This quantity is a measure of the variation among groups and is 
referred to as the sum of squares among groups or SSA. The computing formula is as 
follows: 

In summary, then, we have found that the total sum of squares is equal to the 
sum of the among and the within sum of squares. We express this relationship as 
follows: 

SST = SSA + SSW 

From the sums of squares that we have now learned to compute, it is possible to 
obtain two estimates of the common population variance, 0.2. It can be shown that 
when the assumptions are met and the population means are all equal, both the 
among sum of squares and the within sum of squares, when divided by their 
respective degrees of freedom, yield independent and unbiased estimates of o.2. 
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The First Estimate of u2  Within any sample 

n j  

E (x11  - 
i = 1 

n — 1 

provides an unbiased estimate of the true variance of the population from which 
the sample came. Under the assumption that the population variances are all 
equal, we may pool the k estimates to obtain 

k nJ 

E E (x.. - .)2  
j= 1 1=1 

(8.2.16) k 

(n> 
j= I 

This is our first estimate of o.2  and may be called the within groups variance, since it 
is the within groups sum of squares of Equation 8.2.14 divided by the appropriate 
degrees of freedom. The student will recognize this as an extension to k samples of 
the pooling of variances procedure encountered in Chapters 6 and 7 when the 
variances from two samples were pooled in order to use the t distribution. The 
quantity in Equation 8.2.16 is customarily referred to as the within groups mean 
square rather than the within groups variance. 

The within groups mean square is a valid estimate of 0-2  only if the population 
variances are equal. It is not necessary, however, for H0  to be true in order for the 
within groups mean square to be a valid estimate of a-2. That is, the within groups 
mean square estimates u2  regardless of whether H0  is true or false, as long as the 
population variances are equal. 

The Second Estimate of u2  The second estimate of o-2  may be obtained 
from the familiar formula for the variance of sample means, 	= a2/n. If we 
solve this equation for u2, the variance of the population from which the samples 
were drawn, we have 

0.2 = n o.v.2 (8.2.17) 

An unbiased estimate of o-„2, computed from sample data, is provided by 

k _ 2 

j=1 

k — 1 

If we substitute this quantity into Equation 8.2.17, we obtain the desired estimate 
of 0.2, 

n E 	-• 
j=1 

k — 1 
(8.2.18) 
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The reader will recognize the numerator of Equation 8.2.18 as the among 
groups sum of squares for the special case when all sample sizes are equal. This 
sum of squares when divided by the associated degrees of freedom k — 1 is 
referred to as the among groups mean square. 

When the sample sizes are not all equal, an estimate of u 2  based on the 
variability among sample means is provided by 

J 	.J 
j=1 

(8.2.19) 
k — 1 

If, indeed, the null hypothesis is true we would expect these two estimates of 
u2  to be fairly close in magnitude. If the null hypothesis is false, that is, if all 
population means are not equal, we would expect the among groups mean square, 
which is computed by using the squared deviations of the sample means from the 
overall mean, to be larger than the within groups mean square. 

In order to understand analysis of variance we must realize that the among 
groups mean square provides a valid estimate of u2  when the assumption of equal 
population variances is met and when Ho  is true. Both conditions, a true null 
hypothesis and equal population variances, must be met in order for the among 
groups mean square to be a valid estimate of u 2. 

The Variance Ratio What we need to do now is to compare these two 
estimates of o.2, and we do this by computing the following variance ratio, which is 
the desired test statistic: 

among groups mean square 
V.R. = 	  

within groups mean square 

If the two estimates are about equal, V.R. will be close to 1. A ratio close to 1 tends 
to support the hypothesis of equal population means. If, on the other hand, the 
among groups mean square is considerably larger than the within groups mean 
square, V.R. will be considerably greater than 1. A value of V.R. sufficiently greater 
than 1 will cast doubt on the hypothesis of equal population means. 

We know that because of the vagaries of sampling, even when the null 
hypothesis is true, it is unlikely that the among and within groups mean squares 
will be equal. We must decide, then, how big the observed difference has to be 
before we can conclude that the difference is due to something other than sampling 
fluctuation. In other words, how large a value of V.R. is required for us to be 
willing to conclude that the observed difference between our two estimates of u2  is 

not the result of chance alone? 

The F Test To answer the question just posed, we must consider the 
sampling distribution of the ratio of two sample variances. In Chapter 6 we learned 
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that the quantity (4/012)/(4/4) follows a distribution known as the F distribu-
tion when the sample variances are computed from random and independently 
drawn samples from normal populations. The F distribution, introduced by R. A. 
Fisher in the early 1920s, has become one of the most widely used distributions in 
modern statistics. We have already become acquainted with its use in constructing 
confidence intervals for, and testing hypotheses about, population variances. In this 
chapter, we will see that it is the distribution fundamental to analysis of variance. 

In Chapter 7 we learned that when the population variances are the same, they 
cancel in the expression (s/o-12)/(4/a1), leaving 4/4, which is itself distributed 
as F. The F distribution is really a family of distributions, and the particular F 
distribution we use in a given situation depends on the number of degrees of 
freedom associated with the sample variance in the numerator (numerator degrees of 
freedom) and the number of degrees of freedom associated with the sample variance 
in the denominator (denominator degrees of fi-eedom). 

Once the appropriate F distribution has been determined, the size of the 
observed V.R. that will cause rejection of the hypothesis of equal population 
variances depends on the significance level chosen. The significance level chosen 
determines the critical value of F, the value that separates the nonrejection region 
from the rejection region. 

As we have seen, we compute V.R. in situations of this type by placing the 
among groups mean square in the numerator and the within groups mean square 
in the denominator, so that the numerator degrees of freedom is equal to the 
number of groups minus 1, (k — 1), and the denominator degrees of freedom value 
is equal to 

k 	 k 

E (n — 1) = E - k = N — k. 
1=1 	 j =1 

The ANOVA table The calculations that we perform may be summarized and 
displayed in a table such as Table 8.2.2, which is called the ANOVA table. 

Notice that in Table 8.2.2 the term Er.;= 	px,,21/N  = •,2 /N occurs in the 
expression for both SSA and SST. A savings in computational time and labor may 
be realized if we take advantage of this fact. We need only to compute this 
quantity, which is called the correction term and designated by the letter C, once and 
use it as needed. 

The computational burden may be lightened in still another way. Since SST is 
equal to the sum of SSA and SSW, and since SSA is easier to compute than SSW, 
we may compute SST and SSA and subtract the latter from the former to obtain 
SSW. 

8. Statistical Decision To reach a decision we must compare our computed V.R. 
with the critical value of F, which we obtain by entering Table G with k — 1 
numerator degrees of freedom and N — k denominator degrees of freedom. 
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.(.Z• • 	
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SSW = E E (x tJ  .. 	)2  
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TABLE 8.2.2 Analysis of Variance Table for the Completely Randomized Design 

k nj 

Total 	SST = E E (x — x )2 N — 1 
j= 1 i=1 

k nj 	 T2 
= E E 

j= 1 i=1 

If the computed V.R. is equal to or greater than the critical value of F, we reject 
the null hypothesis. If the computed value of V.R. is smaller than the critical value 
of F, we do not reject the null hypothesis. 

Explaining a Rejected Null Hypothesis There are two possible explana-
tions for a rejected null hypothesis. If the null hypothesis is true, that is, if the two 
sample variances are estimates of a common variance, we know that the probability 
of getting a value of V.R. as large as or larger than the critical F is equal to our 
chosen level of significance. When we reject Ho  we may, if we wish, conclude that 
the null hypothesis is true and assume that because of chance we got a set of data 
that gave rise to a rare event. On the other hand, we may prefer to take the 
position that our large computed V.R. value does not represent a rare event 
brought about by chance but, instead, reflects the fact that something other than 
chance is operative. This other something we conclude to be a false null hypothesis. 

It is this latter explanation that we usually give for computed values of V.R. 
that exceed the critical value of F. In other words, if the computed value of V.R. is 
greater than the critical value of F, we reject the null hypothesis. 

It will be recalled that the original hypothesis we set out to test was 

Ho: µ1 =  /./.2  = • • • = 1.4k 

Does rejection of the hypothesis about variances imply a rejection of the hypothesis 
of equal population means? The answer is, yes. A large value of V.R. resulted from 
the fact that the among groups mean square was considerably larger than the 
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within groups mean square. Since the among groups mean square is based on the 
dispersion of the sample means about their mean, this quantity will be large when 
there is a large discrepancy among the sizes of the sample means. Because of this, 
then, a significant value of V.R. tells us to reject the null hypothesis that all 
population means are equal. 

9. Conclusion When we reject 1/0  we conclude that not all population means are 
equal. When we fail to reject H0, we conclude that the population means may 
all be equal. 

Example 
8.2.1 

Miller and Vanhoutte (A-1) conducted experiments in which adult ovariectomized 
female mongrel dogs were treated with estrogen, progesterone, or estrogen plus 
progesterone. Five untreated animals served as controls. A variable of interest was 
concentration of progesterone in the serum of the animals 14 to 21 days after 
treatment. We wish to know if the treatments have different effects on the mean 
serum concentration of progesterone. 

Solution: 

1. Description of Data Four dogs were treated with estrogen, four with proges-
terone, and five with estrogen plus progesterone. Five dogs were not treated. 
The serum progesterone levels (ng/dl) following treatment, along with treat-
ment totals and means are shown in Table 8.2.3. A graph of the data in the 
form of a dotplot is shown in Figure 8.2.4. Such a graph highlights the main 
features of the data and brings into clear focus differences in response by 
treatment. 

2. Assumptions We assume that the four sets of data constitute independent 
simple random samples from four populations that are similar except for the 
treatment received. We assume that the four populations of measurements are 
normally distributed with equal variances. 

TABLE 8.2.3 Concentration of Serum Progesterone (ng / dl) in Dogs Treated with Estrogen, 
Progesterone, Estrogen Plus Progesterone, and in Untreated Controls 

Treatment 

Untreated Estrogen Progesterone Estrogen + 
Progesterone 

117 440 605 2664 
124 264 626 2078 
40 221 385 3584 
88 136 475 1540 
40 1840 

Total 409 1061 2091 11706 15267 

Mean 81.80 265.25 522.75 2341.20 848.1667 

SOURCE: Virginia M. Miller, Ph.D. Used by permission. 
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3. Hypotheses 

Ho Iii = /12  = N s = 	(On the average the four treatments elicit the same 
response) 

HA: Not all ,u's are equal (At least one treatment has an average response 
different from the average response of at least 
one other treatment) 

4. Test Statistic The test statistic is V.R. = MSA/MSW. 

5. Distribution of the Test Statistic If 1/0  is true and the assumptions are met, V.R. 
follows the F distribution with 4 — 1 = 3 numerator degrees of freedom and 
18 — 4 = 14 denominator degrees of freedom. 

6. Decision Rule Suppose we let a = .05. The critical value of F from Table G is 
3.34. The decision rule, then, is reject Ho  if the computed V.R. is equal to or 
greater than 3.34. 

7. Calculation of the Test Statistic By Equation 8.2.8 we compute 

SST = (117)2  + (124)2  + • • • +(1840)2  — (15267)2/18 

= 31519629 — 12948960.5 = 18570668.5 

By Equation 8.2.15 we compute 

409 2 	1061 2 	2091 2 	11706 2 	15267 2  
SSA = 5 + 	

4 	4 	5 	18 
= 28814043.9 

— 12948960.5 = 15865083.4 

SSW = 18570668.5 — 15865083.4 = 2705585.1 

The results of our calculations are displayed in the Table 8.2.4. 

8. Statistical Decision Since our computed V.R. of 27.3645 is greater than the 
critical F of 3.34, we reject Ho. 

TABLE 8.2.4 ANOVA Table for Example 8.2.1 

Source 	 SS 	d.f. 	MS 	 V.R. 

Among samples 	15865083.4 	3 	5288361.133 	27.3645 
Within samples 	2705585.1 	14 	193256.0786 
Total 	 18570668.5 	17 
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9. Conclusion Since we reject H0, we conclude that the alternative hypothesis is 
true. That is, we conclude that the four treatments do not all have the same 
average effect. 

A Word of Caution The completely randomized design is simple and, 
therefore, widely used. It should be used, however, only when the units receiving 
the treatments are homogeneous. If the experimental units are not homogeneous, 
the researcher should consider an alternative design such as one of those to be 
discussed later in this chapter. 

In our illustrative example the treatments are treatments in the usual sense of 
the word. This is not always the case, however, as the term "treatment" as used in 
experimental design is quite general. We might, for example, wish to study the 
response to the same treatment (in the usual sense of the word) of several breeds 
of animals. We would, however, refer to the breed of animal as the "treatment." 

We must also point out that, although the techniques of analysis of variance 
are more often applied to data resulting from controlled experiments, the tech-
niques also may be used to analyze data collected by a survey, provided that the 
underlying assumptions are reasonably well met. 

Computer Analysis Figure 8.2.6 shows the computer output for Example 
8.2.1 provided by a one-way analysis of variance program found in the MINITAB 
package. The data were entered into columns 1 through 4 and the command 

AOVONEWAY Cl, C2, C3, C4 

was issued. When you compare the ANOVA table on this printout with the one 
given in Table 8.2.4, you see that the printout uses the label "factor" instead of 
"among samples." The different treatments are referred to on the printout as 

ANALYSIS OF VARIANCE 
SOURCE 	DF 	SS 	MS 	F 	p 
FACTOR 	3 15865083 5288361 27.36 0.000 
ERROR 14 2705585 193256 
TOTAL 	17 18570668 

INDIVIDUAL 95 PCT CI'S FOR MEAN 
BASED ON POOLED STDEV 

LEVEL 	N 	MEAN 	STDEV 	-+ 	 + 	 + 	 + 
Cl 	 5 	81.8 	40.5 
C2 	 4 	265.2 	128.1 	 ) 
C3 	 4 	522.8 	113.5 	(---*----) 
C4 	 5 	2341.2 	808.0 

	

-+ 	 
POOLED STDEV = 	439.6 
	

0 	1000 	2000 	301 

Figure 8.2.6 MINITAB output for Example 8.2.1. 
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SAS 

ANALYSIS OF VARIANCE PROCEDURE 

DEPENDENT VARIABLE: SERUM 

SOURCE 	 DF 	SUM OF SQUARES 	MEAN SQUARE 
MODEL 	 3 15865083.40000000 5288361.13333333 
ERROR 	 14 2705585.10000000 193256.07857143 
CORRECTED TOTAL 	 17 18570668.50000000 

MODEL F= 
	

27.36 	 PR>F = 0.0001 

Figure 8.2.7 Partial SAS®  printout for Example 8.2.1. 

levels. Thus level 1 = treatment 1, level 2 = treatment 2, and so on. The printout 
gives the four sample means and standard deviations as well as the pooled standard 
deviation. This last quantity is equal to the square root of the error mean square 
shown in the ANOVA table. Finally, the computer output gives graphic representa-
tions of the 95 percent confidence intervals for the mean of each of the four 
populations represented by the sample data. The MINITAB package can provide 
additional analyses through the use of appropriate commands. The package also 
contains programs for two-way analysis of variance, to be discussed in the following 
sections. Figure 8.2.7 contains a partial SAS®  printout resulting from analysis of 
the data of Example 8.2.1 through use of the SAS®  statement PROC ANOVA. 

A useful device for displaying important characteristics of a set of data 
analyzed by one-way analysis of variance is a graph consisting of side-by-side 
boxplots. For each sample a boxplot is constructed using the method described in 
Chapter 2. Figure 8.2.8 shows the side-by-side boxplots for Example 8.2.1. Note 
that in Figure 8.2.8 the variable of interest is represented by the vertical axis 
rather than the horizontal axis. 

Alternatives If the data available for analysis do not meet the assumptions 
for one-way analysis of variance as discussed here, one may wish to consider the use 
of the Kruskal—Wallis procedure, a nonparametric technique discussed in Chapter 
13. Since, for example, the sample variances in Example 8.2.1 vary so greatly, we 
might question whether the data satisfy the assumption of equal population 
variances and wish to use the Kruskal—Wallis procedure to analyze the data. 

Testing for Significant Differences Between Individual Pairs of Means 
When the analysis of variance leads to a rejection of the null hypothesis of no 
difference among population means, the question naturally arises regarding just 
which pairs of means are different. In fact, the desire, more often than not, is to 
carry out a significance test on each and every pair of treatment means. For 
instance, in Example 8.2.1, where there are four treatments, we may wish to know, 
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Figure 8.2.8 Side-by-side boxplots for Example 8.2.1. 
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after rejecting H0: µ i  = las = kt3  = /14, which of the 6 possible individual hypothe-
ses should be rejected. The experimenter, however, must exercise caution in 
testing for significant differences between individual means and must always make 
certain that the procedure is valid. The critical issue in the procedure is the level of 
significance. Although the probability, a, of rejecting a true null hypothesis for 
the test as a whole is made small, the probability of rejecting at least one 
true hypothesis when several pairs of means are tested is, as we have seen, greater 
than a. 

Multiple Comparison Procedure Over the years several procedures for 
making multiple comparisons have been suggested. The oldest procedure, and 
perhaps the one most widely used in the past, is the least signcant difference (LSD) 
procedure of Fisher, who first discussed it in the 1935 edition of his book The Design 
of Experiments (1). The LSD procedure, which is a Student's t test using a pooled 
error variance, is valid only when making independent comparisons or comparisons 
planned before the data are analyzed. A difference between any two means that 
exceeds a least significant difference is considered significant at the level of 
significance used in computing the LSD. The LSD procedure usually is used only 
when the overall analysis of variance leads to a significant V.R. For an example of 
the use of the LSD, see Steel and Torrie (22). 

Duncan (23-26) has contributed a considerable amount of research to the 
subject of multiple comparisons with the result that at present a widely used 
procedure is Duncan' s new multiple range test. The extension of the test to the case of 
unequal sample sizes is discussed by Kramer (27). 

When the objective of an experiment is to compare several treatments with a 
control, and not with each other, a procedure due to Dunnet (28, 29) for comparing 
the control against each of the other treatments is usually followed. 

Other multiple comparison procedures in use are those proposed by Tukey (30, 
31), Newman (32), Keuls (33), and Scheffe (34, 35). The advantages and disadvan-
tages of the various procedures are discussed by Bancroft (36), Daniel and Coogler 
(37), and Winer (38). Daniel (39) has prepared a bibliography on multiple compari-
son procedures. 

Tukey's HSD Test A multiple comparison procedure developed by Tukey (31) 
is frequently used for testing the null hypotheses that all possible pairs of 
treatment means are equal when the samples are all of the same size. When this 
test is employed we select an overall significance level of a. The probability is a, 
then, that one or more of the null hypotheses is false. 

Tukey's test, which is usually referred to as the HSD (honestly signcant 
difference) test, makes use of a single value against which all differences are 
compared. This value, called the HSD, is given by 

MSE 
HSD =  a a, k,N-k 	n 

	 (8.2.20) 
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where a is the chosen level of significance, k is the number of means in the 
experiment, N is the total number of observations in the experiment, n is the 
number of observations in a treatment, MSE is the error or within mean square 
from the ANOVA table, and q is obtained by entering Appendix I Table H with a, 
k, and N — k. 

All possible differences between pairs of means are computed, and any differ-
ence that yields an absolute value that exceeds HSD is declared to be significant. 

Tukey's Test for Unequal Sample Sizes When the samples are not all the 
same size, as is the case in Example 8.2.1, Tukey's HSD test given by Equation 
8.2.20 is not applicable. Spjertvoll and Stoline (40), however, have extended the 
Tukey procedure to the case where the sample sizes are different. Their procedure, 
which is applicable for experiments involving three or more treatments and 
significance levels of .05 or less, consists of replacing n in Equation 8.2.20 with nj*, 
the smallest of the two sample sizes associated with the two sample means that are 
to be compared. If we designate the new quantity by HSD*, we have as the new 
test criterion 

MSE 
HSD* a = . a, k,N-k n* 

(8.2.21) 

Any absolute value of the difference between two sample means, one of which 
is computed from a sample of size 	(which is smaller than the sample from which 
the other mean is computed), that exceeds HSD* is declared to be significant. 

Example 	Let us illustrate the use of the HSD test with the data from Example 8.2.1. 
8.2.2 

Solution: The first step is to prepare a table of all possible (ordered) differences 
between means. The results of this step for the present example are displayed in 
Table 8.2.5. 

Suppose we let a = .05. Entering Table H with a = .05, k = 4, and N — k = 
14, we find that q is 4.11. In Table 8.2.4 we have MSE = 193256.0786. 

The hypotheses that can be tested, the value of HSD*, and the statistical 
decision for each test are shown in Table 8.2.6. 

TABLE 8.2.5 Differences Between Sample Means (Absolute Value) for Example 8.2.2 

Untreated Estrogen Progesterone 
Estrogen + 

Progesterone 

Untreated (u) 183.45 440.95 2259.40 
Estrogen (e) 257.50 2075.95 
Progesterone (p) 1818.45 
Estrogen + 
Progesterone (pe) 



SAS 
ANALYSIS OF VARIANCE PROCEDURE 

TUKEY '5 STUDENTIZED RANGE (HSD) TEST FOR VARIABLE: SERUM 
NOTE: THIS TEST CONTROLS THE TYPE I EXPERIMENTWISE ERROR RATE 

ALPHA =0.05 	CONFIDENCE= 0.95 	DF =14 	MSE = 193256 
CRITICAL 	VALUE 	OF 	STUDENTIZED 	RANGE =4.111 

COMPARISONS SIGNIFICANT 	AT 	THE 	0.05 	LEVEL ARE INDICATED 	BY '*** ' 
SIMULTANEOUS SIMULTANEOUS 

LOWER 	DIFFERENCE UPPER 
TREAT CONFIDENCE 	BETWEEN CONFIDENCE 

COMPARISON LIMIT 	 MEANS LIMIT 
pe 	- p 961.3 	 1818.4 2675.6 *** 

pe 	- e 1218.8 	 2075.9 2933.1 *** 

pe 	- u 1451.3 	 2259.4 3067.5 *** 

P 	- pe -2675.6 	-1818.4 -961.3 *** 

P 	- e -646.0 	 257.5 1161.0 

P 	- u -416.2 	 440.9 1298.1 
e 	- pe -2933.1 	-2075.9 -1218.8 *** 

e 	- p -1161.0 	 -257.5 646.0 
e 	- u -673.7 	 183.5 1040.8 
u 	- pe -3067.5 	-2259.4 -1451.3 *** 

u 	- p -1298.1 	 -440.9 416.2 
u 	- e -1040.6 	 -183.5 673.7 

Statistical 
Hypotheses 	HSD* 	 Decision 

1 	

4 

/ 193256.0786 
HSD* = 4.11 	 - 903.40 

193256.0786 
HSD* = 4.11

1/ 	4 
	 = 903.40 

193256.0786 
HSD* = 4.11 	

5 	
= 808.02 

193256.0786 
HSD* = 4.11 	

4 
	= 903.40 

193256.0786 
HSD* = 4.11 	

4 	
= 903.40 

193256.0786 
HSD* = 4.11 	

4 	
= 903.40 

Do not reject H0  

since 183.45 < 903.40 

Do not reject H0  
since 440.95 < 903.40 

Reject H0  

since 2259.4 > 808.02 

Do not reject Ho  

since 257.5 < 903.40 

Reject H0  

since 2075.95 > 903.40 

Reject H0  
since 1818.45 > 903.40 

Ho: ktu  = 

Ho: = Ap  

H0 : Ai, = Ape  

Ho: = Ap  

Ho: = Ape  

Ho: Ap  = Ape  
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TABLE 8.2.6 Multiple Comparison Tests Using Data of Example 8.2.1 and HSD* 

Figure 8.2.9 SAS ®  multiple comparisons for Example 8.2.1. 
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The results of the hypothesis tests displayed in Table 8.2.6 may be summarized 
by a technique suggested by Duncan (26). The sample means are displayed in a line 
approximately to scale. Any two that are not significantly different are underscored 
by the same line. Any two sample means that are not underscored by the same line 
are significantly different. Thus, for the present example, we may write 

81.8 	265.25 

522.75 	 2341.2 

SAS®  uses Tukey's procedure to test the hypothesis of no difference between 
population means for all possible pairs of sample means. The output also contains 
confidence intervals for the difference between all possible pairs of population 
means. This SAS output for Example 8.2.1 is displayed in Figure 8.2.9. 

EXERCISES 

In Exercises 8.2.1-8.2.7 go through the nine steps of analysis of variance hypothesis testing 
to see if you can conclude that there is a difference among population means. Let a = .05 
for each test. Determine the p value for each test. Use Tukey's HSD procedure to test for 
significant differences among individual pairs of means. Use the same a value as for the F 
test. Construct a dotplot and side-by-side boxplots of the data. 

8.2.1 Research by Singh et al. (A-2) as reported in the journal Clinical Immunology and 
Immunopathology is concerned with immune abnormalities in autistic children. As part 
of their research they took measurements on the serum concentration of an antigen 
in three samples of children, all of whom were 10 years old or younger. The results in 
units per milliliter of serum follow. 

Autistic children (n = 23): 755, 385, 380, 215, 400, 343, 415, 

360, 345, 450, 410, 435, 460, 360, 225, 900, 365, 440, 820, 400, 
170, 300, 325 

Normal children (n = 33): 165, 390, 290, 435, 235, 345, 320, 

330, 205, 375, 345, 305, 220, 270, 355, 360, 335, 305, 325, 245, 

285, 370, 345, 345, 230, 370, 285, 315, 195, 270, 305, 375, 220 

Mentally retarded children (non-Down's syndrome) (n = 15): 380, 

510, 315, 565, 715, 380, 390, 245, 155, 335, 295, 200, 105, 105, 
245 

SOURCE: Vijendra K. Singh, Ph.D. Used by permission. 

8.2.2 The purpose of an investigation by Schwartz et al. (A-3) was to quantify the effect of 
cigarette smoking on standard measures of lung function in patients with idiopathic 
pulmonary fibrosis. Among the measurements taken were percent predicted residual 
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volume. The results by smoking history were as follows: 

Never (n = 21) Former (n = 44) Current (n = 7) 

35.0 
120.0 
90.0 

109.0 
82.0 
40.0 
68.0 

62.0 
73.0 
60.0 
77.0 
52.0 

115.0 
82.0 

95.0 
82.0 

141.0 
64.0 

124.0 
65.0 
42.0 

96.0 
107.0 
63.0 

134.0 
140.0 
103.0 
158.0 

84.0 52.0 53.0 
X:114_ 

124.0 105.0 67.0 
77.0 143.0 95.0 

140.0 80.0 99.0 
127.0 78.0 69.0 
58.0 47.0 118.0 

110.0 85.0 131.0 
42.0 105.0 76.0 
57.0 46.0 69.0 
93.0 66.0 69.0 
70.0 91.0 97.0 
51.0 151.0 137.0 
74.0 40.0 103.0 
74.0 80.0 108.0 7,14 

C -̀  -41 	Ex,11,aS 
57.0 56.0 =34o1 

SOURCE: David A. Schwartz, M.D., M.P.H. Used by permission. 

8.2.3 SzadOczky et al. (A-4) examined the characteristics of 3H-imipramine binding sites in 
seasonal (SAD) and nonseasonal (non-SAD) depressed patients and in healthy individ-
uals (Control). One of the variables on which they took measurements was the 
density of binding sites for 3H-imipramine on blood platelets (Bmax). The results were 
as follows: 

SAD 	Non-SAD 	Control 

634 	771 	 1067 
585 	546 	 1176 
520 	552 	 1040 
525 	557 	 1218 
693 	976 	 942 
660 	204 	 845 
520 	807 	 1=it4% 
573 	526 	 ix; 	c-.3S. 
731 	 6t)-.4 
788 	YX=4Rq 

736 
1007 
846 
701 
584 
867 
691 	685.9 

SOURCE: Erika Szadoczky. Used by permission. 
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8.2.4 Meg Gulanick (A-5) compared the effects of teaching plus exercise testing, both with 
and without exercise training, on self-efficacy and on activity performance during 
early recovery in subjects who had had myocardial infarction or cardiac surgery. 
Self-efficacy (confidence) to perform physical activity is defined as one's judgment of 
one's capability to perform a range of physical activities frequently encountered in 
daily living. Subjects were randomly assigned to one of three groups. Group 1 
received teaching, treadmill exercise testing, and exercise training three times per 
week. Group 2 received only teaching and exercise testing. Group 3 received only 
routine care without supervised exercise or teaching. The following are the total 
self-efficacy scores by group at four weeks after the cardiac event. 

Group 1: 156, 119, 107, 108, 100, 170, 130, 154, 107, 137, 107 

Group 2: 132, 105, 144, 136, 136, 132, 159, 152, 117, 89, 142, 151, 82 

Group 3: 110, 117, 124, 106, 113, 94, 113, 121, 101, 119, 77, 90, 66 

SOURCE: Meg Gulanick, Ph.D., R. N. Used by permission. 

8.2.5 Azoulay-Dupuis et al. (A-6) studied the efficacy of five drugs on the clearance of 
Streptococcus pneumoniae in the lung of female mice at various times after infection. 
The following are measurements of viable bacteria in lungs (logic, cfu/ml of lung 
homogenate) 24 hours after six injections. Dosages are given per injection. 

Drug Dosage 
(mg / kg) Viable Bacteria 

Controls 8.80 
i, ,54 8.60 
Zx ,94.1 

8.10 
8.40 
8.80 

Amoxicyllin, 50 2.60 
2.60 
2.60 

Erythromycin, 50 2.60 
2.60 
2.60 

Temafloxacin, 50 2.60 
2.60 
2.60 

Ofloxacin, 100 7.30 
5.30 
7.48 

Ciprofloxacin, 100 7.86 
4.60 
6.45 

SOURCE: Esther Azoulay-Dupuis. Used by permis-
sion. 

8.2.6 The purpose of a study by Robert D. Budd (A-7) was to explore the relationship 
between cocaine use and violent behavior in coroners' cases. The following are the 
cocaine concentrations (gg/m1) in victims of violent death by type of death. 
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Homicide 

.78 1.71 .19 1.55 .27 4.08 .16 
1.88 4.10 .14 3.11 .42 1.52 .35 
.25 .38 2.38 2.49 .35 .41 1.49 
.81 2.50 .21 4.70 2.39 .35 1.18 
.04 1.80 .13 1.81 4.38 1.79 2.26 
.04 .12 1.32 1.15 .10 .27 .19 
.09 .30 3.58 3.49 1.24 2.77 .47 

1.88 

Accident 

1.18 1.46 .03 .65 .40 7.62 .04 
.05 3.85 .46 .47 2.96 

Suicide 

1.15 .54 .92 .35 3.22 .21 .54 
1.82 

SOURCE: Robert D. Budd. Used by permission. 

8.2.7 A study by Rosen et al. (A-8) was designed to test the hypothesis that survivors of the 
Nazi Holocaust have more and different sleep problems than depressed and healthy 
comparison subjects and that the severity of the survivors' problems correlate with 
length of time spent in a concentration camp. Subjects consisted of survivors of the 
Nazi Holocaust, depressed patients, and healthy subjects. The subjects described 
their sleep patterns over the preceding month on the Pittsburgh Sleep Quality Index, 
a self-rating instrument that inquires about quality, latency, duration, efficiency, and 
disturbances of sleep, use of sleep medication, and daytime dysfunction. The follow-
ing are the subjects' global scores on the index by type of subject. 

Survivors 
Depressed 
Patients 

Healthy 
Controls 

5 4 16 16 2 2 1 
9 1 12 13 0 3 2 

12 12 10 12 5 3 1 
3 12 12 11 4 1 4 

15 15 11 5 8 1 3 
7 20 17 13 4 2 3 
5 8 17 10 2 3 
4 5 16 15 2 1 

21 3 10 16 3 1 
12 15 6 19 2 3 

2 0 7 1 3 
10 1 16 2 9 
8 12 14 1 5 
8 5 7 2 1 

10 16 12 1 5 
8 3 8 2 1 
6 6 10 2 2 

13 2 12 1 2 
3 9 6 4 
6 9 3 1 

11 6 2 2 
4 
4 

SOURCE: Jules Rosen, M. D. Used by permission. 
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8.2.8 The objective of a study by Regenstein et al. (A-9) was to determine whether there is 
an increased incidence of glucose intolerance in association with chronic terbutaline 
therapy, administered either orally or as a continuous subcutaneous infusion. Thirty-
eight and 31 women, respectively, received terbutaline orally or as a continuous 
subcutaneous infusion. Their gestational diabetes screening results were compared to 
the results in 82 women not receiving therapy. What is the treatment variable in this 
study? The response variable? What extraneous variables can you think of whose 
effects would be included in the error term? What are the "values" of the treatment 
variable? Construct an analysis of variance table in which you specify for this study 
the sources of variation and the degrees of freedom. 

8.2.9 Jessee and Cecil (A-10) conducted a study to compare the abilities, as measured by a 
test and a ranking procedure, of variously trained females to suggest and prioritize 
solutions to a medical dilemma. The 77 females fell into one of four groups: trained 
home visitors with 0 to 6 months of experience, trained home visitors with more than 
6 months of experience, professionally trained nurses, and women with no training or 
experience. What is the treatment variable? The response variable? What are the 
"values" of the treatment variable? Who are the subjects? What extraneous variables 
whose effects would be included in the error term can you think of? What was the 
purpose of including the untrained and inexperienced females in the study? Con-
struct an ANOVA table in which you specify the sources of variation and the degrees 
of freedom for each. The authors reported a computed V.R. of 11.79. What is the p 
value for the test? 

8.3 
The Randomized Complete 
Block Design 

Of all the experimental designs that are in use, the randomized complete block design 
appears to be the most widely used. This design was developed about 1925 by R. A. 
Fisher (3, 41), who was seeking methods of improving agricultural field experi-

ments. 

The randomized complete block design is a design in which the units (called 

experimental units) to which the treatments are applied are subdivided into homoge-

neous groups called blocks, so that the number of experimental units in a block is 

equal to the number (or some multiple of the number) of treatments being 
studied. The treatments are then assigned at random to the experimental units 
within each block. It should be emphasized that each treatment appears in every 

block, and each block receives every treatment. 

Objective The objective in using the randomized complete block design is to 
isolate and remove from the error term the variation attributable to the blocks, 

while assuring that treatment means will be free of block effects. The effectiveness 

of the design depends on the ability to achieve homogeneous blocks of experimen-

tal units. The ability to form homogeneous blocks depends on the researcher's 
knowledge of the experimental material. When blocking is used effectively, the 
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error mean square in the ANOVA table will be reduced, the V.R. will be increased, 
and the chance of rejecting the null hypothesis will be improved. 

In animal experiments, if it is believed that different breeds of animal will 
respond differently to the same treatment, the breed of animal may be used as a 
blocking factor. Litters may also be used as blocks, in which case an animal from 
each litter receives a treatment. In experiments involving human beings, if it is 
desired that differences resulting from age be eliminated, then subjects may be 
grouped according to age so that one person of each age receives each treatment. 
The randomized complete block design also may be employed effectively when an 
experiment must be carried out in more than one laboratory (block) or when 
several days (blocks) are required for completion. 

Advantages Some of the advantages of the randomized complete block 
design include the fact that it is both easily understood and computationally 
simple. Furthermore, certain complications that may arise in the course of an 
experiment are easily handled when this design is employed. 

It is instructive here to point out that the paired comparisons analysis pre-
sented in Chapter 7 is a special case of the randomized complete block design. 
Example 7.4.1, for example, may be treated as a randomized complete block design 
in which the two points in time (Before and After) are the treatments and the 
individuals on whom the measurements were taken are the blocks. 

Data Display In general, the data from an experiment utilizing the random-
ized complete block design may be displayed in a table such as Table 8.3.1. The 
following new notation in this table should be observed: 

the total of the i th block = T2  = E xi, 
J=1 

k 

the mean of the i th block = .Tc 

E xi;  
j=1 

k 	k 
	 = 

and the grand total = T= E T .1  = E Ti.  
j=1 	 i=1 

TABLE 8.3.1 Table of Sample Values for the Randomized Complete Block Design 

Blocks 

Treatments 

Total Mean 1 2 3 k 

1 
2 
3 
• 
• 

n 

XII 

X 21 
X31  

X ni  

X12 

X22 
X32 

X  n2 

X 13 

X23 

X33 

• 

x,,3 

Xlk 

X 2k 
X3k 

X nk 

T,. 
T2.  

• 
• 

Tn.  

x i.  

i n. 

Total T. , T.  2  T.3  T..  

Mean 2 x. k 
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indicating that the grand total may be obtained either by adding row totals or by 
adding column totals. 

Two-Way ANOVA The technique for analyzing the data from a randomized 
complete block design is called two-way analysis of variance since an observation is 
categorized on the basis of two criteria—the block to which it belongs as well as 
the treatment group to which it belongs. 

The steps for hypothesis testing when the randomized complete block design is 
used are as follows: 

1. Data After identifying the treatments, the blocks, and the experimental 
units, the data, for convenience, may be displayed as in Table 8.3.1. 

2. Assumptions The model for the randomized complete block design and its 
underlying assumptions are as follows: 

The Model 

x 2i = 	+ 13. + T. 	e.. 	 (8.3.1) 

i = 1,2,...,n; 	j = 1,2,...,k 

In this model 

xii  is a typical value from the overall population. 

/2 is an unknown constant. 

Ni represents a block effect reflecting the fact that the experimental unit fell in 
the ith block. 

Tj  represents a treatment effect, reflecting the fact that the experimental unit 
received the jth treatment. 

e,j  is a residual component representing all sources of variation other than 
treatments and blocks. 

Assumptions of the Model 

a. Each x,i  that is observed constitutes a random independent sample of size 1 
from one of the kn populations represented. 

b. Each of these kn populations is normally distributed with mean Azi  and the 
same variance u2. This implies that the e zi  are independently and normally 
distributed with mean 0 and variance o-2. 

c. The block and treatment effects are additive. This assumption may be 
interpreted to mean that there is no interaction between treatments and 
blocks. In other words, a particular block-treatment combination does not 
produce an effect that is greater or less than the sum of their individual 
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effects. It can be shown that when this assumption is met 

	

= 	Pi = 0 
j=1 	i=1 

The consequences of a violation of this assumption are misleading results. 
Anderson and Bancroft (42) suggest that one need not become concerned 
with the violation of the additivity assumption unless the largest mean is 
more than 50 percent greater than the smallest. The nonadditivity problem 
is also dealt with by Tukey (43) and Mandel (44). 

	

When these assumptions hold true, the 	and pi  are a set of fixed constants, 
and we have a situation that fits the fixed-effects model. 

3. Hypotheses We may test 

Ho 	= 0 	 j =  1,2, ... , k 

against the alternative 

HA: not all T. = 0 

A hypothesis test regarding block effects is not usually carried out under the 
assumptions of the fixed-effects model for two reasons. First, the primary interest 
is in treatment effects, the usual purpose of the blocks being to provide a means of 
eliminating an extraneous source of variation. Second, although the experimental 
units are randomly assigned to the treatments, the blocks are obtained in a 
nonrandom manner. 

4. Test Statistic The test statistic is V.R. 

5. Distribution of the Test Statistic When 1/0  is true and the assumptions are met, 
V.R. follows an F distribution. 

6. Decision Rule Reject the null hypothesis if the computed value of the test 
statistic V.R. is equal to or greater than the critical value of F. 

7. Calculation of Test Statistic It can be shown that the total sum of squares for 
the randomized complete block design can be partitioned into three compo-
nents, one each attributable to treatments (SST), blocks (SSBI), and error 
(SSE). The algebra is somewhat tedious and will be omitted. The partitioned 
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sum of squares may be expressed by the following equation: 

k n 	 k n 	 k n 
E 	 E 

j=li=1 	 J=1 =1 

k n 
)2 

 

(8.3.2) 
j = 1 -= 1 

  

that is, 

SST = SSBI + SSTr + SSE 
	

(8.3.3) 

The computing formulas for the quantities in Equations 8.3.2 and 8.3.3 are 
as follows: 

k n 

SST= Ex?. — c 

—1i=1 

Ti2 

SSBI = 	— C 
i=1 k 

k T2.  

SSTr = E 	C 
j=1 n 

(8.3.4) 

(8.3.5) 

(8.3.6) 

SSE = SST — SSBI — SSTr 	 (8.3.7) 

It will be recalled that C is a correction term, and in the present situation 
it is computed as follows: 

k n 

E Ex 

J=Ii=1 

= T2/kn 	 (8.3.8) 

The appropriate degrees of freedom for each component of Equation 8.3.3 
are: 

total 	blocks 	treatments 	residual (error) 

kn — 1 = (n — 1) + (k — 1) + (n — 1Xk — 1) 

The residual degrees of freedom, like the residual sum of squares, may be 
obtained by subtraction as follows: 

(kn — 1) — (n — 1) — (k — 1) = kn — 1 — n + 1 — k + 1 

= n(k — 1) — 1(k — 1) = (n — 1)(k — 1) 

)2 

kn 

The ANOVA Table The results of the calculations for the randomized complete 
block design may be displayed in an ANOVA table such as Table 8.3.2. 
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TABLE 8.3.2 ANOVA Table for the Randomized Complete Block Design 

Source SS d. f. MS V.R. 

Treatments SSTr (k — 1) MSTr = MSTr/ 
SSTr/(k — 1) MSE 

Blocks SSBI (n — 1) MSBI = 
SSBI/(n — 1) 

Residual SSE (n — 1)(k — 1) MSE = 
SSE/(n — 1)(k — 1) 

Total SST kn — 1 

8. Statistical Decision It can be shown that when the fixed-effects model applies 
and the null hypothesis of no treatment effects (all Ti  = 0) is true, both the 
error, or residual, mean square and the treatments mean square are estimates 
of the common variance o.2. When the null hypothesis is true, therefore, the 
quantity 

MSTr/MSE 

is distributed as F with k — 1 numerator degrees of freedom and (n — 1) X 
(k — 1) denominator degrees of freedom. The computed variance ratio, there-
fore, is compared with the critical value of F. 

9. Conclusion If we reject 1/0, we conclude that the alternative hypothesis is true. 
If we fail to reject 1/0, we conclude that Ho  may be true. 

The following example illustrates the use of the randomized complete 
block design. 

Example 
8.3.1 

A physical therapist wished to compare three methods for teaching patients to use 
a certain prosthetic device. He felt that the rate of learning would be different for 
patients of different ages and wished to design an experiment in which the 
influence of age could be taken into account. 

Solution: The randomized complete block design is the appropriate design for 
this physical therapist. 

1. Data Three patients in each of five age groups were selected to participate in 
the experiment, and one patient in each age group was randomly assigned to 
each of the teaching methods. The methods of instruction constitute our three 
treatments, and the five age groups are the blocks. The data shown in Table 
8.3.3 were obtained. 

2. Assumptions We assume that each of the 15 observations constitutes a simple 
random sample of size 1 from one of the 15 populations defined by a 
block—treatment combination. For example, we assume that the number 7 in 
the table constitutes a randomly selected response from a population of 
responses that would result if a population of subjects under the age of 20 
received teaching method A. We assume that the responses in the 15 repre-
sented populations are normally distributed with equal variances. 
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TABLE 8.3.3 Time (In Days) Required to Learn the Use of a Certain Prosthetic Device 

Age Group 
Teaching Method 

Total Mean A B C 

Under 20 7 9 10 26 8.67 
20 to 29 8 9 10 27 9.00 
30 to 39 9 9 12 30 10.00 
40 to 49 10 9 12 31 10.33 
50 and over 11 12 14 37 12.33 

Total 45 48 58 151 

Mean 9.0 9.6 11.6 10.07 

3. Hypotheses 
1/0: Tj  = 0, 	j = 1,2,3 

HA : not all T = 0 

Let a = .05. 

4. Test Statistic The test statistic is V.R. = MSTr/MSE. 

5. Distribution of the Test Statistic When 1/0  is true and the assumptions are met, 
V.R. follows an F distribution with 2 degrees of freedom. 

6. Decision Rule Reject the null hypothesis if the computed V.R. is equal to or 
greater than the critical F, which we find in Appendix Table G to be 4.46. 

7. Calculation of Test Statistic We compute the following sums of squares: 

	

(151)2 	22801 

	

C - 
(3)(5) 	15 
	 = 1520.0667 

SST = 72 + 92 + • • • +142  - 1520.0667 = 46.9333 

262  + 272  + • • • +372  
SSBI =  	1520.0667 = 24.9333 

3 

452  + 482  + 582  
SSTr =  	1520.0667 = 18.5333 

5 
SSE = 46.9333 - 24.9333 - 18.5333 = 3.4667 

The degrees of freedom are total = (3X5) - 1 = 14, blocks = 5 - 1 = 4, 
treatments = 3 - 1 = 2, and residual = (5 - 0(3 - 1) = 8. The results of the 
calculations may be displayed in an ANOVA table as in Table 8.3.4. 

TABLE 8.3.4 ANOVA Table for Example 8.3.1 

Source SS d.f. MS V.R. 

Treatments 18.5333 2 9.26665 21.38 
Blocks 24.9333 4 6.233325 
Residual 3.4667 8 .4333375 

Total 46.9333 14 
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ROW C1 C2 C3 

1 7 1 1 
2 9 1 2 
3 10 1 3 
4 8 2 1 
5 9 2 2 
6 10 2 3 
7 9 3 1 
8 9 3 2 
9 12 3 3 

10 10 4 1 
11 9 4 2 
12 12 4 3 
13 11 5 1 
14 12 5 2 
15 14 5 3 

Figure 8.3.1 MINITAB worksheet for 
the data in Figure 8.3.2. 

8. Statistical Decision Since our computed variance ratio, 21.38, is greater than 
4.46, we reject the null hypothesis of no treatment effects on the assumption 
that such a large V.R. reflects the fact that the two sample mean squares are 
not estimating the same quantity. The only other explanation for this large 
V.R. would be that the null hypothesis is really true, and we have just observed 
an unusual set of results. We rule out the second explanation in favor of the 
first. 

9. Conclusion We conclude that not all treatment effects are equal to zero, or 
equivalently, that not all treatment means are equal. For this test p < .005. 

Computer Analysis Most statistics software packages will analyze data from 
a randomized complete block design. We illustrate the input and output for 
MINITAB. We use the data from the experiment to set up a MINITAB worksheet 
consisting of three columns. Column 1 contains the observations, column 2 con-
tains numbers that identify the block to which each observation belongs, and 
column 3 contains numbers that identify the treatment to which each observation 
belongs. Figure 8.3.1 shows the MINITAB worksheet for Exercise 8.3.1. Figure 8.3.2 
contains the MINTAB command that initiates the analysis and the resulting 
ANOVA table. 

Alternatives When the data available for analysis do not meet the assump-
tions of the randomized complete block design as discussed here, the Friedman 
procedure discussed in Chapter 13 may prove to be a suitable nonparametric 
alternative. 
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MTB > twoway c1, c2, c3 

ANALYSIS OF VARIANCE C1 

SOURCE 	DF 	 SS 	 MS 
C2 	 4 	24.933 	6.233 
C3 	 2 	18.533 	9.267 
ERROR 	8 	3.467 	0.433 
TOTAL 	14 	46.933 

Figure 8.3.2 MINITAB command and printout for 
two-way analysis of variance, Example 8.3.1. 

EXERCISES 

For Exercises 8.3.1-8.35 perform the nine-step hypothesis testing procedure for analysis of 
variance. Determine the p value for each exercise. 

8.3.1 The objective of a study by Druml et al. (A-11) was to evaluate the impact of 
respiratory alkalosis on the elimination of intravenously infused lactate. Subjects 
were eight patients treated by ventilatory support for neurologic or neuromuscular 
diseases. Plasma lactate concentration measurements were taken on two randomly 
assigned occasions: during normoventilation and during respiratory alkalosis induced 
by controlled hyperventilation. Lactate elimination was evaluated after infusing 1 
mmol/kg body weight of L-lactic acid within five minutes. The following are the 
plasma lactate values (mmol/l) 90 minutes after infusion for each subject for each 
occasion. 

Subject Normoventilation Hyperventilation 

1 1.3 2.8 
2 1.4 2.0 
3 1.2 1.7 
4 1.1 2.7 
5 1.8 2.1 
6 1.4 1.8 
7 1.3 2.0 
8 1.9 2.8 

SOURCE: Wilfred Druml, Georg Grimm, Anton N. Laggner, Kurt Lenz, 
and Bruno Schneeweil3, "Lactic Acid Kinetics in Respiratory Alkalosis," 
Critical Care Medicine, 19 (1991), 1120-1124. 	by Williams & Wilkins, 
1991. 

After eliminating subject effects, can we conclude that the mean plasma lactate value 
is different for normoventilation and hyperventilation? Let a = .05. 

8.3.2 McConville et al. (A-12) report the effects of chewing one piece of nicotine gum 
(containing 2 mg of nicotine) on tic frequency in patients whose Tourette's disorder 
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was inadequately controlled by haloperidol. The following are the tic frequencies 
under four conditions. 

Patient 

Number of Tics During 30-Minute Period 

Baseline 
Gum 

Chewing 

After End of Chewing 

0-30 
Minutes 

30-60 
Minutes 

1 249 108 93 59 
2 1095 593 600 861 
3 83 27 32 61 
4 569 363 342 312 
5 368 141 167 180 
6 326 134 144 158 
7 324 126 312 260 
8 95 41 63 71 
9 413 365 282 321 

10 332 293 525 455 

SOURCE: Brian J. McConville, M. Harold Fogelson, Andrew B. Norman, William M. Klykylo, 
Pat Z. Manderscheid, Karen W. Parker, and Paul R. Sanberg, "Nicotine Potentiation of 
Haloperidol in Reducing Tic Frequency in Tourette's Disorder," American Journal of 

Psychiatry, 148 (1991), 793-794. Copyright 1991, The American Psychiatric Association. 
Reprinted by permission. 

After eliminating patient effects can we conclude that the mean number of tics 
differs among the four conditions? Let a = .01. 

8.3.3 A remotivation team in a psychiatric hospital conducted an experiment to compare 
five methods for remotivating patients. Patients were grouped according to level of 
initial motivation. Patients in each group were randomly assigned to the five meth-
ods. At the end of the experimental period the patients were evaluated by a team 
composed of a psychiatrist, a psychologist, a nurse, and a social worker, none of whom 
was aware of the method to which patients had been assigned. The team assigned 
each patient a composite score as a measure of his or her level of motivation. The 
results were as follows. 

Level of 
Initial Remotivation Method 

Motivation A 

Nil 58 68 60 68 64 
Very low 62 70 65 80 69 
Low 67 78 68 81 70 
Average 70 81 70 89 74 

Do these data provide sufficient evidence to indicate a difference in mean scores 
among methods? Let a = .05. 

8.3.4 The nursing supervisor in a local health department wished to study the influence of 
time of day on length of home visits by the nursing staff. It was thought that 
individual differences among nurses might be large, so the nurse was used as a 
blocking factor. The nursing supervisor collected the following data. 
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Nurse 

Length of Home Visit by Time of Day 

Early 
Morning 

Late 
Morning 

Early 
Afternoon 

Late 
Afternoon 

A 
B 
C 
D 

27 
31 
35 
20 

28 
30 
38 
18 

30 
27 
34 
20 

23 
20 
30 
14 

Do these data provide sufficient evidence to indicate a difference in length of home 
visit among the different times of day? Let a = .05. 

8.3.5 Four subjects participated in an experiment to compare three methods of relieving 
stress. Each subject was placed in a stressful situation on three different occasions. 
Each time a different method for reducing stress was used with the subject. The 
response variable is the amount of decrease in stress level as measured before and 
after treatment application. The results were as follows. 

Treatment 

Subject A 

1 16 26 22 
2 16 20 23 
3 17 21 22 
4 28 29 36 

Can we conclude from these data that the three methods differ in effectiveness? Let 
a = .05. 

8.3.6 In a study by Valencia et al. (A-13) the effects of environmental temperature and 
humidity on 24-hour energy expenditure were measured using whole-body indirect 
calorimetry in eight normal-weight young men who wore standardized light clothing 
and followed a controlled activity regimen. Temperature effects were assessed by 
measurements at 20, 23, 26, and 30 degrees at ambient humidity and at 20 and 30 
degrees with high humidity. What is the blocking variable? The treatment variable? 
How many blocks are there? How many treatments? Construct an ANOVA table in 
which you specify the sources of variability and the degrees of freedom for each. 
What are the experimental units? What extraneous variables can you think of whose 
effects would be included in the error term? 

8.3.7 Hodgson et al. (A-14) conducted a study in which they induced gastric dilatation in 
six anesthetized dogs maintained with constant-dose isoflurane in oxygen. Cardiopul-
monary measurements prior to stomach distension (baseline) were compared with 
measurements taken during .1, .5, 1.0, 1.5, 2.5, and 3.5 hours of stomach distension 
by analyzing the change from baseline. After distending the stomach, cardiac index 
increased from 1.5 to 3.5 hours. Stroke volume did not change. During inflation, 
increases were observed in systemic arterial, pulmonary arterial, and right atrial 
pressure. Respiratory frequency was unchanged. Pao, tended to decrease during 
gastric dilatation. What are the experimental units? The blocks? Treatment variable? 
Response variable(s)? Can you think of any extraneous variable whose effect would 
contribute to the error term? Construct an ANOVA table for this study in which you 
identify the sources of variability and specify the degrees of freedom. 
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8.4 
The Repeated Measures Design 
MIME 

One of the most frequently used experimental designs in the health sciences field 
is the repeated measures design. 

DEFINITION 

A repeated measures design is one in which measurements of the same 
variable are made on each subject on two or more different occasions. 

The different occasions during which measurements are taken may be either 
points in time or different conditions such as different treatments. 

When to Use Repeated Measures The usual motivation for using a re-
peated measures design is a desire to control for variability among subjects. In such 
a design each subject serves as its own control. When measurements are taken on 
only two occasions we have the paired comparisons design that we discussed in 
Chapter 7. One of the most frequently encountered situations in which the 
repeated measures design is used is the situation in which the investigator is 
concerned with responses over time. 

Advantages The major advantage of the repeated measures design is, as 
previously mentioned, its ability to control for extraneous variation among subjects. 
An additional advantage is the fact that fewer subjects are needed for the repeated 
measures design than for a design in which different subjects are used for each 
occasion on which measurements are made. Suppose, for example, that we have 
four treatments (in the usual sense) or four points in time on each of which we 
would like to have 10 measurements. If a different sample of subjects is used for 
each of the four treatments or points in time, 40 subjects would be required. If we 
are able to take measurements on the same subject for each treatment or point in 
time—that is, if we can use a repeated measures design—only 10 subjects would 
be required. This can be a very attractive advantage if subjects are scarce or 
expensive to recruit. 

Disadvantages A major potential problem to be on the alert for is what is 
known as the carry-over effect. When two or more treatments are being evaluated, the 
investigator should make sure that a subject's response to one treatment does not 
reflect a residual effect from previous treatments. This problem can frequently be 
solved by allowing a sufficient length of time between treatments. 

Another possible problem is the position effect. A subject's response to a 
treatment experienced last in a sequence may be different from the response that 
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would have occurred if the treatment had been first in the sequence. In certain 
studies, such as those involving physical participation on the part of the subjects, 
enthusiasm that is high at the beginning of the study may give way to boredom 
toward the end. A way around this problem is to randomize the sequence of 
treatments independently for each subject. 

Single-Factor Repeated Measures Design The simplest repeated mea-
sures design is the one in which, in addition to the treatment variable, one 
additional variable is considered. The reason for introducing this additional vari-
able is to measure and isolate its contribution to the total variability among the 
observations. We refer to this additional variable as a factor. 

DEFINITION 
muy. 	mvommemm. 

The repeated measures design in which one additional factor is introduced 
into the experiment is called a single factor repeated measures design. 

We refer to the additional factor as subjects. In the single-factor repeated 
measures design, each subject receives each of the treatments. The order in which 
the subjects are exposed to the treatments, when possible, is random, and the 
randomization is carried out independently for each subject. 

Assumptions The following are the assumptions of the single-factor re-
peated measures design that we consider in this text. A design in which these 
assumptions are met is called a fixed-ejects additive design. 

1. The subjects under study constitute a simple random sample from a popula-
tion of similar subjects. 

2. Each observation is an independent simple random sample of size 1 from each 
of kn populations, where n is the number of subjects and k is the number of 
treatments to which each subject is exposed. 

3. The kn populations have potentially different means, but they all have the 
same variance. 

4. The k treatments are fixed, that is, they are the only treatments about which 
we have an interest in the current situation. We do not wish to make 
inferences to some larger collection of treatments. 

5. There is no interaction between treatments and subjects. That is, the treat-
ment and subject effects are additive. 

Experimenters may find frequently that their data do not conform to the assump-
tions of fixed treatments and/or additive treatment and subject effects. For such 
cases the references at the end of this chapter may be consulted for guidance. 
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TABLE 8.4.1 Daily (24-h) Respiratory Quotients at Three Different Points in Time 

Subject Baseline Day 3 Day 7 Total 

1 0.800 0.809 0.832 2.441 
2 0.819 0.858 0.835 2.512 
3 0.886 0.865 0.837 2.588 
4 0.824 0.876 0.900 2.600 
5 0.820 0.903 0.877 2.600 
6 0.906 0.820 0.865 2.591 
7 0.800 0.867 0.857 2.524 
8 0.837 0.852 0.847 2.536 

Total 6.692 6.850 6.850 20.392 

SOURCE: James 0. Hill, John C. Peters, George W. Reed, David G. Schlundt, Teresa Sharp, 
and Harry L. Greene, "Nutrient Balance in Humans: Effect of Diet Composition," American 
Journal of Clinical Nutrition, 54 (1991), 10-17. © American Journal of Clinical Nutrition. 

The Model The model for the fixed-effects additive single-factor repeated 
measures design is 

X = 	+ pi  + 7-;  + e 	 (8.4.1) 

i = 1,2,...,n; 	j= 1,2,...,k 

The reader will recognize this model as the model for the randomized complete 
block design discussed in Section 8.3. The subjects are the blocks. Consequently the 
notation, data display, and hypothesis testing procedure are the same as for the 
randomized complete block design as presented earlier. The following is an 
example of a repeated measures design. 

Example 
8.4.1 

Hill, et al. (A-15) examined the effect of alterations in diet composition on energy 
expenditure and nutrient balance in humans. One measure of energy expenditure 
employed was a quantity called the respiratory quotient (RQ). Table 8.4.1 shows, 
for three different points in time, the daily (24-h) respiratory quotients following a 
high calorie diet of the eight subjects who participated in the study. We wish to 
know if there is a difference in the mean RQ values among the three points in 
time. 

Solution: 

1. Data See Table 8.4.1. 

2. Assumptions We assume that the assumptions for the fixed-effects, additive 
single-factor repeated measures design are met. 
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3. Hypotheses 

H0:  13 = I-4  D3 = N D7 

HA: not all p's are equal 

4. Test Statistic V.R. = Treatment MS/Error MS. 

5. Distribution of Test Statistic F with 3 - 1 = 2 numerator degrees of freedom 
and 23 - 2 - 7 = 14 denominator degrees of freedom. 

6. Decision Rule Let a = .05. The critical value of F is 3.74. Reject Ho  if 
computed V.R. is equal to or greater than 3.74. 

7. Calculation of Test Statistic By Equation 8.3.4 

SST = [.8002  + .8192  + • • • + .8472 ] - 20.3922/24 = .023013 

By Equation 8.3.5 

2.4412  + 2.5122  + • • +2.5362  
SSB1 = 	

3 	
20.3922/24 = .007438 

By Equation 8.3.6 

SSTr = 

By Equation 8.3.7 

6.6922  + 6.8502 + 6.8502  
20.3922  = .002080 

7 

SSE = .023013 - .007438 - .002080 = .013495 

The results of the calculations are displayed in Table 8.4.2. 
8. Statistical Decision Since 1.0788 is less than 3.74, we are unable to reject the 

null hypothesis. 

9. Conclusion We conclude that there may be no difference in the three popula-
tion means. Since 1.0788 is less than 2.73, the critical F for a = .10, the p 
value is greater than .10. 

TABLE 8.4.2 ANOVA Table for Example 8.4.1 

Source SS df MS V.R. 

Treatments .002080 2 .001040 1.0788 
Blocks .007438 7 .001063 
Error .013495 14 .000964 

Total .023013 23 
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EXERCISES 

For Exercises 8.4.1-8.4.3 perform the nine-step hypothesis testing procedure. Let a = .05 
and find the p value for each test. 

8.4.1 One of the purposes of a study by Blum et al. (A-16) was to determine the 
pharmacokinetics of phenytoin in the presence and absence of concomitant flucona-
zole therapy. Among the data collected during the course of the study were the 
following trough serum concentrations of fluconazole for 10 healthy male subjects at 
three different points in time. 

Subject Day 14 Cmin  (pg / ml) Day 18 Cmin  (jig / ml) Day 21 Cmin  (pg / 

001 8.28 9.55 11.21 
004 4.71 5.05 5.20 
005 9.48 11.33 8.45 
007 6.04 8.08 8.42 
008 6.02 6.32 6.93 
012 7.34 7.44 8.12 
013 5.86 6.19 5.98 
016 6.08 6.03 6.45 
017 7.50 8.04 6.26 
020 4.92 5.28 6.17 

SOURCE: Robert A. Blum, John H. Wilton, Donald M. Hilligoss, Mark J. Gardner, Eugenia B. 
Henry, Nedra J. Harrison, and Jerome J. Schentag, "Effect of Fluconazole on the Disposition of 
Phenytoin," Clinical Pharmacology and Therapeutics, 49 (1991), 420-425. 

8.4.2 Abbrecht et al. (A-17) examined the respiratory effects of exercise and various 
degrees of airway resistance. The five subjects, who were healthy nonsmoking men, 
engaged in prolonged submaximal exercise while breathing through different flow-
resistive loads. Among the measurements taken were the following inspired ventila-
tion values (1/min) at five successive points in time under one of the resistive-load 
conditions. 

Time Interval 
Subject 1 2 3 4 5 

1 39.65 36.60 39.96 40.37 37.82 
2 44.88 40.84 43.96 44.10 45.41 
3 32.98 33.79 34.32 33.89 32.81 
4 38.49 35.50 39.63 35.21 37.51 
5 39.71 41.90 36.50 40.36 42.48 

SOURCE: Peter H. Abbrecht, M.D., Ph.D. Used by permission. 

8.4.3 Kabat-Zinn et al. (A-18) designed a study to determine the effectiveness of a group 
stress reduction program based on mindfulness meditation for patients with anxiety 
disorders. The subjects were selected from those referred to a stress reduction and 
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relaxation program. Among the data collected were the scores made on the Hamilton 
Rating Scale for Anxiety at three different points in time: initial recruitment (IR), 
pretreatment (Pre), posttreatment (Post), and three-month followup (3-M). The 
results for 14 subjects were as follows: 

IR Pre Post 3-M 

21 21 16 19 
30 38 10 21 
38 19 15 6 
43 33 30 24 
35 34 25 10 
40 40 31 30 
27 15 11 6 
18 11 4 7 
31 42 23 27 
21 23 21 17 
18 24 16 13 
28 8 5 2 
40 37 31 19 
35 32 12 21 

SOURCE: Kenneth E. Fletcher, Ph.D. Used 
with permission. 

8.4.4. The purpose of a study by Speechley et al. (A-19) was to compare changes in 
self-assessed clinical confidence over a two-year residency between two groups of 
family practice residents, one starting in a family practice center and the other 
starting in a hospital. Forty-two residents participated at baseline, and 24 provided 
completed responses after two years. Confidence regarding 177 topics in 19 general 
topic areas was assessed using self-completed questionnaires administered at baseline 
and after 6, 12, and 24 months. Residents rotated every 6 months between sites, with 
approximately half starting in each site. Assignment to starting site included consid-
eration of the residents' stated preferences. Who are the subjects in this study? What 
is the treatment variable? The response variable(s)? Comment on carry-over effect 
and position effect as they may or may not be of concern in this study. Construct an 
ANOVA table for this study in which you identify the sources of variability and 
specify the degrees of freedom for each. 

8.4.5. Barnett and Maughan (A-20) conducted a study to determine if there is an acclima-
tion effect when unacclimatized males exercise in the heat at weekly intervals. Five 
subjects exercised for one hour at 55 percent Vo,max  on four different occasions. The 
first exercise was in moderate conditions. The subsequent three were performed at 
weekly intervals in the heat. There were no significant differences between trials in 
the heat for heart rate, rectal temperature or Vol. Who are the subjects for this 
study? What is the treatment variable? The response variable(s)? Comment on 
carry-over effect and position effect as they may or may not be of concern in this 
study. Construct an ANOVA table for this study in which you identify the sources of 
variability and specify the degrees of freedom for each. 
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8.5 
The Factorial Experiment 

In the experimental designs that we have considered up to this point we have been 
interested in the effects of only one variable, the treatments. Frequently, however, 
we may be interested in studying, simultaneously, the effects of two or more 
variables. We refer to the variables in which we are interested as factors. The 
experiment in which two or more factors are investigated simultaneously is called a 
factorial experiment. 

The different designated categories of the factors are called levels. Suppose, for 
example, that we are studying the effect on reaction time of three dosages of some 
drug. The drug factor, then, is said to occur at three levels. Suppose the second 
factor of interest in the study is age, and it is thought that two age groups, under 
65 years and 65 years and over, should be included. We then have two levels of the 
age factor. In general, we say that factor A occurs at a levels and factor B occurs at 

b levels. 
In a factorial experiment we may study not only the effects of individual factors 

but also, if the experiment is properly conducted, the interaction between factors. 
To illustrate the concept of interaction let us consider the following example. 

Example 
8.5.1 

Suppose, in terms of effect on reaction time, that the true relationship between 
three dosage levels of some drug and the age of human subjects taking the drug is 
known. Suppose further that age occurs at two levels—"young" (under 65) and 
"old" (65 and over). If the true relationship between the two factors is known, we 
will know, for the three dosage levels, the mean effect on reaction time of subjects 
in the two age groups. Let us assume that effect is measured in terms of reduction 
in reaction time to some stimulus. Suppose these means are as shown in Table 
8.5.1. 

The following important features of the data in Table 8.5.1 should be noted. 

1. For both levels of factor A the difference between the means for any two levels 
of factor B is the same. That is, for both levels of factor A, the difference 
between means for levels 1 and 2 is 5, for levels 2 and 3 the difference is 10, 
and for levels 1 and 3 the difference is 15. 

TABLE 8.5.1 Mean Reduction in Reaction Time (Milliseconds) of Subjects 

in Two Age Groups at Three Drug Dosage Levels 

Factor B—Drug Dosage 

Factor A—Age j = 1 j = 2 j= 3 

Young (i = 1) = 5  /u12= 10 p.13  = 20 
Old (i = 2) kL2 	= 10 p22 = 15 /L23 = 25 
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Figure 8.5.1 Age and drug effects, no interaction present. 

2. For all levels of factor B the difference between means for the two levels of 
factor A is the same. In the present case the difference is 5 at all three levels of 
factor B. 

3. A third characteristic is revealed when the data are plotted as in Figure 8.5.1. 
We note that the curves corresponding to the different levels of a factor are all 
parallel. 

When population data possess the three characteristics listed above, we say 
that there is no interaction present. 

The presence of interaction between two factors can affect the characteristics 
of the data in a variety of ways depending on the nature of the interaction. We 
illustrate the effect of one type of interaction by altering the data of Table 8.5.1 as 
shown in Table 8.5.2. 

The important characteristics of the data in Table 8.5.2 are as follows. 

1. The difference between means for any two levels of factor B is not the same for 
both levels of factor A. We note in Table 8.5.2, for example, that the difference 
between levels 1 and 2 of factor B is —5 for the young age group and +5 for 
the old age group. 

2. The difference between means for both levels of factor A is not the same at all 
levels of factor B. The differences between factor A means are —10, 0, and 15 
for levels 1, 2, and 3, respectively, of factor B. 

3. The factor level curves are not parallel, as shown in Figure 8.5.2. 

TABLE 8.5.2 Data of Table 8.5.1 Altered to Show the Effect of One Type of Interaction 

Factor B—Drug Dosage 

Factor A—Age j = 1 j = 2 j = 3  
Young (i = 1) A11 = 5  = 10 /113  = 20 
Old (i = 2) Azi = 15  /122 = 10 /123 = 5 
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Figure 8.5.2 Age and drug effects, interaction present. 

When population data exhibit the characteristics illustrated in Table 8.5.2 and 
Figure 8.5.2 we say that there is interaction between the two factors. We empha-
size that the kind of interaction illustrated by the present example is only one of 
many types of interaction that may occur between two factors. 

In summary, then, we can say that there is interaction between two factors if a change in 
one of the factors produces a change in response at one level of the other factor dyerent from that 
produced at other levels of this factor. 

Advantages The advantages of the factorial experiment include the follow-
ing. 

1. The interaction of the factors may be studied. 

2. There is a saving of time and effort. 

In the factorial experiment all the observations may be used to study the 
effects of each of the factors under investigation. The alternative, when two factors 
are being investigated, would be to conduct two different experiments, one to 'study 
each of the two factors. If this were done, some of the observations would yield 
information only on one of the factors, and the remainder would yield information 
only on the other factor. To achieve the level of accuracy of the factorial experi-
ment, more experimental units would be needed if the factors were studied 
through two experiments. It is seen, then, that 1 two-factor experiment is more 
economical than 2 one-factor experiments. 

3. Since the various factors are combined in one experiment, the results have a 
wider range of application. 

The Two-Factor Completely Randomized Design A factorial arrangement 
may be studied with either of the designs that have been discussed. We illustrate 
the analysis of a factorial experiment by means of a two-factor completely random-
ized design. 
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TABLE 8.5.3 Table of Sample Data From a Two-Factor Completely Randomized Experiment 

Factor B 

X 2In 	X  22n 	 X 2bn 

a 	X all 	 X  a21 	 X  abl 
Ta.. 	 a.. 

X  aln 	X  a2n 	 X abn 

Totals 	T.i. 	 T...  

Means 	 x.2. 

1. Data The results from a two-factor completely randomized design may be 
presented in tabular form as shown in Table 8.5.3. 

Here we have a levels of factor A, b levels of factor B, and n observations 
for each combination of levels. Each of the ab combinations of levels of factor 
A with levels of factor B is a treatment. In addition to the totals and means 
shown in Table 8.5.3, we note that the total and mean of the nth cell are 

= E X k 
	and 	= Tij ./n 

k =1 

respectively. The subscript i runs from 1 to a and j runs from 1 to b. The total 
number of observations is nab. 

To show that Table 8.5.3 represents data from a completely randomized 
design, we consider that each combination of factor levels is a treatment and 
that we have n observations for each treatment. An alternative arrangement of 
the data would be obtained by listing the observations of each treatment in a 
separate column. Table 8.5.3 may also be used to display data from a two-fac-
tor randomized block design if we consider the first observation in each cell as 
belonging to block 1, the second observation in each cell as belonging to block 
2, and so on to the n th observation in each cell, which may be considered as 
belonging to block n. 

Note the similarity of the data display for the factorial experiment as 
shown in Table 8.5.3 to the randomized complete block data display of Table 
8.3.1. The factorial experiment, in order that the experimenter may test for 
interaction, requires at least two observations per cell, whereas the randomized 
complete block design only requires one observation per cell. We use two-way 
analysis of variance to analyze the data from a factorial experiment of the type 
presented here. 
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2. Assumptions We assume a fixed-effects model and a two-factor completely 
randomized design. For a discussion of other designs consult the references at 
the end of this chapter. 

The Model The fixed-effects model for the two-factor completely random-
ized design may be written as 

	

X iik  = 	ai  + Pi  + (aP)ij  + eiik  

	

i =1,2,...,a; 	j = 1,2,...,b; 	k = 1,2,...,n 	(8.5.1) 

where xijk  is a typical observation, p. is a constant, a represents an effect due 
to factor A, p represents an effect due to factor B, (a/3) represents an effect 
due to the interaction of factors A and B, and eiik  represents the experimental 
error. 

Assumptions of the Model 
a. The observations in each of the ab cells constitute a random independent 

sample of size n drawn from the population defined by the particular 
combination of the levels of the two factors. 

b. Each of the ab populations is normally distributed. 
c. The populations all have the same variance. 

3. Hypotheses The following hypotheses may be tested. 
a. Ho: ai  = 0 	 i = 1,2,...,a 

HA: not all a, = 0 
b. Ho: f3j  = 0 	 j = 1, 2, .. . , b 

HA: not all p;  = 0 
c. Ho: (aP)ii  = 0 	 i = 1, 2, ... , a; j = I, 2, ... , b 

HA: not all (aP)ii  = 0 

Before collecting data, the researchers may decide to test only one of the 
possible hypotheses. In this case they select the hypothesis they wish to test, choose 
a significance level a, and proceed in the familiar, straightforward fashion. This 
procedure is free of the complications that arise if the researchers wish to test all 
three hypotheses. 

When all three hypotheses are tested, the situation is complicated by the fact 
that the three tests are not independent in the probability sense. If we let a be the 
significance level associated with the test as a whole, and a', a", and a"' the 
significance levels associated with hypotheses 1, 2, and 3, respectively, Kimball (45) 
has shown that 

a < 1 — (1 — a')(1 — a")(1 — a"') 	 (8.5.2) 

If a' = a" = a"' = .05, then a < 1 — (.95)3, or a < .143. This means that the 
probability of rejecting one or more of the three hypotheses is something less than 
.143 when a significance level of .05 has been chosen for the hypotheses and all are 
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true. To demonstrate the hypothesis testing procedure for each case, we perform 
all three tests. The reader, however, should be aware of the problem involved in 
interpreting the results. The problem is discussed by Dixon and Massey (46) and 
Guenther (47). 

4. Test Statistic The test statistic for each hypothesis set is V.R. 

5. Distribution of Test Statistic When 1/0  is true and the assumptions are met each 
of the test statistics is distributed as F. 

6. Decision Rule Reject 1/0  if the computed value of the test statistic is equal to 
or greater than the critical value of F. 

7. Calculation of Test Statistic By an adaptation of the procedure used in partition-
ing the total sum of squares for the completely randomized design, it can be 
shown that the total sum of squares under the present model can be parti-
tioned into two parts as follows: 

a b n 	 a b n 

E E E(xijk-i'...)
2 

= E E
2 

i=1 j=1 k=1 	 i=1 j=1 k=1 

a b n 

+ E E E (x ijk 	 (8.5.3) 
i=1 j=1 k-=1 

or 

	

SST = SSTr + SSE 
	

(8.5.4) 

The sum of squares for treatments can be partitioned into three parts as 
follows: 

a b n 	 a b n 

E E E 	E E E 
	)2 

i=1 =1 k=1 	 i=1 j=1 k=1 

a b n 

+EEE( — 
i=1 j=1 k=-1 

or 

a b n 

+ E E E 
i=1 j=1 k=1 

SSTr = SSA + SSB + SSAB 

— 	)
2 

(8.5.5) 
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The computing formulas 

and 

In the above equations 

for the various components 

a 	b 	n 

SST = E E E ijk  
i=1 j=1 k=1 

a 	b 

E E T 2  
=1 j= 1  

SSTr — 

are as follows: 

— C 

— SSB 

abn 
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(8.5.6) 

(8.5.7) 

(8.5.8) 

(8.5.9) 

(8.5.10) 

(8.5.11) 

(8.5.12) 

n 

SSE = SST — SSTr 

a E Tz2..  
i-1  SSA = 

bn 

E T2 
J• 

SSB — 
J=1 

 
an 

SSAB = SSTr — SSA 

(a 	b 	n 

C= 	 xijk  
i=1 j=1 k=1 

The ANOVA Table The results of the calculations for the fixed-effects 
model for a two-factor completely randomized experiment may, in general, be 
displayed as shown in Table 8.5.4. 

8. Statistical Decision If the assumptions stated earlier hold true, and if each 
hypothesis is true, it can be shown that each of the variance ratios shown in 
Table 8.5.4 follows an F distribution with the indicated degrees of freedom. 
We reject 1/0  if the computed V.R. values are equal to or greater than the 
corresponding critical values as determined by the degrees of freedom and the 
chosen significance levels. 

9. Conclusion If we reject H,, we conclude that HA  is true. If we fail to reject 1/0, 
we conclude that 1/0  may be true. 
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TABLE 8.5.4 Analysis of Variance Table for a Two-Factor Completely Randomized Experiment 
(Fixed-Effects Model) 

Source SS d.f. MS V.R. 

A SSA a — 1 MSA = SSA/ MSA/MSE 
(a — 1) 

B SSB b — 1 MSB = SSB/ MSB/MSE 
(b — 1) 

AB SSAB (a — 1Xb — 1) MSAB = SSAB/ MSAB/MSE 
(a — 1Xb — 1) 

Treatments SSTr ab — 1 
Residual SSE ab(n — 1) MSE = 

SSE 

ab(n — 1) 

Total SST abn — 1 

Example 
8.5.2 

In a study of length of time spent on individual home visits by public health nurses, 
data were reported on length of home visit, in minutes, by a sample of 80 nurses. A 
record was made also of each nurse's age and the type of illness of each patient 
visited. The researchers wished to obtain from their investigation answers to the 
following questions: 

1. Does the mean length of home visit differ among different age groups of 
nurses? 

2. Does the type of patient affect the mean length of home visit? 

3. Is there interaction between nurse's age and type of patient? 

Solution: 

1. Data The data on length of home visit that were obtained during the study 
are shown in Table 8.5.5. 

2. Assumptions To analyze these data we assume a fixed-effects model and a 
two-factor completely randomized design. 

For our illustrative example we may test the following hypotheses subject to 
the conditions mentioned above. 

a. H0: a, = a2  = a3  = a4  = 0 
HA: not all a, = 0 

b. Ho: Pi = /32=N3=/34= 0  
HA: not all Pi  = 0 
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TABLE 8.5.5 Length of Home Visit in Minutes by Public Health Nurses by Nurse's Age Group 
and Type of Patient 

Factor B (Nurse's Age Group) 
Levels 

Factor A 	1 	2 	3 	4 
(Type of Patient) 	(20 to 	(30 to 	(40 to 	(50 and 

Levels 	29) 39) 49) over) Totals Means 

1 (Cardiac) 20 	25 	24 	28 
25 	30 	28 	31 
22 	29 	24 	26 	534 	26.70 
27 	28 	25 	29 
21 	30 	30 	32 

2 (Cancer) 30 	30 	39 	40 
45 	29 	42 	45 
30 	31 	36 	50 	765 	38.25 
35 	30 	42 	45 
36 	30 	40 	60 

3 (C.V.A.) 31 	32 	41 	42 
30 	35 	45 	50 
40 	30 	40 	40 	766 	38.30 
35 	40 	40 	55 
30 	30 	35 	45 

4 (Tuberculosis) 20 	23 	24 	29 
21 	25 	25 	30 
20 	28 	30 	28 	509 	25.45 
20 	30 	26 	27 
19 	31 	23 	30 

Totals 
	

557 	596 	659 
	

762 	2574 

Means 
	

27.85 	29.8 
	

32.95 	38.10 
	

32.18 

Cell a i l), a,b2  a1b3  a l b, a2b1 a2b2 a2b3 a2b4 

Totals 115 142 131 146 176 150 199 240 

Means 23.0 28.4 26.2 29.2 35.2 30.0 39.8 48.0 

Cell a3b, a3b2  a3b3  a3b4  a4b1  a 4b 2  a 4b3  a 4b 4  

Totals 166 167 201 232 100 137 128 144 

Means 33.2 33.4 40.2 46.4 20.0 27.4 25.6 28.8 

c. H0: all (a13),J  = 0 
HA: not all (aP)ij  = 0 
Let a = .05 

4. Test Statistic The test statistic for each hypothesis set is V.R. 
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5. Distribution of Test Statistic When H0  is true and the assumptions are met each 
of the test statistics is distributed as F. 

6. Decision Rule Reject H0  if the computed value of the test statistic is equal to 
or greater than the critical value of F. The critical values of F for testing the 
three hypotheses of our illustrative example are 2.76, 2.76, and 2.04, respec-
tively. Since denominator degrees of freedom equal to 64 are not shown in 
Table G, 60 was used as the denominator degrees of freedom. 

7. Calculation of Test Statistic We use the data in Table 8.5.5 to perform the 
following calculations. 

C = (2574)2/80 

SST = (202  + 252  + 

1152  + 1422  

= 82818.45 

• • • +302 ) - 82818.45 = 5741.55 

+ • • • +1442  
SSTr = 82818.45 = 4801.95 

5 

5342  + 7652  + 7662  + 5092  
SSA = 82818.45 = 2992.45 

20 

5572  + 5962  + 6592  + 7622  
SSB = 82818.45 = 1201.05 

20 

SSAB = 4801.95 - 2992.45 - 1201.05 = 608.45 

SSE = 5741.55 - 4801.95 = 939.60 

We display the results in Table 8.5.6. 

8. Statistical Decision Since the three computed values of V.R. are all greater 
than the corresponding critical values, we reject all three null hypotheses. 

TABLE 8.5.6 ANOVA Table for Example 8.5.2 

Source SS d. f. MS V.R. 

A 2992.45 3 997.48 67.95 
B 1201.05 3 400.35 27.27 
AB 608.45 9 67.61 4.61 
Treatments 4801.95 15 
Residual 939.60 64 14.68 

Total 5741.55 79 
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9. Conclusion When H0: al  = a2  = a3  = a4  is rejected, we conclude that there 
are differences among the levels of A, that is, differences in the average 
amount of time spent in home visits with different types of patients. Similarly, 
when H0: Pi  = P2 = P3 = P4  is rejected, we conclude that there are differ-
ences among the levels of B, or differences in the average amount of time 
spent on home visits among the different nurses when grouped by age. When 
Ho: (aP)v  = 0 is rejected, we conclude that factors A and B interact; that is, 
different combinations of levels of the two factors produce different effects. 
When the hypothesis of no interaction is rejected, interest in the levels of 
factors A and B usually become subordinate to interest in the interaction 
effects. In other words, we are more interested in learning what combinations 
of levels are significantly different. 

We have treated only the case where the number of observations in each cell is the 
same. When the number of observations per cell is not the same for every cell the 
analysis becomes more complex. Many of the references that have been cited cover 
the analysis appropriate to such a situation, and the reader is referred to them for 
further information. 

Computer Analysis Most statistical software packages, such as MINITAB 
and SAS®, will allow you to use a computer to analyze data generated by a factorial 
experiment. When MINITAB is used the response variable is entered in one 
column, the levels of the first factor in another column, the levels of the second 
factor in a third column, and so on. The resulting table will have for each 
observation a row containing the value of the response variable and the level of 
each factor at which the value was observed. The command is TWOWAY. MINITAB 
requires an equal number of observations in each cell. Some of the other software 
packages such as SAS®  will accommodate unequal cell sizes. 

EXERCISES 

For Exercises 8.5.1-8.5.4 perform the analysis of variance, test appropriate hypotheses at 
the .05 level of significance, and determine the p value associated with each test. 

8.5.1 Orth et al. (A-21) studied the effect of excessive levels of cysteine and homocysteine 
on tibial dyschondroplasia (TD) in broiler chicks. In one experiment, the researchers 
investigated the interaction between DL-homocystine and copper supplementation in 
the animals' diet. Among the variables on which they collected data were body weight 
at three weeks (WTI), severity of TD (TDS), and incidence of TD (TDI). There were 
two levels of homocysteine (HOMO): 1 = no added homocysteine, 2 = .48 percent 
homocysteine. The two levels of copper (CU) were 1 = no added copper, 2 = 250 
ppm copper added. The results were as follows: (The authors used SAS to analyze 
their data.) 



SOURCE: Michael Orth. Used with permission. 

8.5.2. Researchers at a trauma center wished to develop a program to help brain-damaged 
trauma victims regain an acceptable level of independence. An experiment involving 
72 subjects with the same degree of brain damage was conducted. The objective was 
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HOMO CU WT1 TDS TDI 

1 1 503 1 0 
1 1 465 1 0 
1 1 513 1 0 
1 1 453 1 0 
1 1 574 1 0 
1 1 433 1 0 
1 1 526 2 1 
1 1 505 1 0 
1 1 487 1 0 
1 1 483 1 0 
1 1 459 1 0 
1 1 505 1 0 
1 1 648 1 0 
1 1 472 1 0 
1 1 469 1 0 
1 1 506 1 0 
1 1 507 1 0 
1 1 523 1 0 
1 1 554 4 1 
1 1 518 1 0 
1 1 614 1 0 
1 1 552 1 0 
1 1 580 4 1 
1 1 531 4 1 
1 2 544 1 0 
1 2 592 1 0 
1 2 485 1 0 
1 2 578 4 1 
1 2 514 1 0 
1 2 482 3 1 
1 2 653 4 1 
1 2 462 1 0 
1 2 577 1 0 
1 2 462 4 1 
1 2 524 3 1 
1 2 484 1 0 
1 2 571 1 0 
1 2 586 1 0 
1 2 426 1 0 
1 2 546 4 1 
1 2 503 1 0 
1 2 468 2 1 
1 2 570 1 0 
1 2 554 1 0 
1 2 455 1 0 
1 2 507 1 0 
1 2 460 1 0 
1 2 550 1 0 
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HOMO CU WT1 TDS TDI 

2 1 426 4 1 
2 1 392 4 1 
2 1 520 3 1 
2 1 367 4 1 
2 1 545 4 1 
2 1 523 4 1 
2 1 304 4 1 
2 1 437 4 1 
2 1 357 4 1 
2 1 420 3 1 
2 1 448 4 1 
2 1 346 4 1 
2 1 382 4 1 
2 1 331 4 1 
2 1 532 2 1 
2 1 536 4 1 
2 1 508 1 0 
2 1 492 4 1 
2 1 426 1 0 
2 1 437 4 1 
2 1 496 4 1 
2 1 594 3 1 
2 1 466 4 1 
2 1 463 4 1 
2 2 551 1 0 
2 2 443 4 1 
2 2 517 4 1 
2 2 442 4 1 
2 2 516 2 1 
2 2 433 3 1 
2 2 383 4 1 
2 2 506 1 0 
2 2 336 1 0 
2 2 491 1 0 
2 2 531 4 1 
2 2 572 1 0 
2 2 512 4 1 
2 2 465 2 1 
2 2 497 3 1 
2 2 617 3 1 
2 2 456 2 1 
2 2 487 4 1 
2 2 448 4 1 
2 2 440 4 1 
2 2 484 3 1 
2 2 431 4 1 
2 2 493 2 1 
2 2 553 4 1 
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to compare different combinations of psychiatric treatment and physical therapy. 
Each subject was assigned to one of 24 different combinations of four types of 
psychiatric treatment and six physical therapy programs. There were three subjects in 
each combination. The response variable is the number of months elapsing between 
initiation of therapy and time at which the patient was able to function indepen-
dently. The results were as follows: 

Physical 
Therapy 	Psychiatric Treatment 

Program A 

	

11.0 	9.4 	12.5 	13.2 
I 	9.6 	9.6 	11.5 	13.2 

	

10.8 	9.6 	10.5 	13.5 

	

10.5 	10.8 	10.5 	15.0 
II 	11.5 	10.5 	11.8 	14.6 

	

12.0 	10.5 	11.5 	14.0 

	

12.0 	11.5 	11.8 	12.8 
III 	11.5 	11.5 	11.8 	13.7 

	

11.8 	12.3 	12.3 	13.1 

	

11.5 	9.4 	13.7 	14.0 
IV 	11.8 	9.1 	13.5 	15.0 

	

10.5 	10.8 	12.5 	14.0 

	

11.0 	11.2 	14.4 	13.0 
V 	11.2 	11.8 	14.2 	14.2 

	

10.0 	10.2 	13.5 	13.7 

	

11.2 	10.8 	11.5 	11.8 

VI 	10.8 	11.5 	10.2 	12.8 

	

11.8 	10.2 	11.5 	12.0 

Can one conclude on the basis of these data that the different psychiatric treatment 
programs have different effects? Can one conclude that the physical therapy programs 
differ in effectiveness? Can one conclude that there is interaction between psychiatric 
treatment programs and physical therapy programs? Let a = .05 for each test. 

Exercises 8.5.3 and 8.5.4 are optional since they have unequal cell sizes. It is recommended 
that the data for these be analyzed using SAS®  or some other software package that will 
accept unequal cell sizes. 

8.5.3 The effects of printed factual information and three augmentative communication 
techniques on attitudes of nondisabled individuals toward nonspeaking persons with 
physical disabilities were investigated by Gorenflo and Gorenflo (A-22). Subjects were 
undergraduates enrolled in an introductory psychology course at a large southwestern 
university. The variable of interest was scores on the Attitudes Toward Nonspeaking 
Persons Scale (ATNP). Higher scores indicated more favorable attitudes. The inde-
pendent variables (factors) were information (INFO) and augmentative techniques 
(AID). The levels of INFO were as follows: 1 = presence of a sheet containing 
information about the nonspeaking person, 2 = absence of the sheet. The scores 
(levels) of AID were: 1 = no aid, 2 = alphabet board, 3 = computer-based voice 
output communication aid (VOCA). Subjects viewed a videotape depicting a non-
speaking adult having a conversation with a normal-speaking individual under one of 
the three AID conditions. The following data were collected and analyzed by 
SPSS/PC + : 
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INFO AID ATNP INFO AID ATNP INFO AID ATNP 

1 1 82.00 1 3 109.00 2 1 33.00 
1 1 92.00 1 3 96.00 2 1 34.00 
1 1 100.00 1 3 127.00 2 1 29.00 
1 1 110.00 1 3 124.00 2 2 118.00 
1 1 99.00 1 3 93.00 2 2 110.00 
1 1 96.00 1 3 112.00 2 2 74.00 
1 1 92.00 1 3 95.00 2 2 106.00 
1 1 95.00 1 3 107.00 2 2 107.00 
1 1 126.00 1 3 102.00 2 2 83.00 
1 1 93.00 1 3 102.00 2 2 82.00 
1 1 103.00 1 3 112.00 2 2 92.00 
1 1 101.00 1 3 105.00 2 2 89.00 
1 1 120.00 1 3 109.00 2 2 108.00 
1 1 94.00 1 3 111.00 2 2 106.00 
1 1 94.00 1 3 116.00 2 2 95.00 
1 1 93.00 1 3 112.00 2 2 97.00 
1 1 101.00 1 3 112.00 2 2 98.00 
1 1 65.00 1 3 84.00 2 2 108.00 
1 1 29.00 1 3 107.00 2 2 120.00 
1 2 112.00 1 3 123.00 2 2 94.00 
1 2 100.00 1 3 97.00 2 2 99.00 
1 2 88.00 1 3 108.00 2 2 99.00 
1 2 99.00 1 3 105.00 2 2 104.00 
1 2 97.00 1 3 129.00 2 2 110.00 
1 2 107.00 1 3 140.00 2 2 33.00 
1 2 110.00 1 3 141.00 2 3 99.00 
1 2 91.00 1 3 145.00 2 3 112.00 
1 2 123.00 2 1 107.00 2 3 98.00 
1 2 97.00 2 1 82.00 2 3 84.00 
1 2 115.00 2 1 78.00 2 3 100.00 
1 2 107.00 2 1 98.00 2 3 101.00 
1 2 107.00 2 1 88.00 2 3 94.00 
1 2 101.00 2 1 95.00 2 3 101.00 
1 2 122.00 2 1 95.00 2 3 97.00 
1 2 114.00 2 1 93.00 2 3 95.00 
1 2 101.00 2 1 108.00 2 3 98.00 
1 2 125.00 2 1 102.00 2 3 116.00 
1 2 104.00 2 1 83.00 2 3 99.00 
1 2 102.00 2 1 111.00 2 3 97.00 
1 2 113.00 2 1 97.00 2 3 84.00 
1 2 88.00 2 1 90.00 2 3 91.00 
1 2 116.00 2 1 90.00 2 3 106.00 
1 2 114.00 2 1 85.00 2 3 100.00 
1 2 108.00 2 1 95.00 2 3 104.00 
1 2 95.00 2 1 97.00 2 3 79.00 
1 2 84.00 2 1 78.00 2 3 84.00 
1 2 83.00 2 1 98.00 2 3 110.00 
1 2 134.00 2 1 91.00 2 3 141.00 
1 2 96.00 2 1 99.00 2 3 141.00 
1 2 37.00 2 1 102.00 
1 2 36.00 2 1 102.00 

SOURCE: Carole Wood Gorenflo, Ph.D. Used with permission. 
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8.5.4 The individual and combined influences of castration and adrenalectomy (ADX) on 
energy balance in rats were investigated by Ouerghi et al. (A-23). The following data 
on two dependent variables, gross energy (GE) intake and energy gain, by adrenalec-
tomy and castration status were obtained: 

Rat# ADX Castration GE Intake Energy Gain 

I No No 3824 740.3 
2 No No 4069 1113.8 
3 No No 3782 331.42 
4 No No 3887 323.6 
5 No No 3670 259.02 
6 No No 3740 294.74 
7 No No 4356 336.14 
8 No No 4026 342.3 
9 No No 4367 261.47 

10 No No 4006 166.45 
11 No No 4251 385.98 
12 No No 4585 749.09 
13 Yes No 3557 253 
14 Yes No 3831 —106 
15 Yes No 3528 192 
16 Yes No 3270 —21 
17 Yes No 3078 —47 
18 Yes No 3314 39 
19 Yes No 3525 95 
20 Yes No 2953 —116 
21 Yes No 3351 —27 
22 Yes No 4197 496 
23 Yes No 4978 123 
24 Yes No 3269 78 
25 No Yes 4571 1012 
26 No Yes 3994 742 
27 No Yes 4138 481 
28 No Yes 5175 1179 
29 No Yes 5049 1399 
30 No Yes 5042 1017 
31 No Yes 5058 966 
32 No Yes 4267 662 
33 No Yes 5205 830 
34 No Yes 4541 638 
35 No Yes 5453 1732 
36 No Yes 4753 936 
37 Yes Yes 3924 189 
38 Yes Yes 3497 215 
39 Yes Yes 3417 304 
40 Yes Yes 3785 37 
41 Yes Yes 4157 360 
42 Yes Yes 4073 73 
43 Yes Yes 4510 483 
44 Yes Yes 3828 112 
45 Yes Yes 3530 154 
46 Yes Yes 3996 77 

SOURCE: Denis Richard, Department of Physiology, Laval University. Used with 
permission. 
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8.5.5 Niaura et al. (A-24) examined 56 smokers' reactions to smoking cues and interper-
sonal interaction. Subjects participated in role play either with a confederate present 
or with a confederate absent. In each role-play situation, the subjects were exposed to 
either no smoking cues, visual cues, or visual plus olfactory cues. Measures of 
reactivity included changes from resting baseline on blood pressure, heart rate, 
self-reported smoking urge, and a measure of ad lib smoking behavior obtained after 
exposure to the experimental procedures. What are the factors in this study? At how 
many levels does each occur? Who are the subjects? What is (are) the response 
variable(s)? Comment on the number of subjects per cell in this experiment. Can you 
think of any extraneous variables whose effects are included in the error term? 

8.5.6 Max et al. (A-25) randomized 62 inpatients with pain following major surgery to 
receive either desipramine or placebo at 6 A.M. on the first day after surgery. At their 
first request of pain medication after 8 A.M., they were given intravenous morphine, 
either 0.033 mg/kg or 0.10 mg/kg. Pain relief (measured on the visual analog scale), 
side effect scores, and time to remedication were determined for each subject. What 
are the factors in this study? At how many levels does each occur? Comment on the 
number of subjects per cell. What is (are) the response variable(s)? 

8.6 
Summa 

The purpose of this chapter is to introduce the student to the basic ideas and 
techniques of analysis of variance. Two experimental designs, the completely 
randomized and the randomized complete block, are discussed in considerable 
detail. In addition, the concept of repeated measures designs and a factorial 
experiment as used with the completely randomized design are introduced. Individ-
uals who wish to pursue further any aspect of analysis of variance will find the 
referehr,-,s at the end of the chapter most helpful. The extensive bibliography by 
Herzberg and Cox (48) indicates further readings. 

REVIEW QUESTIONS AND EXERCISES 

1. Define analysis of variance. 

2. Describe the completely randomized design. 

3. Describe the randomized block design. 

4. Describe the repeated measures design. 

5. Describe the factorial experiment as used in the completely randomized design. 

6. What is the purpose of Tukey's HSD test? 

7. What is an experimental unit? 

8. What is the objective of the randomized complete block design? 
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9. What is interaction? 

10. What is a mean square? 

11. What is an ANOVA table? 

12. For each of the following designs describe a situation in your particular field of interest 
where the design would be an appropriate experimental design. Use real or realistic 
data and do the appropriate analysis of variance for each one: 

a. Completely randomized design. 
b. Randomized complete block design. 
c. Completely randomized design with a factorial experiment. 
d. Repeated measures designs. 

13. Maes et al. (A-26) conducted a study to determine whether depression might be 
associated with serologic indices of autoimmune processes or active virus infections. 
Four categories of subjects participated in the study: Healthy controls (1), patients with 
minor depression (2), patients with major depression without melancholia (3), and 
patients with major depression with melancholia (4). Among the measurements ob-
tained for each subject were soluble interleukin-2 receptor circulating levels in serum 
(sIL-2R). The results by subject by category of subject were as follows. We wish to know 
if we can conclude that, on the average, sIL-2R values differ among the four categories 
of patients represented in this study. Let a = .01 and find the p value. Use Tukey's 
procedure to test for significant differences among individual pairs of sample means. 

Subject 
sIL-2R 

(U / ml) 
Subject 

Category Subject 
sIL-2R 

(U / ml) 
Subject 

Category 

1 92.00 1.00 26 230.00 2.00 
2 259.00 1.00 27 253.00 3.00 
3 157.00 1.00 28 271.00 3.00 
4 220.00 1.00 29 254.00 3.00 
5 240.00 1.00 30 316.00 3.00 
6 203.00 1.00 31 303.00 3.00 
7 190.00 1.00 32 225.00 3.00 
8 244.00 1.00 33 363.00 3.00 
9 182.00 1.00 34 288.00 3.00 

10 192.00 1.00 35 349.00 3.00 
11 157.00 1.00 36 237.00 3.00 
12 164.00 1.00 37 361.00 3.00 
13 196.00 1.00 38 273.00 3.00 
14 74.00 1.00 39 262.00 3.00 
15 634.00 2.00 40 242.00 4.00 
16 305.00 2.00 41 283.00 4.00 
17 324.00 2.00 42 354.00 4.00 
18 250.00 2.00 43 517.00 4.00 
19 306.00 2.00 44 292.00 4.00 
20 369.00 2.00 45 439.00 4.00 
21 428.00 2.00 46 444.00 4.00 
22 324.00 2.00 47 348.00 4.00 
23 655.00 2.00 48 230.00 4.00 
24 395.00 2.00 49 255.00 4.00 
25 270.00 2.00 50 270.00 4.00 

SOURCE: Dr. M. Macs. Used by permission. 

14. Graveley and Littlefield (A-27) conducted a study to determine the relationship between 
the cost and effectiveness of three prenatal clinic staffing models: physician based (1), 
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mixed (M.D., R.N.) staffing (2), and clinical nurse specialist with physicians available for 
consultation (3). Subjects were women who met the following criteria: (a) 18 years of age 
or older or emancipated minors, (b) obtained prenatal care at one of the three clinics 
with a minimum of three prenatal visits, (c) delivered within 48 hours of the interview. 
Maternal satisfaction with access to care was assessed by means of a patient satisfaction 
tool (PST) that addressed five categories of satisfaction: accessibility, affordability, 
availability, acceptability, and accommodation. The following are the subjects' total PST 
scores by clinic. Can we conclude, on the basis of these data, that, on the average, 
subject satisfaction differs among the three clinics? Let a = .05 and find the p value. 
Use Tukey's procedure to test for differences between individual pairs of sample means. 

Clinic 1 Clinic 2 Clinic 3 

119 133 132 115 131 132 
126 135 121 92 109 135 
125 125 79 126 127 125 
111 135 127 107 124 130 
127 130 133 108 135 135 
123 122 127 125 131 135 
119 135 121 130 131 135 
119 116 127 121 126 133 
125 126 130 124 132 131 
106 129 111 112 128 131 
124 133 117 131 129 126 
131 126 101 118 128 132 
131 102 111 109 114 133 
117 131 121 116 120 135 
105 128 109 112 120 132 
129 128 131 110 135 131 
130 130 129 117 127 132 
131 116 126 118 124 126 
119 121 124 120 129 135 
98 121 126 113 125 135 

120 131 97 114 135 135 
125 135 104 107 122 134 
12f' 127 121 119 117 127 
126 125 114 124 126 131 
130 133 95 98 130 131 
127 128 128 114 131 131 

SOURCE: Elaine Graveley, D.B.A., R.N. Used by permission. 

15. Respiratory rate (breaths per minute) was measured in eight experimental animals 
under three levels of exposure to carbon monoxide. The results were as follows. 

Animal 

Exposure Level 

Low Moderate High 

1 36 43 45 
2 33 38 39 
3 35 41 33 
4 39 34 39 
5 41 28 33 
6 41 44 26 
7 44 30 39 
8 45 31 29 
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Can one conclude on the basis of these data that the three exposure levels, on the 
average, have a different effect on respiratory rate? Let a = .05. Determine the p value. 

16. An experiment was designed to study the effects of three different drugs and three types 
of stressful situation in producing anxiety in adolescent subjects. The table shows the 
difference between the pre- and posttreatment scores of 18 subjects who participated in 
the experiment. 

Stressful 
Situation 	Drug (Factor B) 

(Factor A) 	A 	B 

4 	1 	1 
5 	3 	0 

6 	6 	6 
6 	6 	3 

5 	7 	4 
4 	4 	5 

I 

II 

III 

Perform an analysis of variance of these data and test the three possible hypotheses. Let 
a' = a" = a"' = .05. Determine the p values. 

17. The following table shows the emotional maturity scores of 27 young adult males 
cross-classified by age and the extent to which they use marijuana. 

Age 	 Marijuana Usage (Factor B) 

(Factor A) 	Never 	Occasionally 	Daily 

25 	 18 	 17 
15-19 	 28 	 23 	 24 

22 	 19 	 19 

28 	 16 	 18 
20-24 	32 	 24 	 22 

30 	 20 	 20 

25 	 14 	 10 
25-29 	35 	 16 	 8 

30 	 15 	 12 

Perform an analysis of variance of these data. Let a' = a" = a"' = .05. Compute the p 
values. 

18. The effects of cigarette smoking on maternal airway function during pregnancy were 
investigated by Das et al. (A-28). The subjects were women in each of the three 
trimesters of pregnancy. Among the data collected were the following measurements on 
forced vital capacity (FVC), which are shown by smoking status of the women. May we 
conclude, on the basis of these data, that mean FVC measurements differ according to 
smoking status? Let a = .01 and find the p value. Use Tukey's procedure to test for 
significant differences among individual pairs of sample means. 
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Nonsmokers 
Light 

Smokers 
Heavy 

Smokers 

3.45 4.05 3.15 4.03 3.95 4.29 3.04 3.02 
4.00 4.66 3.86 3.69 3.78 4.38 4.34 3.12 
4.00 3.45 3.85 3.83 3.63 3.50 4.05 
2.74 3.49 4.94 3.99 3.74 2.68 4.33 
3.95 4.75 3.10 3.12 4.84 3.10 3.39 
4.03 3.55 3.65 3.43 3.20 3.60 4.24 
3.80 4.14 4.44 3.58 3.65 4.93 4.37 
3.99 3.82 3.24 2.93 4.78 4.21 3.64 
4.13 4.20 3.68 4.77 4.36 4.87 4.62 
4.54 3.86 3.94 4.03 4.37 4.02 4.64 
4.60 4.34 4.10 4.48 3.20 3.31 2.74 
3.73 4.45 4.22 4.26 3.29 4.25 4.34 
3.94 4.05 3.63 3.45 3.40 4.37 4.10 
3.90 3.60 3.42 3.99 4.40 2.97 3.75 
3.20 4.21 4.31 3.78 3.36 3.89 4.06 
3.74 3.72 4.24 2.90 2.72 3.80 3.67 
3.87 4.73 2.92 3.94 4.21 2.87 3.07 
3.44 3.45 4.05 3.84 3.53 3.89 4.59 
4.44 4.78 3.94 3.33 3.48 4.07 3.60 
3.70 4.54 4.10 4.18 3.62 
3.10 3.86 2.70 3.51 
4.81 4.04 3.74 3.73 
3.41 4.46 3.65 3.40 
3.38 3.90 3.72 3.63 
3.39 3.66 4.69 3.68 
3.50 4.08 2.84 4.07 
3.62 3.84 3.34 3.95 
4.27 2.82 3.47 4.25 
3.55 4.14 

SOURCE: Jean-Marie Moutquin, M.D. Used by permission. 

19. An expei7Iment was conducted to test the effect of four different drugs on blood 
coagulation time (in minutes). Specimens of blood drawn from 10 subjects were divided 
equally into four parts that were randomly assigned to one of the four drugs. The results 
were as follows: 

Subject 

Drug 

W X 

A 1.5 1.8 1.7 1.9 
B 1.4 1.4 1.3 1.5 
C 1.8 1.6 1.5 1.9 
D 1.3 1.2 1.2 1.4 
E 2.0 2.1 2.2 2.3 
F 1.1 1.0 1.0 1.2 
G 1.5 1.6 1.5 1.7 
H 1.5 1.5 1.5 1.7 
I 1.2 1.0 1.3 1.5 
J 1.5 1.6 1.6 1.9 

Can we conclude on the basis of these data that the drugs have different effects? Let 
a = .05. 
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20. In a study of the Marfan syndrome, Pyeritz et al. (A-29) reported the following severity 
scores of patients with none, mild, and marked dural ectasia. May we conclude, on the 
basis of these data, that mean severity scores differ among the three populations 
represented in the study? Let a = .05 and find the p value. Use Tukey's procedure to 
test for significant differences among individual pairs of sample means. 

No dural ectasia: 18, 18, 20, 21, 23, 23, 24, 26, 26, 27, 

28, 29, 29, 29, 30, 30, 30, 30, 32, 34, 34, 38. 

Mild dural ectasia: 10, 16, 22, 22, 23, 26, 28, 28, 28, 29, 

29, 30, 31, 32, 32, 33, 33, 38, 39, 40, 47. 

Marked dural ectasia: 17, 24, 26, 27, 29, 30, 30, 33, 34, 

35, 35, 36, 39. 
SOURCE: Reed E. Pyeritz, M.D., Ph.D. Used by permission. 

21. The following table shows the arterial plasma epinephrine concentrations (nanograms 
per milliliter) found in 10 laboratory animals during three types of anesthesia. 

Anes- 	  Animal 

thesia 1 2 3 4 5 6 7 8 9 10 

A 	.28 .50 .68 .27 .31 .99 .26 .35 .38 .34 
B 	.20 .38 .50 .29 .38 .62 .42 .87 .37 .43 
C 	1.23 1.34 .55 1.06 .48 .68 1.12 1.52 .27 .35 

Can we conclude from these data that the three types of anesthesia, on the average, 
have different effects? Let a = .05. 

22. The nutritive value of a certain edible fruit was measured in a total of 72 specimens 
representing 6 specimens of each of four varieties grown in each of the three geographic 
regions. The results were as follows. 

Variety 

Geographic Region 

	

6.9 	11.0 	13.1 	13.4 

	

11.8 	7.8 	12.1 	14.1 

	

6.2 	7.3 	9.9 	13.5 
A 	 9.2 	9.1 	12.4 	13.0 

	

9.2 	7.9 	11.3 	12.3 

	

6.2 	6.9 	11.0 	13.7 

	

8.9 	5.8 	12.1 	9.1 

	

9.2 	5.1 	7.1 	13.1 

	

5.2 	5.0 	13.0 	13.2 
B 	 7.7 	9.4 	13.7 	8.6 

	

7.8 	8.3 	12.9 	9.8 

	

5.7 	5.7 	7.5 	9.9 

	

6.8 	7.8 	8.7 	11.8 

	

5.2 	6.5 	10.5 	13.5 

	

5.0 	7.0 	10.0 	14.0 
C 	 5.2 	9.3 	8.1 	10.8 

	

5.5 	6.6 	10.6 	12.3 

	

7.3 	10.8 	10.5 	14.0 
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Test for a difference among varieties, a difference among regions, and interaction. Let 
a = .05 for all tests. 

23. A random sample of the records of single births was selected from each of four 
populations. The weights (grams) of the babies at birth were as follows: 

Sample 

A 

2946 3186 2300 2286 
2913 2857 2903 2938 
2280 3099 2572 2952 
3685 2761 2584 2348 
2310 3290 2675 2691 
2582 2937 2571 2858 
3002 3347 2414 
2408 2008 

2850 
2762 

Do these data provide sufficient evidence to indicate, at the .05 level of significance, that 
the four populations differ with respect to mean birth weight? Test for a significant 
difference between all possible pairs of means. 

24. The following table shows the aggression scores of 30 laboratory animals reared under 
three different conditions. One animal from each of 10 litters was randomly assigned to 
each of the three rearing conditions. 

Litter 

Rearing Condition 

Extremely 
Crowded 

Moderately 
Crowded 

Not 
Crowded 

1 30 20 10 
2 30 10 20 
3 30 20 10 
4 25 15 10 
5 35 25 20 
6 30 20 10 
7 20 20 10 
8 30 30 10 
9 25 25 10 

10 30 20 20 

Do these data provide sufficient evidence to indicate that level of crowding has an effect 
on aggression? Let a = .05. 

25. The following table shows the vital capacity measurements of 60 adult males classified 
by occupation and age group. 
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Age Group 

Occupation 

A 

4.31 4.68 4.17 5.75 
4.89 6.18 3.77 5.70 

1 4.05 4.48 5.20 5.53 
4.44 4.23 5.28 5.97 
4.59 5.92 4.44 5.52 

4.13 3.41 3.89 4.58 
4.61 3.64 3.64 5.21 

2 3.91 3.32 4.18 5.50 
4.52 3.51 4.48 5.18 
4.43 3.75 4.27 4.15 

3.79 4.63 5.81 6.89 
4.17 4.59 5.20 6.18 

3 4.47 4.90 5.34 6.21 
4.35 5.31 5.94 7.56 
3.59 4.81 5.56 6.73 

Test for differences among occupations, for differences among age groups, and for 
interaction. Let a = .05 for all tests. 

26. Complete the following ANOVA table and state which design was used. 

Source 
	

SS 	d.f. 	MS 	VR 	p 
Treatments 	154.9199 	4 
Error 

Total 
	

200.4773 	39 

27. Complete the following ANOVA table and state which design was used. 

Source 
	

SS 	d.f. 	MS 	VR 	p 
Treatments 	 3 
Blocks 	183.5 	3 
Error 	 26.0 

Total 
	

709.0 	15 

28. Consider the following ANOVA table. 

Source SS d.f. MS VR 

A 12.3152 2 6.15759 29.4021 < .005 
B 19.7844 3 6.59481 31.4898 < .005 
AB 8.94165 6 1.49027 7.11596 < .005 
Treatments 41.0413 11 
Error 10.0525 48 0.209427 

Total 51.0938 59 
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a. What sort of analysis was employed? 
b. What can one conclude from the analysis? Let a = .05. 

29. Consider the following ANOVA table. 

Source 
	

SS 	d.f. 	MS 	VR 

Treatments 	5.05835 	2 	2.52917 	1.0438 
Error 	 65.42090 	27 	2.4230 

a. What design was employed? 
b. How many treatments were compared? 
c. How many observations were analyzed? 
d. At the .05 level of significance, can one conclude that there is a difference among 

treatments? Why? 

30. Consider the following ANOVA table. 

Source 	SS 	d.f. 	MS 	VR 

Treatments 231.5054 2 115.7527 2.824 
Blocks 98.5000 7 14.0714 
Error 573.7500 14 40.9821 

a. What design was employed? 
b. How many treatments were compared? 
c. How many observations were analyzed? 
d. At the .05 level of significance, can one conclude that the treatments have different 

effects? Why? 

31. In a study of the relationship between smoking and serum concentrations of high-den-
sity lipoprotein cholesterol (HDL-C) the following data (coded for ease of calculation) 
were collected from samples of adult males who were nonsmokers, light smokers, 
moderate smokers, and heavy smokers. We wish to know if these data provide sufficient 
evidence to indicate that the four populations differ with respect to mean serum 
concentration of HDL-C. Let the probability of committing a type I error be .05. If an 
overall significant difference is found, determine which pairs of individual sample means 
are significantly different. 

Smoking Status 

Nonsmokers Light Moderate Heavy 

12 9 5 3 
10 8 4 2 
11 5 7 1 
13 9 9 5 
9 9 5 4 
9 10 7 6 

12 8 6 2 

32. The purpose of a study by Nehlsen-Cannarella et al. (A-30) was to examine the 
relationship between moderate exercise training and changes in circulating numbers of 
immune system variables. Subjects were nonsmoking, premenopausal women who were 
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divided into two groups (1 = exercise, 2 = nonexercise). Data were collected on three 
dependent variables: serum levels of the immunoglobulins IgG, IgA, and IgM. Determi-
nations were made at three points in time: baseline (B), at the end of 6 weeks (M), and 
at the end of 15 weeks (E). The following data were obtained. (The authors analyzed the 
data with SPSS/PC + .) 

Group BIGG MIGG EIGG 

1 797.00 956.00 855.00 
1 1030.00 1050.00 1020.00 
1 981.00 1340.00 1300.00 
1 775.00 1100.00 1060.00 
1 823.00 1220.00 1140.00 
1 1080.00 1120.00 1100.00 
1 613.00 958.00 960.00 
1 1020.00 1320.00 1200.00 
1 956.00 1020.00 1020.00 
1 1140.00 1580.00 1520.00 
1 872.00 935.00 1000.00 
1 1270.00 1290.00 1520.00 
1 798.00 1050.00 1130.00 
1 643.00 801.00 847.00 
1 772.00 1110.00 1150.00 
1 1480.00 1590.00 1470.00 
1 1250.00 1720.00 1690.00 
1 968.00 1150.00 1090.00 
2 1470.00 1470.00 560.00 
2 962.00 1260.00 1020.00 
2 881.00 797.00 828.00 
2 1040.00 1040.00 931.00 
2 1160.00 1280.00 1300.00 
2 1460.00 1440.00 1570.00 
2 1010.00 974.00 1080.00 
2 549.00 1030.00 1030.00 
2 1610.00 1510.00 1560.00 
2 1060.00 966.00 1020.00 
2 1400.00 1320.00 1260.00 
2 1330.00 1320.00 1240.00 
2 874.00 1000.00 970.00 
2 828.00 1140.00 1240.00 
2 1210.00 1160.00 1080.00 
2 1220.00 1150.00 1160.00 
2 981.00 979.00 943.00 
2 1140.00 1220.00 1550.00 

Group BIGA MIGA EIGA 

1 97.70 126.00 110.00 
1 173.00 182.00 179.00 
1 122.00 151.00 160.00 
1 74.30 123.00 113.00 
1 118.00 162.00 164.00 
1 264.00 306.00 292.00 
1 113.00 173.00 188.00 
1 239.00 310.00 295.00 
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Group BIGA MIGA EIGA 

1 231.00 258.00 245.00 
1 219.00 320.00 320.00 
1 137.00 177.00 183.00 
1 94.30 99.10 134.00 
1 94.70 143.00 142.00 
1 102.00 135.00 146.00 
1 127.00 192.00 195.00 
1 434.00 472.00 480.00 
1 187.00 236.00 255.00 
1 80.80 98.50 89.70 
2 262.00 290.00 249.00 
2 142.00 201.00 160.00 
2 113.00 107.00 112.00 
2 176.00 194.00 181.00 
2 154.00 147.00 144.00 
2 286.00 300.00 308.00 
2 138.00 148.00 160.00 
2 73.40 164.00 166.00 
2 123.00 127.00 122.00 
2 218.00 198.00 198.00 
2 220.00 245.00 220.00 
2 210.00 219.00 190.00 
2 207.00 237.00 239.00 
2 124.00 189.00 204.00 
2 194.00 184.00 178.00 
2 344.00 356.00 335.00 
2 117.00 125.00 135.00 
2 259.00 307.00 296.00 

Group BIGM MIGM EIGM 

1 128.00 150.00 139.00 
1 145.00 139.00 146.00 
1 155.00 169.00 166.00 
1 78.10 124.00 119.00 
1 143.00 186.00 183.00 
1 273.00 273.00 270.00 
1 154.00 234.00 245.00 
1 113.00 139.00 130.00 
1 124.00 127.00 128.00 
1 102.00 142.00 133.00 
1 134.00 139.00 146.00 
1 146.00 141.00 173.00 
1 119.00 124.00 141.00 
1 141.00 181.00 195.00 
1 115.00 194.00 200.00 
1 187.00 224.00 196.00 
1 234.00 306.00 295.00 
1 83.80 94.60 98.20 
2 279.00 286.00 263.00 
2 154.00 201.00 147.00 
2 167.00 180.00 165.00 
2 157.00 175.00 152.00 
2 223.00 252.00 250.00 
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Group BIGM MIGM EIGM 

2 189.00 199.00 166.00 
2 103.00 117.00 110.00 
2 104.00 173.00 150.00 
2 185.00 190.00 157.00 
2 101.00 81.10 91.50 
2 156.00 153.00 140.00 
2 217.00 187.00 152.00 
2 190.00 202.00 223.00 
2 110.00 176.00 188.00 
2 123.00 123.00 113.00 
2 179.00 189.00 170.00 
2 115.00 114.00 113.00 
2 297.00 297.00 308.00 

SOURCE: David C. Nieman. Used with permission. 

a. Perform a repeated measures analysis for each immunoglobulin/exercise group 
combination. 

b. Analyze the data as a factorial experiment for each immunoglobulin in which the 
factors are exercise group (2 levels) and time period (3 levels). Let a = .05 for all 
tests. 

33. The purpose of a study by Roodenburg et al. (A-31) was the classification and quantita-
tive description of various fetal movement patterns during the second half of pregnancy. 
The following are the number of incidents of general fetal movements per hour 
experienced by nine pregnant women at four-week intervals. May we conclude from 
these data that the average number of general movements per hour differs among the 
time periods? Let a = .05. 

Patient Weeks of Gestation 

No. 20 24 28 32 36 

1 66 57 52 37 40 
2 47 65 44 34 24 
3 57 63 57 34 10 
4 39 49 58 27 26 
5 54 46 54 22 35 
6 53 62 45 37 40 
7 96 46 64 43 41 
8 60 47 50 62 26 
9 63 47 44 42 39 

SOURCE: J. W. Wladimiroff, M.D., Ph.D. Used with permission. 

For Exercises 34-38 do the following: 

a. Indicate which technique studied in this chapter (the completely randomized design, 
the randomized block design, the repeated measures design, or the factorial experi-
ment) is appropriate. 

b. Identify the response variable and treatment variable s. 
c. As appropriate, identify the factors and the number of levels of each, the blocking 

variables, and the subjects. 
d. List any extraneous variables whose effects you think might be included in the error 

term. 

345 
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e. As appropriate, comment on carry-over and position effects. 
f. Construct an ANOVA table in which you indicate the sources of variability and the 

number of degrees of freedom for each. 

34. In a study by Vasterling et al. (A-32) 60 cancer chemotherapy patients who were 
categorized as exhibiting either high or low anxiety were randomly assigned to one of 
three conditions: cognitive distraction, relaxation training, or no intervention. Patients 
were followed for five consecutive chemotherapy sessions. Data were collected on such 
variables as nausea and both systolic and diastolic blood pressure. 

35. In a double-blind placebo-controlled study involving 30 patients with acute ischemic 
stroke, Huber et al. (A-33) investigated the effect of the adenosine uptake blocker 
propentofylline on regional brain glucose metabolism. 

36. The purpose of a study by Smith et al. (A-34) was to determine if static and ballistic 
stretching would induce significant amounts of delayed onset muscle soreness (DOMS) 
and increases in creatine kinase (CK). Twenty males were randomly assigned to a static 
(STATIC) or ballistic (BALLISTIC) stretching group. All subjects performed three sets 
of 17 stretches during a 90-minute period with STATIC remaining stationary during 
each 60-second stretch while BALLISTIC performed bouncing movements. Subjective 
ratings of DOMS and serum CK levels were assessed before and every 24 hours 
poststretching for five days. 

37. A study by Cimprich (A-35) tested the effects of an experimental intervention aimed at 
maintaining or restoring attentional capacity in 32 women during the three months 
after surgery for localized breast cancer. Attentional capacity was assessed using 
objective and subjective measures at four time points after breast cancer surgery. After 
the first observation, subjects were divided equally into two groups by random assign-
ment either to receive intervention or not to receive intervention. 

38. Paradis et al. (A-36) compared the pharmacokinetics and the serum bactericidal activi-
ties of five bactericidal agents. Fifteen healthy volunteers received each of the agents. 
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9.1 

Introduction 

In analyzing data for the health sciences disciplines, we find that it is frequently 

desirable to learn something about the relationship between two variables. We 

may, for example, be interested in studying the relationship between blood pres-

sure and age, height and weight, the concentration of an injected drug and heart 

rate, the consumption level of some nutrient and weight gain, the intensity of a 

stimulus and reaction time, or total family income and medical care expenditures. 

The nature and strength of the relationships between variables such as these may 

be examined by regression and correlation analysis, two statistical techniques that, 

although related, serve different purposes. 
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Regression Regression analysis is helpful in ascertaining the probable form 
of the relationship between variables, and the ultimate objective when this method 
of analysis is employed usually is to predict or estimate the value of one variable 
corresponding to a given value of another variable. The ideas of regression were 
first elucidated by the English scientist Sir Francis Galton (1822-1911) in reports of 
his research on heredity—first in sweet peas and later in human stature (1-3). He 
described a tendency of adult offspring, having either short or tall parents, to 
revert back toward the average height of the general population. He first used the 
word reversion, and later regression, to refer to this phenomenon. 

Correlation Correlation analysis, on the other hand, is concerned with 
measuring the strength of the relationship between variables. When we compute 
measures of correlation from a set of data, we are interested in the degree of the 
correlation between variables. Again, the concepts and terminology of correlation 
analysis originated with Galton, who first used the word correlation in 1888 (4). 

In this chapter our discussion is limited to the exploration of the relationship 
between two variables. The concepts and methods of regression are covered first, 
beginning in the next section. In Section 9.6 the ideas and techniques of correlation 
are introduced. In the next chapter we consider the case where there is an interest 
in the relationships among three or more variables. 

Regression and correlation analysis are areas in which the speed and accuracy 
of a computer are most appreciated. The data for the exercises of this chapter, 
therefore, are presented in a way that makes them suitable for computer process-
ing. As is always the case, the input requirements and output features of the 
particular programs and software packages to be used should be studied carefully. 

9.2 
The Regression Model 

In the typical regression problem, as in most problems in applied statistics, 
researchers have available for analysis a sample of observations from some real or 
hypothetical population. Based on the results of their analysis of the sample data, 
they are interested in reaching decisions about the population from which the 
sample is presumed to have been drawn. It is important, therefore, that the 
researchers understand the nature of the population in which they are interested. 
They should know enough about the population to be able either to construct a 
mathematical model for its representation or to determine if it reasonably fits 
some established model. A researcher about to analyze a set of data by the 
methods of simple linear regression, for example, should be secure in the knowl-
edge that the simple linear regression model is, at least, an approximate represen-
tation of the population. It is unlikely that the model will be a perfect portrait of 
the real situation, since this characteristic is seldom found in models of practical 
value. A model constructed so that it corresponds precisely with the details of the 
situation is usually too complicated to yield any information of value. On the other 
hand, the results obtained from the analysis of data that have been forced into a 
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model that does not fit are also worthless. Fortunately, however, a perfectly fitting 
model is not a requirement for obtaining useful results. Researchers, then, should 
be able to distinguish between the occasion when their chosen models and the data 
are sufficiently compatible for them to proceed and the case where their chosen 
model must be abandoned. 

Assumptions Underlying Simple Linear Regression In the simple linear 
regression model two variables, X and Y, are of interest. The variable X is usually 
referred to as the independent variable, since frequently it is controlled by the 
investigator; that is, values of X may be selected by the investigator and, corre-
sponding to each preselected value of X, one or more values of Y are obtained. 
The other variable, Y, accordingly, is called the dependent variable, and we speak of 
the regression of Y on X. The following are the assumptions underlying the simple 
linear regression model. 

1. Values of the independent variable X are said to be "fixed." This means that 
the values of X are preselected by the investigator so that in the collection of 
the data they are not allowed to vary from these preselected values. In this 
model, X is referred to by some writers as a nonrandom variable and by others 
as a mathematical variable. It should be pointed out at this time that the 
statement of this assumption classifies our model as the classical regression model. 
Regression analysis also can be carried out on data in which X is a random 
variable. 

2. The variable X is measured without error. Since no measuring procedure is 
perfect, this means that the magnitude of the measurement error in X is 
negligible. 

3. For each value of X there is a subpopulation of Y values. For the usual 
inferential procedures of estimation and hypothesis testing to be valid, these 
subpopulations must be normally distributed. In order that these procedures 
may be presented it will be assumed that the Y values are normally distributed 
in the examples and exercises that follow. 

*4. The variances of the subpopulations of Y are all equal. 

5. The means of the subpopulations of Y all lie on the same straight line. This is 
known as the assumption of linearity. This assumption may be expressed symboli-
cally as 

1.51x  = a + p x 	 (9.2.1) 

.where ,uyi„ is the mean of the subpopulation of Y values for a particular value 
of X, and a and /3 are called population regression coefficients. Geometrically, 
a and /3 represent the y-intercept and slope, respectively, of the line on which 
all the means are assumed to lie. 

6. The Y values are statistically independent. In other words, in drawing the 
sample, it is assumed that the values of Y chosen at one value of X in no way 
depend on the values of Y chosen at another value of X. 
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These assumptions may be summarized by means of the following equation, 
which is called the regression model: 

y = a + Px + e 
	

(9.2.2) 

where y is a typical value from one of the subpopulations of Y, a and f3 are as 
defined for Equation 9.2.1, and e is called the error term. If we solve 9.2.2 for e, we 
have 

e = y — (a + Px) 

=Y tiyk 
	 (9.2.3) 

and we see that e shows the amount by which y deviates from the mean of the 
subpopulation of Y values from which it is drawn. As a consequence of the 
assumption that the subpopulations of Y values are normally distributed with 
equal variances, the e's for each subpopulation are normally distributed with a 
variance equal to the common variance of the subpopulations of Y values. 

The following acronym will help the reader remember most of the assumptions 
necessary for inference in linear regression analysis: 

LINE [Linear (assumption 5), Independent (assumption 6), 

Normal (assumption 3), Equal variances (assumption 4)] 

A graphical representation of the regression model is given in Figure 9.2.1. 

fix, Y) 

X 

Figure 9.2.1 Representation of the simple linear regression model. 
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9.3 
The Sam le Re• ression E• uation 

♦In simple linear regression the object of the researcher's interest is the population 
regression equation—the equation that describes the true relationship between 
the dependent variable Y and the independent variable X. 

In an effort to reach a decision regarding the likely form of this relationship, 
the researcher draws a sample from the population of interest and, using the 
resulting data, computes a sample regression equation that forms the basis for 
reaching conclusions regarding the unknown population regression equation. 

Steps in Regression Analysis In the absence of extensive information 
regarding the nature of the variables of interest, a frequently employed strategy is 
to assume initially that they are linearly related. Subsequent analysis, then, 
involves the following steps. 

1. Determine whether or not the assumptions underlying a linear relationship are 
met in the data available for analysis. 

2. Obtain the equation for the line that best fits the sample data. 

3. Evaluate the equation to obtain some idea of the strength of the relationship 
and the usefulness of the equation for predicting and estimating. 

i4. If the data appear to conform satisfactorily to the linear model, use the 
equation obtained from the sample data to predict and to estimate. 

When we use the regression equation to predict, we will be predicting the value 
Y is likely to have when X has a given value. When we use the equation to estimate, 
we will be estimating the mean of the subpopulation of Y values assumed to exist 
at a given value of X. Note that the sample data used to obtain the regression 
equation consist of known values of both X and Y. When the equation is used to 
predict and to estimate Y, only the corresponding values of X will be known. We 
illustrate the steps involved in simple linear regression analysis by means of the 
following example. 

Example 
9.3.1 

Despres et al. (A-1) point out that the topography of adipose tissue (AT) is 
associated with metabolic complications considered as risk factors for cardiovascu-
lar disease. It is important, they state, to measure the amount of intraabdominal 
AT as part of the evaluation of the cardiovascular-disease risk of an individual. 
Computed tomography (CT), the only available technique that precisely and 
reliably measures the amount of deep abdominal AT, however, is costly and 
requires irradiation of the subject. In addition, the technique is not available to 
many physicians. Despres and his colleagues conducted a study to develop equa-
tions to predict the amount of deep abdominal AT from simple anthropometric 
measurements. Their subjects were men between the ages of 18 and 42 years who 
were free from metabolic disease that would require treatment. Among the 
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TABLE 9.3.1 Waist Circumference (cm), X, and Deep Abdominal AT, Y, of 109 Men 

Subject X Y Subject X Y Subject X Y 

1 74.75 25.72 38 103.00 129.00 75 108.00 217.00 
2 72.60 25.89 39 80.00 74.02 76 100.00 140.00 
3 81.80 42.60 40 79.00 55.48 77 103.00 109.00 
4 83.95 42.80 41 83.50 73.13 78 104.00 127.00 
5 74.65 29.84 42 76.00 50.50 79 106.00 112.00 
6 71.85 21.68 43 80.50 50.88 80 109.00 192.00 
7 80.90 29.08 44 86.50 140.00 81 103.50 132.00 
8 83.40 32.98 45 83.00 96.54 82 110.00 126.00 
9 63.50 11.44 46 107.10 118.00 83 110.00 153.00 

10 73.20 32.22 47 94.30 107.00 84 112.00 158.00 
11 71.90 28.32 48 94.50 123.00 85 108.50 183.00 
12 75.00 43.86 49 79.70 65.92 86 104.00 184.00 
13 73.10 38.21 50 79.30 81.29 87 111.00 121.00 
14 79.00 42.48 51 89.80 111.00 88 108.50 159.00 
15 77.00 30.96 52 83.80 90.73 89 121.00 245.00 
16 68.85 55.78 53 85.20 133.00 90 109.00 137.00 
17 75.95 43.78 54 75.50 41.90 91 97.50 165.00 
18 74.15 33.41 55 78.40 41.71 92 105.50 152.00 
19 73.80 43.35 56 78.60 58.16 93 98.00 181.00 
20 75.90 29.31 57 87.80 88.85 94 94.50 80.95 
21 76.85 36.60 58 86.30 155.00 95 97.00 137.00 
22 80.90 40.25 59 85.50 70.77 96 105.00 125.00 
23 79.90 35.43 60 83.70 75.08 97 106.00 241.00 
24 89.20 60.09 61 77.60 57.05 98 99.00 134.00 
25 82.00 45.84 62 84.90 99.73 99 91.00 150.00 
26 92.00 70.40 63 79.80 27.96 100 102.50 198.00 
27 86.60 83.45 64 108.30 123.00 101 106.00 151.00 
28 80.50 84.30 65 119.60 90.41 102 109.10 229.00 
29 86.00 78.89 66 119.90 106.00 103 115.00 253.00 
30 82.50 64.75 67 96.50 144.00 104 101.00 188.00 
31 83.50 72.56 68 105.50 121.00 105 100.10 124.00 
32 88.10 89.31 69 105.00 97.13 106 93.30 62.20 
33 90.60 78.94 70 107.00 166.00 107 101.80 133.00 
34 89.40 83.55 71 107.00 87.99 108 107.90 208.00 
35 102.00 127.00 72 101.00 154.00 109 108.50 208.00 
36 94.50 121.00 73 97.00 100.00 
37 91.00 107.00 74 100.00 123.00 

SOURCE: Jean-Pierre Despres, Ph.D. Used by permission. 

measurements taken on each subject were deep abdominal AT obtained by CT and 
waist circumference as shown in Table 9.3.1. A question of interest is how well can 
one predict and estimate deep abdominal AT from a knowledge of waist circumfer-
ence. This question is typical of those that can be answered by means of regression 
analysis. Since deep abdominal AT is the variable about which we wish to make 
predictions and estimations, it is the dependent variable. The variable waist 
measurement, knowledge of which will be used to make the predictions and 
estimations, is the independent variable. 

The Scatter Diagram A first step that is usually useful in studying the 
relationship between two variables is to prepare a scatter diagram of the data such as 
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Figure 9.3.1 Scatter diagram of data shown in Table 9.3.1. 

is shown in Figure 9.3.1. The points are plotted by assigning values of the 
independent variable X to the horizontal axis and values of the dependent variable 
Y to the vertical axis. 

The pattern made by the points plotted on the scatter diagram usually 
suggests the basic nature and strength of the relationship between two variables. 
As we look at Figure 9.3.1, for example, the points seem to be scattered around an 
invisible straight line. The scatter diagram also shows that, in general, subjects 
with large waist circumferences also have larger amounts of deep abdominal AT. 
These impressions suggest that the relationship between the two variables may be 
described by a straight line crossing the Y-axis below the origin and making 
approximately a 45-degree angle with the X-axis. It looks as if it would be simple 
to draw, freehand, through the data points the line that describes the relationship 
between X and Y. It is highly unlikely, however, that the lines drawn by any two 
people would be exactly the same. In other words, for every person drawing such a 
line by eye, or freehand, we would expect a slightly different line. The question 
then arises as to which line best describes the relationship between the two 
variables. We cannot obtain an answer to this question by inspecting the lines. In 
fact, it is not likely that any freehand line drawn through the data will be the line 
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that best describes the relationship between X and Y, since freehand lines will 
reflect any defects of vision or judgment of the person drawing the line. Similarly, 
when judging which of two lines best describes the relationship, subjective evalua-
tion is liable to the same deficiencies. 

What is needed for obtaining the desired line is some method that is not 
fraught with these difficulties. 

The Least-Squares Line The method usually employed for obtaining the 
desired line is known as the method of least squares, and the resulting line is called the 
least-squares line. The reason for calling the method by this name will be explained in 
the discussion that follows. 

We recall from algebra that the general equation for a straight line may be 
written as 

y = a + bx 	 (9.3.1) 

where y is a value on the vertical axis, x is a value on the horizontal axis, a is the 
point where the line crosses the vertical axis, and b shows the amount by which y 
changes for each unit change in x. We refer to a as the y-intercept and b as the 
slope of the line. To draw a line based on Equation 9.3.1, we need the numerical 
values of the constants a and b. Given these constants, we may substitute various 
values of x into the equation to obtain corresponding values of y. The resulting 
points may be plotted. Since any two such coordinates determine a straight line, we 
may select any two, locate them on a graph, and connect them to obtain the line 
corresponding to the equation. 

Normal Equations It can be shown by mathematics beyond the scope of this 
book that a and b may be obtained by the simultaneous solution of the following 
two equations, which are known as the normal equations for a set of data: 

Eyi  = na + bExi 	 (9.3.2) 

Exiyi = aExi + bE4 
	

(9.3.3) 

In Table 9.3.2 we have the necessary values for substituting into the normal 
equations. 

Substituting appropriate values from Table 9.3.2 into Equations 9.3.2 and 9.3.3 
gives 

11106.50 = 109a + 10017.30b 

1089381.0 = 10017.30a + 940464.00b 

We may solve these equations by any familiar method to obtain 

a = —216.08 	and 	b = 3.46 



TABLE 9.3.2 Intermediate Computations for Normal Equations, Example 9.3.1 

x y x 2  Y 
2 

xy 

74.75 25.72 5587.6 661.5 1922.6 
72.60 25.89 5270.8 670.3 1879.6 
81.80 42.60 6691.2 1814.8 3484.7 
83.95 42.80 7047.6 1831.8 3593.1 
74.65 29.84 5572.6 890.4 2227.6 
71.85 21.68 5162.4 470.0 1557.7 
80.90 29.08 6544.8 845.6 2352.6 
83.40 32.98 6955.6 1087.7 2750.5 
63.50 11.44 4032.2 130.9 726.4 
73.20 32.22 5358.2 1038.1 2358.5 
71.90 28.32 5169.6 802.0 2036.2 
75.00 43.86 5625.0 1923.7 3289.5 
73.10 38.21 5343.6 1460.0 2793.2 
79.00 42.48 6241.0 1804.6 3355.9 
77.00 30.96 5929.0 958.5 2383.9 
68.85 55.78 4740.3 3111.4 3840.5 
75.95 43.78 5768.4 1916.7 3325.1 
74.15 33.41 5498.2 1116.2 2477.4 
73.80 43.35 5446.4 1879.2 3199.2 
75.90 29.31 5760.8 859.1 2224.6 
76.85 36.60 5905.9 1339.6 2812.7 
80.90 40.25 6544.8 1620.1 3256.2 
79.90 35.43 6384.0 1255.3 2830.9 
89.20 60.09 7956.6 3610.8 5360.0 
82.00 45.84 6724.0 2101.3 3758.9 
92.00 70.40 8464.0 4956.2 6476.8 
86.60 83.45 7499.6 6963.9 7226.8 
80.50 84.30 6480.2 7106.5 6786.2 
86.00 78.89 7396.0 6223.6 6784.5 
82.50 64.75 6806.2 4192.6 5341.9 
83.50 72.56 6972.2 5265.0 6058.8 
88.10 89.31 7761.6 7976.3 7868.2 
90.80 78.94 8244.6 6231.5 7167.8 
89.40 83.55 7992.4 6980.6 7469.4 

102.00 127.00 10404.0 16129.0 12954.0 
94.50 121.00 8930.3 14641.0 11434.5 
91.00 107.00 8281.0 11449.0 9737.0 

103.00 129.00 10609.0 16641.0 13287.0 
80.00 74.02 6400.0 5479.0 5921.6 
79.00 55.48 6241.0 3078.0 4382.9 
83.50 73.13 6972.2 5348.0 6106.4 
76.00 50.50 5776.0 2550.3 3838.0 
80.50 50.88 6480.2 2588.8 4095.8 
86.50 140.00 7482.2 19600.0 12110.0 
83.00 96.54 6889.0 9320.0 8012.8 

107.10 118.00 11470.4 13924.0 12637.8 
94.30 107.00 8892.5 11449.0 10090.1 
94.50 123.00 8930.3 15129.0 11623.5 
79.70 65.92 6352.1 4345.4 5253.8 
79.30 81.29 6288.5 6608.1 6446.3 
89.80 111.00 8064.0 12321.0 9967.8 
83.80 90.73 7022.4 8231.9 7603.2 
85.20 133.00 7259.0 17689.0 11331.6 
75.50 41.90 5700.3 1755.6 3163.5 
78.40 41.71 6146.6 1739.7 3270.1 
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TABLE 9.3.2 	(Continued) 

x y 
x2 

Y
2 xy 

78.60 58.16 6178.0 3382.6 4571.4 
87.80 88.85 7708.8 7894.3 7801.0 
86.30 155.00 7447.7 24025.0 13376.5 
85.50 70.77 7310.3 5008.4 6050.8 
83.70 75.08 7005.7 5637.0 6284.2 
77.60 57.05 6021.8 3254.7 4427.1 
84.90 99.73 7208.0 9946.1 8467.1 
79.80 27.96 6368.0 781.8 2231.2 

108.30 123.00 11728.9 15129.0 13320.9 
119.60 90.41 14304.2 8174.0 10813.0 
119.90 106.00 14376.0 11236.0 12709.4 
96.50 144.00 9312.3 20736.0 13896.0 

105.50 121.00 11130.2 14641.0 12765.5 
105.00 97.13 11025.0 9434.2 10198.6 
107.00 166.00 11449.0 27556.0 17762.0 
107.00 87.99 11449.0 7742.2 9414.9 
101.00 154.00 10201.0 23716.0 15554.0 
97.00 100.00 9409.0 10000.0 9700.0 

100.00 123.00 10000.0 15129.0 12300.0 
108.00 217.00 11664.0 47089.0 23436.0 
100.00 140.00 10000.0 19600.0 14000.0 
103.00 109.00 10609.0 11881.0 11227.0 
104.00 127.00 10816.0 16129.0 13208.0 
106.00 112.00 11236.0 12544.0 11872.0 
109.00 192.00 11881.0 36864.0 20928.0 
103.50 132.00 10712.2 17424.0 13662.0 
110.00 126.00 12100.0 15876.0 13860.0 
110.00 153.00 12100.0 23409.0 16830.0 
112.00 158.00 12544.0 24964.0 17696.0 
108.50 183.00 11772.2 33489.0 19855.5 
104.00 184.00 10816.0 33856.0 19136.0 
111.00 121.00 12321.0 14641.0 13431.0 
108.50 159.00 11772.2 25281.0 17251.5 
121.00 245.00 14641.0 60025.0 29645.0 
109.00 137.00 11881.0 18769.0 14933.0 
97.50 165.00 9506.3 27225.0 16087.5 

105.50 152.00 11130.2 23104.0 16036.0 
98.00 181.00 9604.0 32761.0 17738.0 
94.50 80.95 8930.3 6552.9 7649.8 
97.00 137.00 9409.0 18769.0 13289.0 

105.00 125.00 11025.0 15625.0 13125.0 
106.00 241.00 11236.0 58081.0 25546.0 
99.00 134.00 9801.0 17956.0 13266.0 
91.00 150.00 8281.0 22500.0 13650.0 

102.50 198.00 10506.2 39204.0 20295.0 
106.00 151.00 11236.0 22801.0 16006.0 
109.10 229.00 11902.8 52441.0 24983.9 
115.00 253.00 13225.0 64009.0 29095.0 
101.00 188.00 10201.0 35344.0 18988.0 
100.10 124.00 10020.0 15376.0 12412.4 
93.30 62.20 8704.9 3868.8 5803.3 

101.80 133.00 10363.2 17689.0 13539.4 
107.90 208.00 11642.4 43264.0 22443.2 
108.50 208.00 11772.2 43264.0 22568.0 

Total 10017.30 11106.50 940464.0 1486212.0 1089381.0 
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The linear equation for the least-squares line that describes the relationship 
between waist circumference and deep abdominal AT may be written, then, as 

= —216.08 + 3.46x 	 (9.3.4) 

This equation tells us that since a is negative, the line crosses the Y-axis below 
the origin, and that since b, the slope, is positive, the line extends from the lower 
left-hand corner of the graph to the upper right-hand corner. We see further that 
for each unit increase in x, y increases by an amount equal to 3.46. The symbol 
denotes a value of y computed from the equation, rather than an observed value 
of Y. 

By substituting two convenient values of X into Equation 9.3.4, we may obtain 
the necessary coordinates for drawing the line. Suppose, first, we let X = 70 and 
obtain 

= —216.08 + 3.46(70) = 26.12 

If we let X = 110 we obtain 

= —216.08 + 3.46(110) = 164.52 

The line, along with the original data, is shown in Figure 9.3.2. 
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Figure 9.3.2 Original data and least-squares line for Example 9.3.1. 
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Alternative Formulas for a and b Numerical values for a and b may be 
obtained by alternative formulas that do not directly involve the normal equations. 
The formulas are as follows: 

Ey — bEx 
• a — 	  

n 

For the present example we have 

(9.3.6) 

109(1089381) — (10017.3)(11106.5) 
b= 	  

109(940464) — (10017.3)2  

= 3.46 

11106.5 — 3.46(10017.3) 
a — 	  

109 

= —216.08 

Thus, we see that Equations 9.3.5 and 9.3.6 yield the same results as the 
normal equations. 

The Least-Squares Criterion Now that we have obtained what we call the 
"best" line for describing the relationship between our two variables, we need to 
determine by what criterion it is considered best. Before the criterion is stated, let 
us examine Figure 9.3.2. We note that generally the least-squares line does not 
pass through the observed points that are plotted on the scatter diagram. In other 
words, most of the observed points deviate from the line by varying amounts. 

The line that we have drawn through the points is best in this sense: 

The sum of the squared vertical deviations of the observed data points (y) from the 
least-squares line is smaller than the sum of the squared vertical deviations of the data 
points from any other line. 

In other words, if we square the vertical distance from each observed point (ye ) 
to the least-squares line and add these squared values for all points, the resulting 
total will be smaller than the similarly computed total for any other line that can 
be drawn through the points. For this reason the line we have drawn is called the 
least-squares line. 
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EXERCISES 

9.3.1 Plot each of the following regression equations on graph paper and state whether X 
and Y are directly or inversely related. 

(a) y = —3 + 2x 
(b) 5 = 3 + 0.5x 
(c) 5 = 10 — 0.75x 

9.3.2 The following scores represent a nurses' assessment (X) and a physicians' assessment 
(Y) of the condition of 10 patients at time of admission to a trauma center. 

X: 18 13 18 15 10 12 8 4 7 3 
Y: 23 20 18 16 14 11 10 7 6 4 

(a) Construct a scatter diagram for these data. 
(b) Plot the following regression equations on the scatter diagram and indicate 

which one you think best fits the data. State the reason for your choice. 
(1) = 8 + 0.5x 
(2) 5 = — 10 + 2x 
(3) 5 = 1 + lx 

For each of the following exercises (a) draw a scatter diagram and (b) obtain the regression 
equation and plot it on the scatter diagram. 

9.3.3 A research project by Phillips et al. (A-2) was motivated by the fact that there is wide 
variation in the clinical manifestations of sickle cell anemia (SCA). In an effort to 
explain this variability these investigators used a magneto-acoustic ball microrheome-
ter developed in their laboratory to measure several rheologic parameters of suspen-
sions of cells from individuals with SCA. They correlated their results with clinical 
events and end-organ failure in individuals with SCA. The following table shows 
scores for one of the rheologic measurements, viscous modulus (VI C) (X), and end 
organ failure score (Y). End-organ failure scores were based on the presence of 
nephropathy, avascular necrosis of bone, stroke, retinopathy, resting hypoxemia after 
acute chest syndrome(s), leg ulcer, and priapism with impotence. 

X X 

.32 0 .57 2 

.72 3 .63 5 

.38 1 .37 1 

.61 4 .45 1 

.48 3 .85 4 

.48 1 .80 4 

.70 3 .36 1 

.41 2 .69 4 

SOURCE: George Phillips, Jr., Bruce Coffey, Roger Tran-Son-
Tay, T. R. Kinney, Eugene P. Orringer, and R. M. Hochmuth, 
"Relationship of Clinical Severity to Packed Cell Rheology in 
Sickle Cell Anemia," Blood, 78 (1991), 2735-2739. 

9.3.4 Habib and Lutchen (A-3) present a diagnostic technique that is of interest to 
respiratory disorder specialists. The following are the scores elicited by this tech-
nique, called AMDN, and the forced expiratory volume (FEV,) scores (% predicted) 
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for 22 subjects. The first seven subjects were healthy, subjects 8 through 17 had 
asthma, and the remaining subjects were cystic fibrosis patients. 

Patient AMDN FEVI  

1 1.36 102 
2 1.42 92 
3 1.41 111 
4 1.44 94 
5 1.47 99 
6 1.39 98 
7 1.47 99 
8 1.79 80 
9 1.71 87 

10 1.44 100 
11 1.63 86 
12 1.68 102 
13 1.75 81 
14 1.95 51 
15 1.64 78 
16 2.22 52 
17 1.85 43 
18 2.24 59 
19 2.51 30 
20 2.20 61 
21 2.20 29 
22 1.97 86 

SOURCE: Robert H. Habib and Kenneth R. 
Lutchen, "Moment Analysis of a Multibreath 
Nitrogen Washout Based on an Alveolar Gas 
Dilution Number," American Review of Respira-
tory Disease, 144 (1991), 513-519. 

9.3.5 In an article in the American Journal of Clinical Pathology, de Metz et al. (A-4) compare 
three methods for determining the percentage of dysmorphic erythrocytes in urine. 
The following are the results obtained when methods A (X) and B (Y) were used on 
75 u.-ine specimens. 

X Y X Y X Y X Y 

0 0 20 16 65 55 89 81 
0 1 16 18 66 71 90 80 
0 11 17 30 67 70 91 90 
2 0 19 30 69 71 90 97 
5 0 20 29 74 60 92 89 
6 3 18 35 75 59 93 98 
7 3 25 32 73 70 93 97 
9 5 30 40 75 69 94 98 
8 6 32 45 76 70 95 89 
9 7 39 49 78 80 95 95 

10 15 40 50 78 82 95 97 
10 17 48 41 77 90 95 98 
13 13 47 43 82 73 97 85 
15 8 57 42 85 74 98 95 
18 7 50 60 85 80 99 95 
19 9 60 65 86 75 100 96 
20 9 60 70 88 74 100 100 
16 13 59 69 88 83 100 99 
19 16 62 70 88 91 

Source: Menno de Metz. Used by permission. 
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9.3.6 Height is frequently named as a good predictor variable for weight among people of 
the same age and gender. The following are the heights and weights of 14 males 
between the ages of 19 and 26 years who participated in a study conducted by Roberts 
et al. (A-5): 

Weight Height Weight Height 

83.9 185 69.2 174 
99.0 180 56.4 164 
63.8 173 66.2 169 
71.3 168 88.7 205 
65.3 175 59.7 161 
79.6 183 64.6 177 
70.3 184 78.8 174 

SOURCE: Susan B. Roberts. Used by permission. 

9.3.7. Ogasawara (A-6) collected the following Full Scale IQ scores on 45 pairs of brothers 
with Duchenne progressive muscular dystrophy. 

X Y X 

78 114 127 113 
77 68 113 112 

112 116 91 103 
114 123 91 93 
104 107 96 90 
99 81 100 102 
92 76 97 104 
80 90 82 92 

113 91 43 43 
99 95 77 100 
97 106 109 90 
80 99 99 100 
84 82 99 103 
89 77 100 103 

100 81 56 67 
111 111 56 67 

75 80 67 67 
94 98 71 66 
67 82 66 63 
46 56 78 76 

106 117 95 86 
99 98 38 64 

102 89 

SOURCE: Akihiko Ogasawara. Used by permis-
sion. 

9.4 
Evaluating the Reussion Equation 

Once the regression equation has been obtained it must be evaluated to determine 
whether it adequately describes the relationship between the two variables and 
whether it can be used effectively for prediction and estimation purposes. 
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When Ho: 13 = 0 Is Not Rejected If in the population the relationship 
between X and Y is linear, 13, the slope of the line that describes this relationship, 
will be either positive, negative, or zero. If /3 is zero, sample data drawn from the 
population will, in the long run, yield regression equations that are of little or no 
value for prediction and estimation purposes. Furthermore, even though we as-
sume that the relationship between X and Y is linear, it may be that the 
relationship could be described better by some nonlinear model. When this is the 
case, sample data when fitted to a linear model will tend to yield results compatible 
with a population slope of zero. Thus, following a test in which the null hypothesis 
that /3 equals zero is not rejected, we may conclude (assuming that we have not 
made a type II error by accepting a false null hypothesis) either (1) that although 
the relationship between X and Y may be linear it is not strong enough for X to 
be of much value in predicting and estimating Y, or (2) that the relationship 
betweenX and Y is not linear; that is, some curvilinear model provides a better fit 
to the data. Figure 9.4.1 shows the kinds of relationships between X and Y in a 
population that may prevent rejection of the null hypothesis that /3 = 0. 

When Ho: 13 = 0 Is Rejected Now let us consider the situations in a 
population that may lead to rejection of the null hypothesis that /3 = 0. Assuming 
that we do not commit a type I error, rejection of the null hypothesis that /3 = 0 
may be attributed to one of the following conditions in the population: (1) The 
relationship is linear and of sufficient strength to justify the use of sample 
regression equations to predict and estimate Y for given values of X. (2) There is a 
good fit of the data to a linear model, but some curvilinear model might provide an 
even better fit. Figure 9.4.2 illustrates the two population conditions that may lead 
to rejection of H0: 	= 0. 

Thus we see that before using a sample regression equation to predict and 
estimate, it is desirable to test Ho: /3 = 0. We may do this either by using analysis 
of variance and the F statistic or by using the t statistic. We will illustrate both 
methods. Before we do this, however, let us see how we may investigate the 
strength of the relationship between X and Y. 

The Coefficient of Determination One way to evaluate the strength of the 
regression equation is to compare the scatter of the points about the regression 
line with the scatter about 5, the mean of the sample values of Y. If we take the 
scatter diagram for Example 9.3.1 and draw through the points a line that 
intersects the Y-axis at 5 and is parallel to the X-axis, we may obtain a visual 
impression of the relative magnitudes of the scatter of the points about this line 
and the regression line. This has been done in Figure 9.4.3. 

It appears rather obvious from Figure 9.4.3 that the scatter of the points about 
the regression line is much less than the scatter about the 5 line. We would not 
wish, however, to decide on this basis alone that the equation is a useful one. The 
situation may not be always this clear-cut, so that an objective measure of some 
sort would be much more desirable. Such an objective measure, called the coefficient 
of determination, is available. 
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Y 

(a) 

(b) 

Figure 9.4.1 Conditions in a population that may prevent 
rejection of the null hypothesis that f3 = 0. (a) The relationship 
between X and Y is linear, but f3 is so close to zero that 
sample data are not likely to yield equations that are useful 
for predicting Y when X is given. (b) The relationship 
between X and Y is not linear; a curvilinear model provides 
a better fit to the data; sample data are not likely to yield 
equations that are useful for predicting Y when X is given. 

The Total Deviation Before defining the coefficient of determination, let us 
justify its use by examining the logic behind its computation. We begin by 
considering the point corresponding to any observed value, y, and by measuring its 
vertical distance from the 5 line. We call this the total deviation and designate it by 

(Y, —5). 

The Explained Deviation If we measure the vertical distance from the 
regression line to the 5 line, we obtain (ji —5), which is called the explained 
deviation, since it shows by how much the total deviation is reduced when the 
regression line is fitted to the points. 

X 
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la) 

(b) 

Figure 9.4.2 Population conditions relative to X and Y 
that may cause rejection of the null hypothesis that f3 =o. 
(a) The relationship between X and Y is linear and of 
sufficient strength to justify the use of a sample regression 
equation to predict and estimate Y for given values of X. 
(b) A linear model provides a good fit to the data, but 
some curvilinear model would provide an even better fit. 

Unexplained Deviation Finally, we measure the vertical distance of the 
observed point from the regression line to obtain (y, — 9), which is called the 
unexplained deviation, since it represents the portion of the total deviation not 
"explained" or accounted for by the introduction of the regression line. These 
three quantities are shown for a typical value of Y in Figure 9.4.4. 

It is seen, then, that the total deviation for a particular y, is equal to the sum 
of the explained and unexplained deviations. We may write this symbolically as 

(Y, -5) = 	-5) - (Y, -5) 
	

(9.4.1) 

total explained unexplained 
deviation deviation deviation 

X 

X 
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Figure 9.4.3 Scatter diagram, sample regression line, and y line for Example 9.3.1. 

371 

• 

200 

• 180 

• • 
• 

to 
140 

•— 120 

'1  100 co 
a 

• 80 

40 

If we measure these deviations for each value of y, and 
deviation, and add up the squared deviations, we have 

E(Y, -5)2  = E(y-5)2  + E(y, -9)2  

total explained unexplained 

sum 	sum 	sum 
of squares of squares 	of squares 

.9, square each 

(9.4.2) 

These quantities may be considered measures of dispersion or variability. 

Total Sum of Squares The total sum of squares (SST), for example, is a 
measure of the dispersion of the observed values of Y about their mean 5; that is, 
this term is a measure of the total variation in the observed values of Y. The 
reader will recognize this term as the numerator of the familiar formula for the 
sample variance. 
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Figure 9.4.4 Scatter diagram showing the total, explained, and unexplained deviations 
for a selected value of Y, Example 9.3.1. 

Explained Sum of Squares The explained sum of squares measures the amount 
of the total variability in the observed values of Y that is accounted for by the 
linear relationship between the observed values of X and Y. This quantity is 
referred to also as the sum of squares due to linear regression (SSR). 

Unexplained Sum of Squares The unexplained sum of squares is a measure of 
the dispersion of the observed Y values about the regression line and is sometimes 
called the error sum of squares, or the residual sum of squares (SSE). It is this quantity 
that is minimized when the least-squares line is obtained. 

We may express the relationship among the three sums of squares values as 

SST = SSR + SSE 

• 

y= 101.89 
• 

The necessary calculations for obtaining the total, the regression, and the error 
sums of squares for our illustrative example are displayed in Table 9.4.1. 



TABLE 9.4.1 Calculation of Total, Explained, and Unexplained Sums of Squares 

Subject AT (y1) 9 = -216.08+ 3.46x (yi  -9) (yi - 5)2 
 

(y. -9) (y. -9)2  (9 -9) (.9  _ 9)2 

1 25.72 43.42 - 76.17 5801.8689 -17.70 313.2900 - 58.47 3418.7409 
2 25.89 36.50 - 76.00 5776.0000 -10.61 112.5721 - 65.39 4275.8521 
3 42.60 67.64 - 59.29 3515.3041 - 25.04 627.0016 - 34.25 1173.0625 
. 
• 

. . . 
• 

. . . 
• 

109 208.00 159.33 106.11 11259.3321 48.67 2368.7689 57.44 3299.3536 

Total 11106.50 SST = 354531.0000 SSE = 116982.0000 SSR = 237549.0000 
= 101.89 



10017.302 1 
SSR = 3.462174.752  + 72.602  + - - - +108.502  

109 
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For our illustrative example we have 

SST = SSR + SSE 

354531.0000 = 237549.0000 + 116982.0000 

354531.0000 = 354531.0000 

We may calculate the total sum of squares by the more convenient formula 

(Y, —5)2  = 	
n 

)2 	
(9.4.3) 

and the regression sum of squares may be computed by 

E u —5)2  = b2E(x, — 5..) 2  = 	— (Exi)2/n] 	(9.4.4) 

The error sum of squares is more conveniently obtained by subtraction. For our 
illustrative example we have 

11106.502  
SST = 25.722  + 25.892  + • • • +208.002    = 354531.0000 

109 

= 237549.0000 

and 

SSE = SST — SSR 

= 354531.0000 — 237549.0000 

= 116982.0000 

The results using the computationally more convenient formulas are the same 
results as those shown in Table 9.4.1. 

Calculating P 2  It is intuitively appealing to speculate that if a regression 
equation does a good job of describing the relationship between two variables, the 
explained or regression sum of squares should constitute a large proportion of the 
total sum of squares. It would be of interest, then, to determine the magnitude of 
this proportion by computing the ratio of the explained sum of squares to the total 
sum of squares. This is exactly what is done in evaluating a regression equation 
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based on sample data, and the result is called the sample coefficient of determination, 
r 2. That is, 

,a  _5)2 	bq 	(Ex,)2ini 
2 1-4 	 = SSR/SST 

n 

In our present example we have, using  the sums of squares values computed by 
Equations 9.4.3 and 9.4.4, 

237549.0000 r  2 — 	  
354531.0000 

— .67 

The sample coefficient of determination measures the closeness of fit of the 
sample regression equation to the observed values of Y. When the quantities 
(y, —ys), the vertical distances of the observed values of Y from the equation, are 
small, the unexplained sum of squares is small. This leads to a large explained sum 
of squares that leads, in turn, to a large value of r2. This is illustrated in Figure 
9.4.5. 

In Figure 9.4.5a we see that the observations all lie close to the regression line, 
and we would expect r 2  to be large. In fact, the computed r2  for these data is .986, 
indicating that about 99 percent of the total variation in the A  is explained by the 
regression. 

In Figure 9.4.5b we illustrate a case where the y, are widely scattered about 
the regression line, and there we suspect that r2  is small. The computed r2  for the 
data is .403, that is, less than 50 percent of the total variation in the A is explained 
by the regression. 

The largest value that r2  can assume is 1, a result that occurs when all the 
variation in the A is explained by the regression. When r2  = 1 all the observations 
fall on the regression line. This situation is shown in Figure 9.4.5c. 

The lower limit of r 2  is 0. This result is obtained when the regression line and 
the line drawn through 5 coincide. In this situation none of the variation in the y, 
is explained by the regression. Figure 9.4.5d illustrates a situation in which r 2  is 
close to zero. 

When r 2  is large, then, the regression has accounted for a large proportion of 
the total variability in the observed values of Y, and we look with favor on the 
regression equation. On the other hand, a small r 2, which indicates a failure of the 
regression to account for a large proportion of the total variation in the observed 
values of Y, tends to cast doubt on the usefulness of the regression equation for 
predicting  and estimating  purposes. We do not, however, pass final judgment on 
the equation until it has been subjected to an objective statistical test. 

r 
ECY, —5)2 	

Ey? 
(Eyi)

2 

Testing Ho: 3 = 0 with the F Statistic The following example illustrates one 
method for reaching  a conclusion regarding the relationship between X and Y. 
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a 

Close fit, large r 2  

r2  =1  

b 

Poor fit, small r' 

• • 
• 

• 
— • 
	

• • • • 

I 	I 	I 	I 	I 	I 	I 	I 	1 	I 

d 

r2 -• 0 

• 

Figure 9.4.5 r 2  as a measure of closeness-of-fit of the sample regression line to 
the sample observations. 

Example 	Refer to Example 9.3.1. We wish to know if we can conclude that, in the population 
9.4.1 	from which our sample was drawn, X and Y are linearly related. 

Solution: The steps in the hypothesis testing procedure are as follows: 

1. Data The data were described in the opening statement of Example 9.3.1. 

2. Assumptions We presume that the simple linear regression model and its 
underlying assumptions as given in Section 9.2 are applicable. 

3. Hypotheses 

Ho: p = 0 

HA : p 0 

a = .05 



9.4 Evaluating the Regression Equation 	 377 

TABLE 9.4.2 ANOVA Table for Simple Linear Regression 

Source of 
Variation 	SS 	d.f. 	MS 	 V.R. 

Linear 	SSR 	1 	SSR/1 
	

MSR/MSE 
regression 

Residual 	SSE 	n — 2 	SSE/(n — 2) 

Total 	SST 	n — 1 

4. Test Statistic The test statistic is V.R. as explained in the discussion that 
follows. 

From the three sum-of-squares terms and their associated degrees of freedom 
the analysis of variance table of Table 9.4.2 may be constructed. 

In general, the degrees of freedom associated with the sum of squares due to 
regression is equal to the number of constants in the regression equation minus 1. 
In the simple linear case we have two constants, a and b, hence the degrees of 
freedom for regression are 2 — 1 = 1. 

5. Distribution of Test Statistic It can be shown that when the hypothesis of no 
linear relationship between X and Y is true, and when the assumptions 
underlying regression are met, the ratio obtained by dividing the regression 
mean square by the residual mean square is distributed as F with 1 and n — 2 
degrees of freedom. 

6. Decision Rule Reject H0  if the computed value of V.R. is equal to or greater 
than the critical value of F. 

7. Calculation of the Test Statistic Substituting appropriate numerical values into 
Table 9.4.2 gives Table 9.4.3. 

8. Statistical Decision Since 217.279 is greater than 8.25, the critical value of F 
(obtained by interpolation) for 1 and 107 degrees of freedom, the null hypothe-
sis is rejected. 

9. Conclusion We conclude that the linear model provides a good fit to the data. 
For this test, since 217.279 > 13.61, we have p < .005. 

TABLE 9.4.3 ANOVA Table for Example 9.3.1 

Source of 
Variation SS d.f MS V.R. 

Linear 
regression 237549.0000 1 237549.0000 217.279 

Residual 116982.0000 107 1093.2897 

Total 354531.0000 108 



r2  = 1 
354531.0000 

— .67004 
116982.0000 
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Estimating the Population Coefficient of Determination The sample 
coefficient of determination provides a point estimate of p2, the population coefficient 
of determination. The population coefficient of determination, p2, has the same 
function relative to the population as r 2  has to the sample. It shows what 
proportion of the total population variation in Y is explained by the regression of 
Y on X. When the number of degrees of freedom are small, r2  is positively biased. 
That is, r2  tends to be large. An unbiased estimator of p2  is provided by 

r"2  = 
n 2) 

—5)2/(n — 1) 
(9.4.5) 

Observe that the numerator of the fraction in Equation 9.4.5 is the unexplained 
mean square and the denominator is the total mean square. These quantities 
appear in the analysis of variance table. For our illustrative example we have, using 
the data from Table 9.4.3, 

116982.0000/107 
F2  — 1 	 .66695 

354531.0000/108 

We see that this value is slightly less than 

We see that the difference in r2  and 7-'2  is due to the factor (n — 1)/(n — 2). When 
n is large, this factor will approach 1 and the difference between r2  and F2  will 
approach zero. 

Testing Ho: 13 = 0 with the t Statistic When the assumptions stated in 
Section 9.2 are met, a and b are unbiased point estimators of the corresponding 
parameters a and /3. Since, under these assumptions, the subpopulations of Y 
values are normally distributed, we may construct confidence intervals for and test 
hypotheses about a and /3. 

When the assumptions of Section 9.2 hold true, the sampling distributions of a 
and b are each normally distributed with means and variances as follows: 

= a 

2 N• 2 
,. 

0:y ix  
2 

n E ( xi  — _)2  

b = P 

(9.4.6) 

(9.4.7) 

(9.4.8) 



• • • 	• 
• • • • • • • 

• • • • • • • 
• • • • • 

• 

9.4 Evaluating the Regression Equation 	 379 

(8) 	 (b) 	 (c) 

Figure 9.4.6 Scatter diagrams showing (a) direct linear relationship, (b) 
inverse linear relationship, and (c) no linear relationship between X and Y. 

and 

2 0. 
2 	Ylx  

b  Cr = 
E(.x.z  -.02  (9.4.9) 

In Equations 9.4.7 and 9.4.9 a 2  is the unexplained variance of the subpopulations ylx 
of Y values. 

With knowledge of the sampling distributions of a and b we may construct 
confidence intervals and test hypotheses relative to a and /3 in the usual manner. 
Inferences regarding a are usually not of interest. On the other hand, as we have 
seen, a great deal of interest centers on inferential procedures with respect to /3. 
The reason for this is the fact that /3 tells us so much about the form of the 
relationship between X and Y. When X and Y are linearly related a positive /3 
indicates that, in general, Y increases as X increases, and we say that there is a 
direct linear relationship between X and Y. A negative /3 indicates that values of Y 
tend to decrease as values of X increase, and we say that there is an inverse linear 
relationship between X and Y. When there is no linear relationship between X and 
Y, /3 is equal to zero. These three situations are illustrated in Figure 9.4.6. 

The Test Statistic For testing hypotheses about /3 the test statistic when a),21x  
is known is 

b — Po  

0rb 
(9.4.10) 

where Po  is the hypothesized value of /3. The hypothesized value of /3 does not 
have to be zero, but in practice, more often than not, the null hypothesis of interest 
is that 	= 0. 

As a rule a2  is unknown. When this is the case, the test statistic is yk 

b — 130  
t =  	 (9.4.11) 

Sb 
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where sb is an estimate of crb, and t is distributed as Student's t with n — 2 
degrees of freedom. To obtain sb, we must first estimate o:y2ix. An unbiased 
estimator of this parameter is provided by the unexplained variance computed 
from the sample data. That is, 

E (Yi — 5)2 
sy ~x = 

n — 2 
(9.4.12) 

is an unbiased estimator of o-_Y2x' This is the unexplained mean square that appears l  
in the analysis of variance table. 

The terms (y, — )) in Equation 9.4.12 are called the residuals. Some computer 
programs for regression analysis routinely give the residuals as part of the output. 
When this is the case one may obtain sy2ix by squaring the residuals, adding the 
squared terms, and dividing the result by n — 2. An alternative formula for sy2fr is 

S 	

1 
2 = 	( s 2 	b 2 s2 

n — ) 
y x n — 2 

Sx (9.4.13) 

where s2 and sX are the variances of the y and x observations, respectively. For our 
illustrative example we have 

s2 = 3282.5999 	and 	sX = 183.8495 

so that 

108 r 
s 2
'Ix 	107 

= — [3282 5999 — (3.46)2(183.8495)i = 1091.73589 

a result that agrees with the residual mean square in Table 9.4.3. 
The square root of 4,x, is sylx, the standard deviation of the observations about 

the fitted regression line, and measures the dispersion of these points about the 
line. The greater syk, the poorer the fit of the line to the observed data. 

When 41„ is used to estimate o-2 we may obtain the desired and unbiased 
estimator of ab2 by 

S 2 
sb  = 	 (9.4.14) 

E (x, — 02 

We may write Equation 9.4.14 in the following computationally more convenient 
form: 

S 2 
sb  =  	 (9.4.15) 

Ex?— (Exi)
2
In 



9.4 Evaluating the Regression Equation 	 381 

If the probability of observing a value as extreme as the value of the test 
statistic computed by Equation 9.4.11 when the null hypothesis is true is less than 
a/2 (since we have a two-sided test), the null hypothesis is rejected. 

Example 	Refer to Example 9.3.1. We wish to know if we can conclude that the slope of the 
9.4.2 	population regression line describing the relationship between X and Y is zero. 

Solution: 

1. Data See Example 9.3.1. 

2. Assumptions We presume that the simple linear regression model and its 
underlying assumptions are applicable. 

3. Hypotheses 

Ho: /3 = 0 

HA: fl # 0 

a = .05 

4. Test Statistic The test statistic is given by Equation 9.4.11. 

5. Distribution of the Test Statistic When the assumptions are met and Ho  is true, 
the test statistic is distributed as Student's t with n — 2 degrees of freedom. 

6. Decision Rule Reject Ho  if the computed value of t is either greater than or 
equal to 1.2896 or less than or equal to —1.2896 (obtained by interpolation). 

7. Calculation of the Statistic We first compute 4. From Table 9.4.3 we have 
sy2k  = 1091.73589, so that we may compute 

s2 = 	  — .054983 

We may compute our test statistic 

3.46 — 0 
t — 	 

V.054983 
= 14.7558 

8. Statistical Decision Reject Ho  because 14.7558 > 1.2896. The p value for this 
test is less than .01, since, when Ho  is true, the probability of getting a value of 
t as large as or larger than 2.6230 (obtained by interpolation) is .005 and the 
probability of getting a value of t as small as or smaller than —2.6230 is also 
.005. Since 14.7558 is greater than 2.6230, the probability of observing a value 
of t as large as or larger than 14.7558 when the null hypothesis is true, is less 
than .005. We double this value to obtain 2(.005) = .01. 

9. Conclusion We conclude that the slope of the true regression line is not zero. 
The practical implication is that we can expect to get better predictions and 

1091.73589 

940464 — (10017.3)2/109 



382 	Chapter 9 • Simple Linear Regression and Correlation 

estimates of Y if we use the sample regression equation than we would get if 
we ignore the relationship between X and Y. The fact that b is positive leads 
us to believe that /3 is positive and that the relationship between X and Y is a 
direct linear relationship. 

As has already been pointed out, Equation 9.4.11 may be used to test the null 
hypothesis that /3 is equal to some value other than 0. The hypothesized value for 
g, go, is substituted into Equation 9.4.11 rather than 0. All other quantities, as well 
as the computations, are the same as in the illustrative example. The degrees of 
freedom and the method of determining significance are also the same. 

A Confidence Interval for 13 Once it has been determined that it is unlikely, 
in light of sample evidence, that /3 is zero, the researcher may be interested in 
obtaining an interval estimate of /3. The general formula for a confidence interval, 

estimator ± (reliability factor)(standard error of the estimate) 

may be used. When obtaining a confidence interval for /3, the estimator is b, the 
reliability factor is some value of z or t (depending on whether or not crylx  is 
known), and the standard error of the estimator is 

0.
yIx  

2 

61, = 	
E (x, — x— )2  

When ffy2x  is unknown, cri, is estimated by 

S 2  
S b = 	

E (x, — x— )2  

so that in most practical situations our 100(1 — a) percent confidence interval for 
/3 is 

b f  to —a/2) 

S 2 x  

E (x, — )2  
(9.4.16) 

For our illustrative example we construct the following 95 percent confidence 
interval for /3: 

3.46 ± 1.28961/.054983 

3.16, 3.76 

We interpret this interval in the usual manner. From the probabilistic point of view 
we say that in repeated sampling 95 percent of the intervals constructed in this way 
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will include /3. The practical interpretation is that we are 95 percent confident that 
the single interval constructed includes /3. 

Using the Confidence Interval To Test H.: 3  = 0 It is instructive to note 
that the confidence interval we constructed does not include zero, so that zero is 
not a candidate for the parameter being estimated. We feel, then, that it is 
unlikely that /3 = 0. This is compatible with the results of our hypothesis test in 
which we rejected the null hypothesis that /3 = 0. Actually, we can always test 1/0: 
/3 = 0 at the a significance level by constructing the 100(1 — a) percent confidence 
interval for /3, and we can reject or fail to reject the hypothesis on the basis of 
whether or not the interval includes zero. If the interval contains zero, the null 
hypothesis is not rejected; and if zero is not contained in the interval, we reject the 
null hypothesis. 

Interpreting the Results It must be emphasized that failure to reject the 
null hypothesis that /3 = 0 does not mean that X and Y are not related. Not only 
is it possible that a type II error may have been committed but it may be true that 
X and Y are related in some nonlinear manner. On the other hand, when we reject 
the null hypothesis that /3 = 0, we cannot conclude that the true relationship 
between X and Y is linear. Again, it may be that although the data fit the linear 
regression model fairly well (as evidenced by the fact that the null hypothesis that 

= 0 is rejected), some nonlinear model would provide an even better fit. Conse-
quently, when we reject Ho  that /3 = 0, the best we can say is that more useful 
results (discussed below) may be obtained by taking into account the regression of 
Y on X than in ignoring it. 

EXERCISES 

9.4.1 to 9.4.5 Refer to Exercises 9.3.3 to 9.3.7 and for each one do the following: 

a. Compute the coefficient of determination. 
b. Prepare an ANOVA table and use the F statistic to test the null 

hypothesis that 13 = 0. Let a = .05. 
c. Use the t statistic to test the null hypothesis that /3 = 0 at 'the .05 level of 

significance. 
d. Determine the p value for each hypothesis test. 
e. State your conclusions in terms of the problem. 
f. Construct the 95 percent confidence interval for 13. 

9.5 
Using the Regression Equation 

If the results of the evaluation of the sample regression equation indicate that 
there is a relationship between the two variables of interest, we can put the 
regression equation to practical use. There are two ways in which the equation can 



1 	 (p

02 

n E(xi — .17 )2  
± -a/2)Syl x 1 + + (9.5.1) 

384 	Chapter 9 • Simple Linear Regression and Correlation 

be used. It can be used to predict what value Y is likely to assume given a particular 
value of X. When the normality assumption of Section 9.2 is met, a prediction 
interval for this predicted value of Y may be constructed. 

We may also use the regression equation to estimate the mean of the subpopu-
lation of Y values assumed to exist at any particular value of X. Again, if the 
assumption of normally distributed populations holds, a confidence interval for this 
parameter may be constructed. The predicted value of Y and the point estimate of 
the mean of the subpopulation of Y will be numerically equivalent for any 
particular value of X but, as we will see, the prediction interval will be wider than 
the confidence interval. 

Predicting Y for a Given X Suppose, in our illustrative example, we have a 
subject whose waist measurement is 100 cm. We want to predict his deep abdomi-
nal adipose tissue. To obtain the predicted value, we substitute 100 for x in the 
sample regression equation to obtain 

= — 216.08 + 3.46(100) = 129.92 

Since we have no confidence in this point prediction, we would prefer an 
interval with an associated level of confidence. If it is known, or if we are willing to 
assume that the assumptions of Section 9.2 are met, and when cry2p, is unknown, 
then the 100(1 — a) percent prediction interval for Y is given by 

where x is the particular value of x at which we wish to obtain a prediction 
interval for Y and the degrees of freedom used in selecting t are n — 2. For our 
illustrative example we may construct the following 95 percent prediction interval: 

  

1 	(100 — 91.9018)2  

1 4-  109 + [940464 — (10017.3)2/109] 
129.92 ± 1.28961/1091.73589 

87.04, 172.80 

Our interpretation of a prediction interval is similar to the interpretation of a 
confidence interval. If we repeatedly draw samples, do a regression analysis, and 
construct prediction intervals for men who have a waist circumference of 100 cm, 
about 95 percent of them will include the man's deep abdominal AT value. This is 
the probabilistic interpretation. The practical interpretation is that we are 95 
percent confident that a man who has a waist circumference of 100 cm will have a 
deep abdominal AT area of somewhere between 87.04 and 172.80 square centime-
ters. 
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Estimating the Mean of Y for a Given X If, in our illustrative example, we 
are interested in estimating the mean deep abdominal AT area for a subpopulation 
of men all of whom have a waist circumference of 100 cm, we would again calculate 

= — 216.08 + 3.46(100) = 129.92 

The 100(1 — a) percent confidence interval for Ayk, when a 2 is unknown, is 
given by 

5 ± t(1 -a/2)8),k 
1 	(xp

2 

n  E(x 
(9.5.2) 

We can obtain the following 95 percent confidence interval for ,uyi, 1 00 of our 
present example by making proper substitutions: 

  

1 	(100 — 91.9018)2  
r 	  109 	[940464 — (10017.3)2/109] 

129.92± 1.2896A/1091.73589 

125.16, 134.68 

If we repeatedly drew samples from our population of men, performed a 
regression analysis, and estimated i.t yix _ 1 00  with a similarly constructed confidence 
interval, about 95 percent of such intervals would include the mean amount of deep 
abdominal AT for the population. For this reason we are 95 percent confident that 
the single interval constructed contains the population mean. 

Computer Analysis Now let us use MINITAB to obtain a computer analysis 
of the data of Example 9.3.1. We enter the X measurements into column 1 and the 
Y measurements into column 2. We issue the following command to label the 
column contents X and Y, respectively: 

NAME C1 = 'X', C2= 'Y' 

The following commands produce the analysis and the accompanying printout. The 
command "BRIEF 3" is needed to obtain the full printout. 

BRIEF 3 

REGRESS 'Y' ON 1 PREDICTOR 'X' 

Figure 9.5.1 shows a partial computer printout from the MINITAB simple linear 
regression program. We see that the printout contains information with which we 
are already familiar. 



386 	 Chapter 9 • Simple Linear Regression and Correlation 

The regression equation is 
Y = -216 + 3.46 X 

Predictor 	Coef 	Stdev 	t- ratio 	p 
Constant 	-215.98 	21.80 	-9.91 0.0000 
X 	 3.4569 	0.2347 	14.74 0.0000 

s = 33.06 	R- sq = 67.0% 	R- sq(adj) = 66.7% 

Analysis of Variance 
SOURCE 	DF 	 SS 	 MS 	 F 	 p 
Regression 	1 	237549 	237549 	217.28 	0.000 

Error 	107 	116982 	 1093 
Total 	108 	354531 

Figure 9.5.1 Partial printout of the computer analysis of the data given in Example 
9.3.1, using the MINITAB software package. 

ANALYSIS OF VARIANCE 

	

SUM OF 	 MEAN 
SOURCE 	DF 	 SQUARES 	 SQUARE 	F VALUE 	PROB > F 

MODEL 	1 	 237548.52 	237548.52 	217.279 	0.0001 
ERROR 	107 	 116981.99 	1093.28959 

	

C TOTAL 108 	 354530.50 

	

ROOT MSE 	 33.06493 	R-SQUARE 	0.6700 

	

DEP MEAN 	 101.894 	ADJ R-SQ 	0.6670 
C.V. 	 32.45031 

PARAMETER ESTIMATES 

	

PARAMETER 	STANDARD 	I FOR HO: 

	

VARIABLE DF 	 ESTIMATE 	 ERROR PARAMETER=0 	PROB > IT1 

	

INTERCEPT 1 	-215.98149 21.79627076 	-9.909 0.0001 
X 	 1 	3.45885939 	0.23465205 	14.740 	0.0001 

Figure 9.5.2 Partial printout of the computer analysis of the data given in Example 9.3.1, using the 
SAS software package. 

Figure 9.5.2 contains a partial printout of the SAS simple linear regression 
analysis of the data of Example 9.3.1. Differences occur in the numerical values of 
the output as a result of different rounding practices. 

EXERCISES 

In each exercise refer to the appropriate previous exercise and, for the value of X indicated 
(a) construct the 95 percent confidence interval for ktyk  and (b) construct the 95 percent 
prediction interval for Y. 



9.6 The Correlation Model 	 387 

9.5.1 Refer to Exercise 9.3.3 and let X = .75. 

9.5.2 Refer to Exercise 9.3.4 and let X = 2.00 (AMDN), 100 (FEV,). 

9.5.3 Refer to Exercise 9.3.5 and let X = 60. 

9.5.4 Refer to Exercise 9.3.6 and let X = 200. 

9.5.5 Refer to Exercise 9.3.7 and let X = 100. 

9.6 
The Correlation Model 

In the classic regression model, which has been the underlying model in our 
discussion up to this point, only Y, which has been called the dependent variable, is 
required to be random. The variable X is defined as a fixed (nonrandom or 
mathematical) variable and is referred to as the independent variable. Recall, also, 
that under this model observations are frequently obtained by preselecting values 
of X and determining corresponding values of Y. 

When both Y and X are random variables, we have what is called the 
correlation model. Typically, under the correlation model, sample observations are 
obtained by selecting a random sample of the units of association (which may be 
persons, places, animals, points in time, or any other element on which the two 
measurements are taken) and by taking on each a measurement of X and a 
measurement of Y. In this procedure, values of X are not preselected, but occur at 
random, depending on the unit of association selected in the sample. 

Although correlation analysis cannot be carried out meaningfully under the 
classic regression model, regression analysis can be carried out under the correla-
tion model. Correlation involving two variables implies a co-relationship between 
variables that puts them on an equal footing and does not distinguish between 
them by referring to one as the dependent and the other as the independent 
variable. In fact, in the basic computational procedures, which are the same as for 
the regression model, we may fit a straight line to the data either by minimizing 

—_"y)2  or by minimizing E(x, — 2)2. In other words, we may do a regression of 
X on Y as well as a regression of Y on X. The fitted line in the two cases in 
general will be different, and a logical question arises as to which line to fit. 

If the objective is solely to obtain a measure of the strength of the relationship 
between the two variables, it does not matter which line is fitted, since the measure 
usually computed will be the same in either case. If, however, it is desired to use 
the equation describing the relationship between the two variables for the purposes 
discussed in the preceding sections, it does matter which line is fitted. The variable 
for which we wish to estimate means or to make predictions should be treated as 
the dependent variable; that is, this variable should be regressed on the other 
variable. 

The Bivariate Normal Distribution Under the correlation model, X and Y 
are assumed to vary together in what is called a joint distribution. If this joint 
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distribution is a normal distribution, it is referred to as a bivariate normal distribution. 
Inferences regarding this population may be made based on the results of samples 
properly drawn from it. If, on the other hand, the form of the joint distribution is 
known to be nonnormal, or if the form is unknown and there is no justification for 
assuming normality, inferential procedures are invalid, although descriptive mea-
sures may be computed. 

Correlation Assumptions The following assumptions must hold for infer-
ences about the population to be valid when sampling is from a bivariate distribu-
tion. 

1. For each value of X there is a normally distributed subpopulation of Y values. 

2. For each value of Y there is a normally distributed subpopulation of X values. 

f(x, Y) j(X, Y) 

(•) 
	

(b) 

f(X. Y) 

(c) 

Figure 9.6.1 A bivariate normal distribution. (a) A bivariate normal distribution. 
(b) A cutaway showing normally distributed subpopulation of Y for given X. (c) A 
cutaway showing normally distributed subpopulation of X for given Y. 
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3. The joint distribution of X and Y is a normal distribution called the bivariate 
normal distribution. 

4. The subpopulations of Y values all have the same variance. 

5. The subpopulations of X values all have the same variance. 

The bivariate distribution is represented graphically in Figure 9.6.1. In this 
illustration we see that if we slice the mound parallel to Y at some value of X, the 
cutaway reveals the corresponding normal distribution of Y. Similarly, a slice 
through the mound parallel to X at some value of Y reveals the corresponding 
normally distributed subpopulation of X. 

9.7 
The Correlation Coefficient 

The bivariate normal distribution discussed in Section 9.6 has five parameters, crx, 
cry, 1.1, x, 1.5,, and p. The first four are, respectively, the standard deviations and 
means associated with the individual distributions. The other parameter, p, is 

called the population correlation coefficient and measures the strength of the linear 
relationship between X and Y. 

The population correlation coefficient is the positive or negative square root of 
p2, the population coefficient or determination previously discussed, and since the 
coefficient of determination takes on values between 0 and 1 inclusive, p may 
assume any value between — 1 and + 1. If p = 1 there is a perfect direct linear 
correlation between the two variables, while p = —1 indicates perfect inverse 
linear correlation. If p = 0 the two variables are not linearly correlated. The sign 
of p will always be the same as the sign of p, the slope of the population regression 
line for X and Y. 

X 

Figure 9.7.1 Scatter diagram for 
r —1 
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The sample correlation coefficient, r, describes the linear relationship between 
the sample observations on two variables in the same way that p describes the 
relationship in a population. 

Figures 9.4.5d and 9.4.5c, respectively, show typical scatter diagrams where 
r —> 0 (r2  —> 0) and r = +1 (r 2  = 1). Figure 9.7.1 shows a typical scatter diagram 
where r = — 1. 

We are usually interested in knowing if we may conclude that p * 0, that is, 

that X and Y are linearly correlated. Since p is usually unknown, we draw a 
random sample from the population of interest, compute r, the estimate of p, and 
test H0: p = 0 against the alternative p * 0. The procedure will be illustrated in 
the following example. 

Example 
9.7.1 

Estelles et al. (A-7) studied the fibrinolytic parameters in normal pregnancy, in 
normotensive pregnancy with intrauterine fetal growth retardation (IUGR), and in 
patients with preeclampsia with and without IUGR. Table 9.7.1 shows the birth 
weights and plasminogen activator inhibitor Type 2 (PAI-2) levels in 26 cases 

TABLE 9.7.1 Birth Weights (gm) and PAI-2 Levels (ng / ml) 
in Subjects Described in Example 9.7.1 

Weight 	 PAI-2 

2150 185 
2050 200 
1000 125 
2300 25 
900 25 

2450 78 
2350 290 
2350 60 
1900 65 
2400 125 
1700 122 
1950 75 
1250 25 
1700 180 
2000 170 

920 12 
1270 25 
1550 25 
1500 30 
1900 24 
2800 200 
3600 300 
3250 300 
3000 200 
3000 200 
3050 230 

SOURCE: Justo Aznar, M.D., Ph.D. Used by permission. 
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Figure 9.7.2 Birth weights and plasminogen activator inhibitor Type 2 (PAI-2) 
levels in subjects described in Example 9.7.1. 

studied. We wish to assess the strength of the relationship between these two 
variables. 

Solution: The scatter diagram and least-squares regression line are shown in 
Figure 9.7.2. 

The preliminary calculations necessary for obtaining the least-squares regres-
sion line are shown in Table 9.7.2. Let us assume that the investigator wishes to 
obtain a regression equation to use for estimating and predicting purposes. Ih that 
case the sample correlation coefficient will be obtained by the methods discussed 
under the regression model. 

The Regression Equation Let us assume that we wish to be able to predict PAI-2 
levels from a knowledge of birth weights. In that case we treat birth weight as the 
independent variable and PAI-2 level as the dependent variable and obtain the 
regression equation as follows. 

By substituting from Table 9.7.2 into Equations 9.3.2 and 9.3.3, the following 
normal equations are obtained: 

3296 = 26a + 542906 

8169390 = 54290a + 126874304b 

100 — 

75 — 	 • 	 • 

• • 
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TABLE 9.7.2 Preliminary Calculations for Obtaining Least-Squares Regression Line, 
Example 9.7.1 

x 	 y 
Weight 	PAI-2 	 x 2 	y2 xy 

	

2150 	185 	4622500 	34225 	397750 

	

2050 	200 	4202500 	40000 	410000  

	

1000 	125 	1000000 	15625 	125000 

	

2300 	 25 	5290000 	625 	57500 

	

900 	 25 	810000 	625 22500 
6084 

	

2450 	 78 	6002500 191100 

	

2350 	290 	5522500 	84100 	681500 

	

2350 	 60 	5522500 	3600 141000 
4225 

	

1900 	 65 	3610000 	 123500 

	

2400 	125 	5760000 	15625 	300000 

	

1700 	122 	2890000 	14884 	207400 

	

1950 	 75 	3802500 	5625 	146250 

	

1250 	 25 	1562500 	625 	31250 

	

1700 	180 	2890000 	32400 	306000 

	

2000 	170 	4000000 	28900 	340000 

	

920 	 12 	846400 	144 	11040 

	

1270 	 25 	1612900 	625 	31750 

	

1550 	 25 	2402500 	625 	38750 

	

1500 	 30 	2250000 	900 	45000 

	

1900 	 24 	3610000 	576 	45600  

	

2800 	200 	7840000 	40000 	560000 

	

3600 	300 	12960000 	90000 	1080000 

	

3250 	300 	10562500 	90000 	975000 

	

3000 	200 	9000000 	40000 	600000 

	

3000 	200 	9000000 	40000 	600000 

	

3050 	230 	9302500 	52900 	701500 

Total 	54290 	3296 	126874304 	642938 	8169390 

When these equations are solved we have 

a= —72.1201 

b = .09525 

The least-squares equation is 

= —72.1201 + .09525x 

The coefficient of determination, which is equal to the explained sum of 
squares divided by the total sum of squares, is (using Equations 9.4.3 and 9.4.4) 

b2 [E4 — (Ex,)2/n1 

E.Yi)2/n 

r 2 = (9.7.1) 
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Substituting values from Table 9.7.2 and the regression equation into Equation 
9.7.1 gives 

2 	( .09525)2[126874304 — (54290)2/26] 
r — 	  

642938 — (3296)2/26 

= .5446 

Finally, the correlation coefficient is 

r = 1/ 2  = 1/.5446 = .7380 

An alternative formula for computing r is given by 

r= 
(Exi)(EYi) 

(9.7.2) 

InEx 2  (Exi)2  I n Ey? - ( Eyi)2  

An advantage of this formula is that r may be computed without first computing b. 
This is the desirable procedure when it is not anticipated that the regression 
equation will be used. Substituting from Table 9.7.2 in Equation 9.7.2 gives 

26(8169390) — (54290)(3296) 

/26(126874304) — (54290)2  V26(642938) — (3296)2  

= .7380 

We know that r is positive because the slope of the regression line is positive. 

Example 
9.7.2 

Refer to Example 9.7.1. We wish to see if the sample value of r = .7380 is of 
sufficient magnitude to indicate that in the population birth weight and PAI-2 
levels are correlated. 

Solution: We conduct a hypothesis test as follows. 

1. Data See the initial discussion of Example 9.7.1. 

2. Assumptions We presume that the assumptions given in Section 9.6 are appli-
cable. 

3. Hypotheses 

Ho: p = 0 

HA: p * 0 

r= 



Z r  Zp 

Z= 
1/11n — 3 

(9.7.6) 
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4. Test Statistic When p = 0, it can be shown that the appropriate test statistic 
is 

t = r 
In- 2 

V 1 — r 2  
(9.7.3) 

5. Distribution of Test Statistic When 1/0  is true and the assumptions are met, the 
test statistic is distributed as Student's t distribution with n — 2 degrees of 
freedom. 

6. Decision Rule If we let a = .05, the critical values of t in the present example 
are +2.0639. If, from our data, we compute a value of t that is either greater 
than or equal to +2.0639 or less than or equal to —2.0639, we will reject the 
null hypothesis. 

7. Calculation of Test Statistic Our calculated value of t is 

t = .7380 
j 24 
	 — 5.3575 

V 1 — .5446 

8. Statistical Decision Since the computed value of the test statistic does exceed 
the critical value of t, we reject the null hypothesis. 

9. Conclusion We conclude that, in the population, birth weight and PAI-2 levels 
are linearly correlated. Since 5.3595 > 2.8039, we have for this test, p < .01. 

A Test for Use When the Hypothesized p is a Nonzero Value The use of 
the t statistic computed in the above test is appropriate only for testing 1/0: p = 0. 
If it is desired to test 1/0: p = po, where po  is some value other than zero, we must 
use another approach. Fisher (5) suggests that r be transformed to z, as follows: 

	

1 	1 + r 

	

z =In 
2 	1 — r 
	 (9.7.4) 

where In is a natural logarithm. It can be shown that z, is approximately normally 
distributed with a mean of zp  = 2 ln{(1 + p)/(1 — p)) and estimated standard 
deviation of 

1 

   

(9.7.5) 

 

— 3 

 

To test the null hypothesis that p is equal to some value other than zero the 
test statistic is 

which follows approximately the standard normal distribution. 
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To determine z, for an observed r and zp  for a hypothesized p, we consult 
Table I, thereby avoiding the direct use of natural logarithms. 

Suppose in our present example we wish to test 

Ho: p = .80 

against the alternative 

HA: p * .80 

at the .05 level of significance. By consulting Table I we find that for 

	

r = .74 	z, = .95048 

and for 

	

p = .80 
	

z„ = 1.09861 

Our test statistic, then, is 

Z — 
.95048 — 1.09861 

   

1/1/26 — 3 

 

= — .71 

Since —.71 is greater than the critical value of z = —1.96, we are unable to reject 
H0  and conclude that the population correlation coefficient may be .80. 

For sample sizes less than 25, Fisher's Z transformation should be used with 
caution, if at all. An alternative procedure from Hotelling (6) may be used for 
sample sizes equal to or greater than 10. In this procedure the following transfor-
mation of r is employed 

Z* = — Z r  
3z, + r 

(9.7.7) 
4n 

The standard deviation of z* is 

The test statistic is 

1 
(rz* n — 1 

z* — ‘* 
z* = 	 — (z* — C*))/n — 1 

1 /147---- 1 

(9.7.8) 

(9.7.9) 
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where 

4-* (pronounced zeta) = zp  
4n 

Critical values for comparison purposes are obtained from the standard normal 
distribution. 

In our present example, to test H0: p = .80 against HA: p # .80 using the 
Hotelling transformation and a = .05, we have 

3(.95048) + .7380 
z*  = .95048 	

4(26) 
	  — .915966 

3(1.09861) + .80 
/"* = 1.09861

4(26) 
	  = 1.059227 

Z* = (.915966 — 1.059227)1/26 — 1 = — .72 

Since —.72 is greater than — 1.96, the null hypothesis is not rejected, and the same 
conclusion is reached as when the Fisher transformation is used. 

Alternatives In some situations the data available for analysis do not meet 
the assumptions necessary for the valid use of the procedures discussed here for 
testing hypotheses about a population correlation coefficient. In such cases it may 
be more appropriate to use the Spearman rank correlation technique discussed in 
Chapter 13. 

Confidence Interval for p Fisher's transformation may be used to construct 
100(1 — a) percent confidence intervals for p. The general formula for a confidence 
interval 

estimator ± (reliability factor)(standard error) 

is employed. We first convert our estimator, r, to zr, construct a confidence interval 
about zp, and then reconvert the limits to obtain a 100(1 — a) percent confidence 
interval about p. The general formula then becomes 

(3zp  + p) 

zr  t z(1/14z — 3) 	 (9.7.10) 
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For our present example the 95 percent confidence interval for zp  is given by 

.95048 ± 1.96(1/V26 - 3 

.54179, 1.35916 

Converting these limits (by interpolation in Table I), which are values of z,, 

into values of r gives 

z r  

	

.54179 	.494 

	

1.35916 	.876 

We are 95 percent confident, then, that p is contained in the interval .494 to .876. 
Because of the limited entries in the table, these limits must be considered as only 

approximate. 
An alternative method of constructing confidence intervals for p is to use the 

special charts prepared by David (7). 

EXERCISES 

In each of the following exercises: 

a. Prepare a scatter diagram. 
b. Compute the sample correlation coefficient. 
c. Test Ho: p = 0 at the .05 level of significance and state your conclusions. 
d. Determine the p value for the test. 
e. Construct the 95 percent confidence interval for p. 

9.7.1 The purpose of a study by Ruokonen et al. (A-8) was to evaluate the relationship 
between the mixed venous, hepatic, and femoral venous oxygen saturations before 
and during sympathomimetic drug infusions. The 24 subjects were all ICU patients 
who had had open-heart surgery (12 patients), had septic shock (8 patients), or had 
acute respiratory failure (4 patients). A measure of interest was the correlation 
between change in mixed venous (Sv02), Y, and hepatic venous oxygen saturation 
(Sv02), X, following vasoactive treatment. The following data, expressed as percents, 
were collected. 

X Y X 

0.4 2.1 16.0 15.1 
6.9 3.3 23.7 9.7 

-0.1 4.4 15.1 6.8 
12.4 4.9 25.1 12.2 

-2.8 2.1 13.9 14.5 
7.5 1.0 28.7 16.0 

20.3 12.6 -8.5 2.9 
2.5 0.8 11.6 8.8 

12.4 9.7 32.4 9.4 
10.1 9.1 18.2 11.6 

-2.7 0.5 10.2 7.7 
-3.8 -3.6 1.4 3.4 

SOURCE: Jukka Takala, M.D. Used by permission. 
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9.7.2 Interest in the interactions between the brain, behavior, and immunity was the 
motivation for a study by Wodarz et al. (A-9). The subjects used in their study were 
12 patients with severe unipolar major depressive disorder or bipolar depression 
(group 2) and 13 nonhospitalized healthy controls (group 1). A measure of interest 
was the correlation between subjects' cortisol and adrenocorticotropic hormone 
(ACTH) values. The following data were collected: 

Group Cortisol ACTH 

1 151.75 3.08 
1 234.52 2.42 
1 193.13 3.96 

1 140.71 1.98 
1 273.14 4.18 

1 284.18 3.96 
1 389.02 4.18 
1 151.75 2.64 
1 275.90 4.18 
1 248.31 4.62 
1 115.88 3.52 
1 212.44 5.06 
1 193.13 2.64 

2 317.29 2.64 

2 143.47 2.86 
2 82.77 2.86 
2 336.60 3.96 
2 220.72 5.06 

2 469.03 7.27 
2 217.96 4.40 

2 270.38 2.64 

2 422.13 4.40 

2 281.42 4.18 

2 179.34 6.61 
2 195.89 4.62 

SOURCE: Dr. N. Wodarz. Used by permission. 

9.7.3 A study by Kosten et al. (A-10) was concerned with the relationship between 
biological indications of addiction and the dependence syndrome. Subjects were 52 
opiate addicts applying to a methadone maintenance program. Measures of concern 
to the investigators were the correlation between opiate withdrawal and opiate 
dependence and the correlation between opiate withdrawal and cocaine dependence. 
Opiate withdrawal was determined by the Naloxone Challenge Opiate Withdrawal 
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Test (NCTOT). The following data were obtained: 
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NCTOT Opiate Cocaine NCTOT Opiate Cocaine 

22 31 23 25 33 11 
13 27 23 29 33 19 
15 31 21 21 33 11 
13 31 11 27 33 11 
6 31 31 17 33 11 
9 31 11 21 33 11 

11 31 11 26 33 11 
18 29 23 36 33 11 
15 31 11 22 33 11 

7 31 27 10 31 19 
10 33 29 27 31 11 
29 30 11 27 33 21 
11 33 11 8 33 33 
17 33 31 19 31 31 
22 33 11 29 33 29 
22 33 31 24 33 11 
9 33 27 36 32 11 

17 31 14 29 32 11 
24 33 29 36 32 11 
14 33 11 32 33 11 
18 33 11 9 33 31 
22 33 11 20 33 11 
26 33 11 19 33 11 
18 31 11 17 32 11 
29 33 11 24 33 11 
9 31 11 36 33 11 

SOURCE: Therese A. Kosten, Ph.D. Used by permission. 

9.7.4 The subjects in a study by Rondal et al. (A-11) were 21 children with Down's 
syndrome between the ages of 2 and 12 years. Among the variables on which the 
investigators collected data were mean length of utterance (MLU) and number of 
one-word utterances (OWU). MLU is computed by dividing the number of mor-
phemes by the number of utterances in a sample of language. The number of OWU 
were computed on 100 utterances. The following values were collected: 

MLU OWU MLU OWU 

.99 99 1.90 51 
1.12 88 2.10 43 
1.18 84 2.15 38 
1.21 81 2.36 51 
1.22 59 2.63 33 
1.39 51 2.71 24 
1.45 49 3.02 21 
1.53 70 3.05 25 
1.74 52 3.06 33 
1.76 50 3.46 16 
1.77 50 

SOURCE: J. A. Rondal, Ph.D. Used by permission. 
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9.7.5 Bryant and Eng-(A-12) conducted research to find a more precise, simpler, and less 
traumatic technique to study the relative maturation of the peripheral nerves in 
preterm and term infants. Subjects were 83 stable premature and full-term neonates 
from three nurseries in a metropolitan region. Among the measurements obtained 
were conceptional age in weeks (AGE) and soleus H-reflex latency (msec) per 
centimeter of infant leg length (MS/CM). The data were as follows: 

Age MS/CM Age MS / CM Age MS/CM 

31.0 1.16129 38.0 .87368 32.0 1.16667 
31.0 1.28750 39.0 .81000 37.0 .75897 
34.0 1.18710 40.0 .78072 32.0 .97143 
32.0 1.18621 41.0 .80941 42.0 .80909 
35.0 1.07778 40.0 .84156 45.0 .59091 
33.0 .88649 41.0 .98286 34.0 1.10000 
33.0 1.01714 40.0 .73171 35.0 1.00000 
32.0 1.25610 40.0 .81081 33.0 1.04242 
32.0 1.04706 41.0 .76000 38.0 .87059 
31.0 1.33333 42.0 .72821 38.0 .90000 
34.0 .95385 42.0 .83902 34.0 .94194 
33.0 1.11765 42.0 .84000 38.0 .69000 
34.0 .93659 41.0 .85263 40.0 .74737 
34.0 1.15000 40.0 .86667 37.0 1.01250 
36.0 .85479 40.0 .90000 44.0 .69091 
39.0 .83902 40.0 .81026 36.0 .85263 
37.0 .87368 42.0 .83000 40.0 .72381 
39.0 .86316 41.0 .81951 40.0 .75238 
36.0 .94634 31.0 1.83077 32.0 1.28750 
38.0 .95000 32.0 1.64615 32.0 1.22500 
39.0 .83077 32.0 1.48571 34.0 1.37500 
38.0 .90000 36.0 .91579 43.0 .60444 
39.0 .89000 34.0 1.32000 40.0 .73043 
39.0 .91282 34.0 1.05455 33.0 1.35714 
39.0 .91000 40.0 .82353 33.0 1.17576 
39.0 .81026 40.0 0.85263 38.5 .75122 
39.0 .80000 31.0 1.76923 45.0 .56000 
38.0 .77073 33.0 1.10000 

SOURCE: Gloria D. Eng, M.D. Used by permission. 

9.7.6 A simple random sample of 15 apparently healthy children between the ages of 6 
months and 15 years yielded the following data on age, X, and liver volume per unit 
of body weight (ml/kg), Y. 

X X 

.5 41 10.0 26 

.7 55 10.1 35 
2.5 41 10.9 25 
4.1 39 11.5 31 
5.9 50 12.1 31 
6.1 32 14.1 29 
7.0 41 15.0 23 
8.2 42 
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9.8 
Some Precautions 

Regression and correlation analysis are powerful statistical tools when properly 
employed. Their inappropriate use, however, can lead only to meaningless results. 
To aid in the proper use of these techniques, we make the following suggestions: 

1. The assumptions underlying regression and correlation analysis should be 
carefully reviewed before the data are collected. Although it is rare to find that 
assumptions are met to perfection, practitioners should have some idea about 
the magnitude of the gap that exists between the data to be analyzed and the 
assumptions of the proposed model, so that they may decide whether they 
should choose another model; proceed with the analysis, but use caution in the 
interpretation of the results; or use the chosen model with confidence. 

2. In simple linear regression and correlation analysis, the two variables of 
interest are measured on the same entity, called the unit of association. If we are 
interested in the relationship between height and weight, for example, these 
two measurements are taken on the same individual. It usually does not make 
sense to speak of the correlation, say, between the heights of one group of 
individuals and the weights of another group. 

\11•■••■••ftv••■•■111 11■160"  

Sampled interval 

Figure 9.8.1 Example of extrapolation. 

X 
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3. No matter how strong is the indication of a relationship between two variables, 
it should not be interpreted as one of cause and effect. If, for example, a 
significant sample correlation coefficient between two variables X and Y is 
observed, it can mean one of several things: 

a. X causes Y. 
b. Y causes X. 
c. Some third factor, either directly or indirectly, causes both X and Y. 
d. An unlikely event has occurred and a large sample correlation coefficient 

has been generated by chance from a population in which X and Y are, in 
fact, not correlated. 

e. The correlation is purely nonsensical, a situation that may arise when 
measurement of X and Y are not taken on a common unit of association. 

4. The sample regression equation should not be used to predict or estimate 
outside the range of values of the independent variable represented in the 
sample. This practice, called extrapolation, is risky. The true relationship be-
tween two variables, although linear over an interval of the independent 
variable, sometimes may be described at best as a curve outside this interval. If 
our sample by chance is drawn only from the interval where the relationship is 
linear, we have only a limited representation of the population, and to project 
the sample results beyond the interval represented by the sample may lead to 
false conclusions. Figure 9.8.1 illustrates the possible pitfalls of extrapolation. 

9.9 
Summary 

4 

In this chapter two important tools of statistical analysis, simple linear regression 
and correlation, are examined. The following outline for the application of these 
techniques has been suggested. 

1. Identifi,  the Model Practitioners must know whether the regression model or 
the correlation model is the appropriate one for answering their questions. 

2. Review Assumptions It has been pointed out several times that the validity of 
the conclusions depends on how well the analyzed data fit the chosen model. 

3. Obtain the Regression Equation We have seen how the regression equation is 
obtained by the method of least squares. Although the computations, when 
done by hand, are rather lengthy, involved, and subject to error, this is not the 
problem today that it has been in the past. Computers are now in sucl,  
widespread use that the researcher or statistician without access to one is the 
exception rather than the rule. No apology for lengthy computations 
necessary to the researcher who has a computer available. 

4. Evaluate the Equation We have seen that the usefulness of the regression 
equation for estimating and predicting purposes is determined by means of the 
analysis of variance, which tests the significance of the regression mean square. 
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The strength of the relationship between two variables under the correlation 
model is assessed by testing the null hypothesis that there is no correlation in 
the population. If this hypothesis can be rejected we may conclude, at the 
chosen level of significance, that the two variables are correlated. 

5. Use the Equation Once it has been determined that it is likely that the 
regression equation provides a good description of the relationship between 
two variables, X and Y, it may be used for one of two purposes: 

a. To predict what value Y is likely to assume, given a particular value of X, 
or 

b. To estimate the mean of the subpopulation of Y values for a particular 
value of X. 

This necessarily abridged treatment of simple linear regression and correlation 
may have raised more questions than it has answered. It may have occurred to the 
reader, for example, that a dependent variable can be more precisely predicted 
using two or more independent variables rather than one. Or, perhaps, he or she 
may feel that knowledge of the strength of the relationship among several variables 
might be of more interest than knowledge of the relationship between only two 
variables. The exploration of these possibilities is the subject of the next chapter, 
and the reader's curiosity along these lines should be at least partially relieved. 

For those who would like to pursue the topic further, a number of excellent 
references, in addition to those already cited, follow at the end of this chapter. 

REVIEW QUESTIONS AND EXERCISES 

1. What are the assumptions underlying simple linear regression analysis when one of the 
objectives it to make inferences about the population from which the sample data were 
drawn? 

2. Why is the regression equation called the least-squares equation? 

3. Explain the meaning of a in the sample regression equation. 

4. Explain the meaning of b in the sample regression equation. 

5. Explain the following terms: 

a. Total sum of squares 
b. Explained sum of squares 
c. Unexplained sum of squares 

6. Explain the meaning of and the method of computing the coefficient of determination. 

7. What is the function of the analysis of variance in regression analysis? 

8. Describe three ways in which one may test the null hypothesis that 0 = 0. 

9. For what two purposes can a regression equation be used? 



404 	Chapter 9 • Simple Linear Regression and Correlation 

10. What are the assumptions underlying simple correlation analysis when inference is an 

objective? 

11. What is meant by the unit of association in regression and correlation analysis? 

12. What are the possible explanations for a significant sample correlation coefficient? 

13. Explain why it is risky to use a sample regression equation to predict or to estimate 
outside the range of values of the independent variable represented in the sample. 

14. Describe a situation in your particular area of interest where simple regression analysis 
would be useful. Use real or realistic data and do a complete regression analysis. 

15. Describe a situation in your particular area of interest where simple correlation analysis 
would be useful. Use real or realistic data and do a complete correlation analysis. 

In each of the following exercises carry out the required analysis and test hypotheses at the 
indicated significance levels. Compute the p value for each test. 

16. A study by Scrogin et al. (A-13) was designed to assess the effects of concurrent 
manipulations of dietary NaCI and calcium on blood pressure as well as blood pressure 
and catecholamine responses to stress. Subjects were salt-sensitive male spontaneously 
hypertensive rats. Among the analyses performed by the investigators was a correlation 
between baseline blood pressure and plasma epinephrine concentration (E). The follow-
ing data on these two variables were collected. Let a = .01. 

BP PlasmaE BP PlasmaE 

163.90 248.00 143.20 179.00 
195.15 339.20 166.00 160.40 
170.20 193.20 160.40 263.50 
171.10 307.20 170.90 184.70 
148.60 80.80 150.90 227.50 
195.70 550.00 159.60 92.35 
151.00 70.00 141.60 139.35 
166.20 66.00 160.10 173.80 
177.80 120.00 166.40 224.80 
165.10 281.60 162.00 183.60 
174.70 296.70 214.20 441.60 
164.30 217.30 179.70 612.80 
152.50 88.00 178.10 401.60 
202.30 268.00 198.30 132.00 
171.70 265.50 

SOURCE: Katie E. Scrogin. Used by permission. 

17. Wada et al. (A-14) state that tumor necrosis factor (TNF) is an antitumoral cytokine 
that first attracted attention as a possible anticancer agent without side effects. TNF is 
also regarded as a possible mediator of disseminated intravascular coagulation (DIC) 
and multiple organ failure. Wada and colleagues evaluated the relationship between 
TNF and the pathology of DIC. Subjects were normal volunteers, DIC patients, pre-DIC 
patients, and non-DIC patients. The following data on plasma TNF levels (U/ml) and 
DIC score were collected for subjects without leukemia. 
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DIC 	TNF DIC 	TNF 

9 	.48 5 	.00 
8 .46 7 .06 

10 .00 8 .10 
9 .20 7 .12 
8 .10 9 .24 
9 .18 9 .32 
9 .14 6 .26 

10 .16 10 .24 
9 .20 8 .28 

10 .72 7 .26 
7 1.44 9 .12 
7 .24 7 .14 

11 .52 6 .24 
6 .50 5 .14 
'8 .10 3 .12 
5 .16 3 .00 
4 .08 2 .00 
3 .00 4 .00 
6 .26 4 .14 
5 .08 3 .00 
3 .00 1 .00 
6 .00 2 .00 
4 .08 3 .20 
4 .00 

SOURCE: Hideo Wada, M.D. Used by permission. 

Perform a complete regression analysis with DIC score as the independent variable. Let 
a = .01 for all tests. 

18. Lipp-Ziff and Kawanishi (A-15) point out that, in certain situations, pulmonary artery 
diastolic pressure (PAD) is often used to estimate left ventricular end-diastolic pressure 
(LVEDP). These researchers used regression analysis to determine which point on the 
PAD waveform best estimates LVEDP. After correlating LVEDP with PAD measure-
ments at three points on the waveform, they found the strongest relationship at .08 
seconds after onset of the QRS complex (PAD .08). Their conclusion was based on an 
analysis of the following data: 

PAD .08 
(mm Hg) 

LVEDP 
(mm Hg) 

PAD .08 
(mm Hg) 

LVEDP 
(mm Hg) 

PAD .08 
(mm Hg) 

LVEDP 
(mm Hg) 

20 20 13 15 12 13 
22 27 14 11 33 36 
17 18 12 13 16 17 
23 23 15 15 9 12 
14 14 11 13 18 13 
16 12 10 10 27 32 
16 18 18 18 27 32 
17 20 16 11 14 14 
10 11 14 10 14 17 
14 16 22 28 13 12 
16 12 17 16 14 15 
22 28 12 12 17 12 
13 13 12 13 17 16 

x 



406 Chapter 9 • Simple Linear Regression and Correlation 

PAD .08 
(mm Hg) 

LVEDP 
(mm Hg) 

PAD .08 
(mm Hg) 

LVEDP 
(mm Hg) 

PAD .08 
(mm Hg) 

LVEDP 
(mm Hg) 

23 31 13 17 14 12 
26 32 16 20 16 21 
18 18 18 24 14 13 
17 20 11 15 13 14 
18 18 13 14 12 13 
26 28 11 16 18 20 
11 8 16 17 22 25 
22 27 11 10 19 36 
30 43 16 19 27 28 
18 18 23 25 17 18 
22 16 10 11 17 20 
30 30 23 29 17 19 
42 37 11 14 25 30 
26 29 31 35 10 12 
11 15 14 19 16 15 
10 12 13 14 24 24 
12 11 22 30 9 12 
20 21 11 10 11 7 
15 14 13 16 10 10 
21 13 24 26 11 15 
13 18 

SOURCE: David T. Kawanishi, M.D., and Eileen L. Lipp-Ziff, R.N., M.S.N., C.C.R.N. Used by 
permission. 

Perform a complete regression analysis of these data. Let a = .05 for all tests. 

19. Of concern to health scientists is mercury contamination of the terrestrial ecosystem. 
Crop plants provide a direct link for transportation of toxic metals such as mercury 
from soil to man. Panda et al. (A-16) studied the relationship between soil mercury and 
certain biological endpoints in barley. The source of mercury contamination was the 
solid %.1ste of a chloralkali plant. Among the data analyzed were the following measures 
of concentration of mercury in the soil (mg/kg- I) and percent of aberrant pollen 
mother cells (PMCs) based on meiotic analysis. 

X 

Hg AbPMC (%) 

.12 .50 
21.87 .84 
34.90 5.14 
64.00 6.74 

103.30 8.48 

SOURCE: Kamal K. Panda, Ph.D. 
Used by permission. 

Perform a complete regression analysis of these data. Let a = .05 for all tests. 

20. The following are the pulmonary blood flow (PBF) and pulmonary blood volume (PBV) 
values recorded for 16 infants and children with congenital heart disease. 
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Y 
PBV (ml / sqM) 

X 
PBF (L / min / sqM) 

168 4.31 
280 3.40 
391 6.20 
420 17.30 
303 12.30 
429 13.99 
605 8.73 
522 8.90 
224 5.87 
291 5.00 
233 3.51 
370 4.24 
531 19.41 
516 16.61 
211 7.21 
439 11.60 

Find the regression equation describing the linear relationship between the two vari-
ables, compute r2, and test Ho: = 0 by both the F test and the t test. Let a = .05. 

21. Fifteen specimens of human sera were tested comparatively for tuberculin antibody by 
two methods. The logarithms of the titers obtained by the two methods were as follows. 

Method 

A (X) B (Y) 

3.31 4.09 
2.41 3.84 
2.72 3.65 
2.41 3.20 
2.11 2.97 
2.11 3.22 
3.01 3.96 
2.13 2.76 
2.41 3.42 
2.10 3.38 
2.41 3.28 
2.09 2.93 
3.00 3.54 
2.08 3.14 
2.11 2.76 

Find the regression equation describing the relationship between the two variables, 
compute r2, and test 1/0: = 0 by both the F test and the t test. 

22. The following table shows the methyl mercury intake and whole blood mercury values in 
12 subjects exposed to methyl mercury through consumption of contaminated fish. 
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X 
Methyl Mercury 

Intake 
(pg Hg / DAY) 

Y 
Mercury in 

Whole Blood 
(ng / g) 

180 90 
200 120 
230 125 
410 290 
600 310 
550 290 
275 170 
580 375 
105 70 
250 105 
460 205 
650 480 

Find the regression equation describing the linear relationship between the two vari-
ables, compute r2, and test Ho: = 0 by both the F and t tests. 

23. The following are the weights (kg) and blood glucose levels (mg/100 ml) of 16 
apparently healthy adult males. 

Weight (X) Glucose (Y) 

64.0 108 
75.3 109 
73.0 104 
82.1 102 
76.2 105 
95.7 121 
59.4 79 
93.4 107 
82.1 101 
78.9 85 
76.7 99 
82.1 100 
83.9 108 
73.0 104 
64.4 102 
77.6 87 

Find the simple linear regression equation and test H0: /3 = 0 using both ANOVA and 
the t test. Test H0: p = 0 and construct a 95 percent confidence interval for p. What is 
the predicted glucose level for a man who weights 95 kg? Construct the 95 percent 
prediction interval for his weight. Let a = .05 for all tests. 

24. The following are the ages (years) and systolic blood pressures of 20 apparently healthy 
adults. 
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Age (X) B.P. (Y) Age (X) B.P. (Y) 

20 120 46 128 
43 128 53 136 
63 141 70 146 
26 126 20 124 
53 134 63 143 
31 128 43 130 
58 136 26 124 
46 132 19 121 
58 140 31 126 
70 144 23 123 

Find the simple linear regression equation and test Ho: = 0 using both ANOVA and 
the t test. Test H0: p = 0, and construct a 95 percent confidence interval for p. Find the 
95 percent prediction interval for the systolic blood pressure of a person who is 25 years 
old. Let a = .05 for all tests. 

25. The following data were collected during an experiment in which laboratory animals 
were innoculated with a pathogen. The variables are time in hours after inoculation and 
temperature in degrees Celsius. 

Time Temperature Time Temperature 

24 38.8 44 41.1 
28 39.5 48 41.4 
32 40.3 52 41.6 
36 40.7 56 41.8 
40 41.0 60 41.9 

Find the simple linear regression equation and test H0: = 0 using both ANOVA and 
the t test. Test Ho: p = 0 and construct a 95 percent confidence interval for p. 
Construct the 95 percent prediction interval for the temperature at 50 hours after 
inoculation. Let a = .05 for all tests. 

For each of the studies described in Exercises 26 through 28, answer as many of the 
following questions as possible. 

(a) Which is more relevant, regression analysis or correlation analysis, or are both 
techniques equally relevant? 

(b) Which is the independent variable? 
(c) Which is the dependent variable? 
(d) What are the appropriate null and alternative hypotheses? 
(e) Do you think the null hypothesis was rejected? Explain why or why not. 
(f) Which is the more relevant objective, prediction or estimation, or are the two 

equally relevant? 
(g) What is the sampled population? 
(h) What is the target population? 
(i) Are the variables directly or inversely related? 

26. Tseng and Tai (A-17) report on a study to elucidate the presence of chronic hyperinsu-
linemia and its relation to clinical and biochemical variables. Subjects were 112 Chinese 
non-insulin-dependent diabetes mellitus patients under chlorpropamide therapy. Among 
other findings, the authors report that uric acid levels were correlated with insulin levels 
(p < .05). 

27. To analyze their relative effects on premenopausal bone mass, Armamento-Villareal 
et al. (A-18) studied the impact of several variables on vertebral bone density (VBD). 
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Subjects were 63 premenopausal women between the ages of 19 and 40 years. Among 
the findings were a correlation between an estrogen score and VBD (r = .44, p < .001) 
and between age at menarche and VBD (r = — .30, p = .03). 

28. Yamori et al. (A-19) investigated the epidemiological relationship of dietary factors to 
blood pressure (BP) and major cardiovascular diseases. Subjects were men and women 
aged 50 to 54 years randomly selected from 20 countries. Among the findings were 
relationships between body mass index and systolic blood pressure (p < .01) and 
between body mass index and diastolic blood pressure (p < .01) in men. 

Exercises for Use With Large Data Sets Available on Computer Disk from the Publisher 

1. Refer to the data for 1050 subjects with cerebral edema (CEREBRAL, Disk 2). Cerebral 
edema with consequent increased intracranial pressure frequently accompanies lesions 
resulting from head injury and other conditions that adversely affect the integrity of the 
brain. Available treatments for cerebral edema vary in effectiveness and undesirable side 
effects. One such treatment is glycerol, administered either orally or intravenously. Of 
interest to clinicians is the relationship between intracranial pressure and glycerol plasma 
concentration. Suppose you are a statistical consultant with a research team investigating 
the relationship between these two variables. Select a simple random sample from the 
population and perform the analysis that you think would be useful to the researchers. 
Present your findings and conclusions in narrative form and illustrate with graphs where 
appropriate. Compare your results with those of your classmates. 

2. Refer to the data for 1050 subjects with essential hypertension (HYPERTEN, Disk 2). 
Suppose you are a statistical consultant to a medical research team interested in essential 
hypertension. Select a simple random sample from the population and perform the 
analyses that you think would be useful to the researchers. Present your findings and 
conclusions in narrative form and illustrate with graphs where appropriate. Compare 
your results with those of your classmates. Consult with your instructor regarding the 
size of sample you should select. 

3. Refer to the data for 1200 patients with rheumatoid arthritis (CALCIUM, Disk 2). One 
hundred patients received the medicine at each dose level. Suppose you are a medical 
researcher wishing to gain insight into the nature of the relationship between dose level 
of prednisolone and total body calcium. Select a simple random sample of three patients 
from each dose level group and do the following. 

a. Use the total number of pairs of observations to obtain the least-squares equation 
describing the relationship between dose level (the independent variable) and total 
body calcium. 

b. Draw a scatter diagram of the data and plot the equation. 
c. Compute r and test for significance at the .05 level. Find the p value. 
d. Compare your results with those of your classmates. 
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10.1 
Introduction 

m..gfie 

In Chapter 9 we explored the concepts and techniques for analyzing and making 

use of the linear relationship between two variables. We saw that this analysis may 

lead to an equation that can be used to predict the value of some dependent 

variable given the value of an associated independent variable. 

Intuition tells us that, in general, we ought to be able to improve our 

predicting ability by including more independent variables in such an equation. For 

example, a researcher may find that intelligence scores of individuals may be 

predicted from physical factors such as birth order, birth weight, and length of 

gestation along with certain hereditary and external environmental factors. Length 

of stay in a chronic disease hospital may be related to the patient's age, marital 

status, sex, and income, not to mention the obvious factor of diagnosis. The 

415 
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response of an experimental animal to some drug may depend on the size of the 

dose and the age and weight of the animal. A nursing supervisor may be interested 

in the strength of the relationship between a nurse's performance on the job, score 

on the state board examination, scholastic record, and score on some achievement 

or aptitude test. Or a hospital administrator studying admissions from various 

communities served by the hospital may be interested in determining what factors 

seem to be responsible for differences in admission rates. 

The concepts and techniques for analyzing the associations among several 

variables are natural extensions of those explored in the previous chapters. The 

computations, as one would expect, are more complex and tedious. However, as is 

pointed out in Chapter 9, this presents no real problem when a computer is 

available. It is not unusual to find researchers investigating the relationships 

among a dozen or more variables. For those who have access to a computer, the 

decision as to how many variables to include in an analysis is based not on the 

complexity and length of the computations but on such considerations as their 

meaningfulness, the cost of their inclusion, and the importance of their contribu-

tion. 

In this chapter we follow closely the sequence of the previous chapter. The 

regression model is considered first, followed by a discussion of the correlation 

model. In considering the regression model, the following points are covered: a 

description of the model, methods for obtaining the regression equation, evaluation 

of the equation, and the uses that may be made of the equation. In both models 

the possible inferential procedures and their underlying assumptions are discussed. 

10.2 
The Multiple Linear Regression Mod& 

In the multiple regression model we assume that a linear relationship exists 
between some variable Y, which we call the dependent variable, and k independent 
variables, X1 , X 2,..., X k. The independent variables are sometimes referred to as 
explanatory variables, because of their use in explaining the variation in Y. They are 
also called predictor variables, because of their use in predicting Y. 

Assumptions The assumptions underlying multiple regression analysis are 
as follows. 

1. The X, are nonrandom (fixed) variables. This assumption distinguishes the 
multiple regression model from the multiple correlation model, which will be 
presented in Section 10.6. This condition indicates that any inferences that are 
drawn from sample data apply only to the set of X values observed and not to 
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some larger collection of X's. Under the regression model, correlation analysis 
is not meaningful. Under the correlation model to be presented later, the 
regression techniques that follow may be applied. 

2. For each set of X, values there is a subpopulation of Y values. To construct 
certain confidence intervals and test hypotheses it must be known, or the 
researcher must be willing to assume, that these subpopulations of Y values 
are normally distributed. Since we will want to demonstrate these inferential 
procedures, the assumption of normality will be made in the examples and 
exercises in this chapter. 

3. The variances of the subpopulations of Y are all equal. 

4. The Y values are independent. That is, the values of Y selected for one set of 
X values do not depend on the values of Y selected at another set of X values. 

The Model Equation The assumptions for multiple regression analysis may 
be stated in more compact fashion as 

Yi = PO + Plxlj 	P2x2j + • • • ±Pkxkj 	ej 
	 (10.2.1) 

where yj  is a typical value from one of the subpopulations of Y values, the 13, are 
called the regression coefficients, x 1j ,x 2j,...,x0  are, respectively, particular values 
of the independent variables X1, X 2, . , X k, and ej  is a random variable with 
mean 0 and variance v2, the common variance of the subpopulations of Y values. 
To construct confidence interavls for and test hypotheses about the regression 
coefficients, we assume that the e are normally and independently distributed. The 
statements regarding e are a consequence of the assumptions regarding the 
distributions of Y values. We will refer to Equation 10.2.1 as the multiple linear 
regression model. 

When Equation 10.2.1 consists of one dependent variable and two independent 
variables, that is, when the model is written 

yi  = 00  + /3,x,;  + /32x 2;  + ej 	 (10.2.2) 

a plane in three-dimensional space may be fitted to the data points as illustrated in 
Figure 10.2.1. When the model contains more than two independent variables, it is 
described geometrically as a hyperplane. 

In Figure 10.2.1 the observer should visualize some of the points as being 
located above the plane and some as being located below the plane. The deviation 
of a point from the plane is represented by 

e - =Y .—  PO — Plxlj — 2x2; 
	 (10.2.3) 

In Equation 10.2.2, 	represents the point where the plane cuts the Y-axis, 
that is, it represents the Y-intercept of the plane. Pi  measures the average change 
in Y for a unit change in X1  when X2  remains unchanged, and P2  measures the 
average change in Y for a unit change in X 2  when X, remains unchanged. For 
this reason p, and P2  are referred to as partial regression coefficients. 
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Figure 10.2.1 Multiple regression plane and scatter of points. 

10.3 
Obtaining the Multiple 
Regression Equation,  

Unbiased estimates of the parameters pi) , p i , .. , Pk  of the model specified in 
Equation 10.2.1 are obtained by the method of least squares. This means that the 
sum of the squared deviations of the observed values of Y from the resulting 
regression surface is minimized. In the three-variable case, as illustrated in Figure 
10.2.1, the sum of the squared deviations of the observations from the plane are a 
minimum when po, pi, and P2  are estimated by the method of least squares. In 
other words, by the method of least squares, sample estimates of po, /3„ 	, /3k  are 
selected in such a way that the quantity 

Eej  = E (Yi  — Poxu  — P1x2;  — • • • — Pxo) 
2 

is minimized. This quantity, referred to as the sum of squares of the residuals, may 
also be written as 

E —3)2 
	

(10.3.1) 

indicating the fact that the sum of squares of deviations of the observed values of 
Y from the values of Y calculated from the estimated equation is minimized. 
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The Normal Equations Estimates, b0„b1,b 2,...,bk, of the regression coef-
ficients are obtained by solving the following set of normal equations: 

nbo  + b, Exti  + b2 EX 2i  + • • • +bk Exki  = Eyj  

bo  xlj  + bi L4 + b2 Ex1; x 21  + • • • +bk Exoki  = E 

bo Ex2j  + b i 	+ b2 E4i  + • • • +bk  Ex 2j xkj  = Ex2jyi  
• • • 	• • • 	• • • 	• • • 	• • • 	• • • 	• • • 	• • • 

bo Exk;  + bi 	+ b2  Exk;x2  • + • • • +bk 	= Exkiyi  

(10.3.2) 

When the model contains only two independent variables, the sample regres-
sion equation is 

.5j = b0  + bi xu  + b 2x2 	 (10.3.3) 

The number of equations required to obtain estimates of the regression 
coefficients is equal to the number of parameters to be estimated. We may solve 
the equations as they stand or we may reduce them to a set of k equations by 
transforming each value into a deviation from its mean. For simplicity consider the 
case in which we have two independent variables. 

To obtain the least-squares equation, the following normal equations must be 
solved for the sample regression coefficients: 

nbo  + b1  Exu  + b2 EX2i  = Eyi  

b0 Ex, + bi  Ex;;  + b2 Exo2j  = Exuyi  

b0 Ex 2i  + bl  Exux, + b2 E4 = Ex2iyi  

 

(10.3.4) 

 

If the calculations must be done with the aid of a desk calculator or a 
hand-held calculator the arithmetic can be formidable, as the discussion that 
follows well demonstrates. Those who have access to a computer, however, may, if 
they wish, skip most of the following explanation of computations. 

If we designate these deviations of the measurements from their mean by /1, 
xi;, and 	respectively, we have 

, =y;  -y 
= x i;  

x2;  = x2  — 2 

(10.3.5) 

If we restate the original sample regression equation (Equation 10.3.3) in 
terms of these transformations, we have 

= bo + 	+ 	 (10.3.6) 
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where b'o, 	and Y2  are appropriate coefficients for the transformed variables. The 
relationship between the two sets of coefficients can be determined by substituting 
the deviations from the means of the original variables into Equation 10.3.6 and 
then simplifying. Thus, 

Si  — y = b'o  + b'l(x — Tx 1 ) + b2(x 2i  — x2) 

si  =5 + b'o  + 	— bVc 1  + b'2x 2i  — b2x 2 	(10.3.7) 

= bo +5 — bixl  — b2)72  + 	+ b 2 x 2;  

When we set the coefficients of like terms in Equations 10.3.3 and 10.3.7 equal to 
each other, we obtain 

b 1  = b't  

b 2  = b'2  

and, therefore, 

b0  = b'0  +5 — bix l  — Y2)7 2  = bo +5 — 1)11  — b2.i2  

A new net of normal equations based on Equation 10.3.6 is 

nbio  + 	xi;  + 62 	= 

1/0Ex' • + E x,2 + b Ex' 	= Ex' v 1 j 	2 	I j 2j 	I j 

	

 +x'2  	'boEx2;  + EV2;   62 `x2; 

(10.3.8) 

Using the transformations from Equation 10.3.5 and the property that ax, — 	= 
0, we obtain 

nb; + b'1(0) + 14(0) = 0 

ba0) + b1 E (xi;  — )
2 
 + b2 (x1 — 	— 	= E (x1;  — i'l)(Y1  -5) 

b'0(0) + b1  E (x i;  — i.1 )(x2;  — 	+ 1/2 E (x, — .7i2)2  = E (x — 	—5) 

Note that Yo  = 0. Thus by Equation 10.3.8 

b0  =5 — b 1.7c.  1  — b x 2 
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and when we substitute b1  and b2  for b', and b 2, respectively, our normal equations 
collapse to the following. 

b Exi2  + b 2 	Ex' Y 1 	lj 	2 	1 j 2j 	lj j 

V■ 12 
b1 	.; x„ + b2 x2; 

= 
	X2j_ Y 

(10.3.9) 

Example 
10.3.1 

Kalow and Tang (A-1) conducted a study to establish the variation of cytochrome 
P-450IA2 activities as determined by means of caffeine in a population of healthy 
volunteers. A second purpose of the study was to see how the variation in smokers 
compared with that of the nonsmoking majority of the population. Subjects 
responded to advertising posters displayed in a university medical sciences building. 
The variables on which the investigators collected data were (1) P-450IA2 index 
(IA2Index), (2) number of cigarettes smoked per day (Cig/Day), and (3) urinary 
cotinine level (Cot). The measurements on these three variables for 19 subjects are 
shown in Table 10.3.1. We wish to obtain the sample multiple regression equation. 

Solution: Table 10.3.2 contains the sums of squares and cross products of the 
original values necessary for computing the sums of squares and cross products of 

x',J , and x2;. 

TABLE 10.3.1 Number of Cigarettes Smoked per Day, Urine Cotinine Level, 
and P-450IA2 Index for 19 Subjects Described in Example 10.3.1 

Cig / Day Cot IA2Index 

1 .0000 4.1648 
1 .0000 3.7314 
1 .0000 5.7481 
1 .0000 4.4370 
1 .0000 6.4687 
3 .0000 3.8923 
8 10.5950 5.2952 
8 4.6154 4.6031 
8 27.1902 5.8112 
8 5.5319 3.6890 
8 2.7778 3.3722 

10 19.7856 8.0213 
10 22.8045 10.8367 
15 .0000 4.1148 
15 14.5193 5.5429 
15 36.7113 11.3531 
20 21.2267 7.5637 
20 21.1273 7.2158 
24 63.2125 13.5000 

SOURCE: Werner Kalow. Used by permission. 
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TABLE 10.3.2 Sums of Squares and Sums of Cross Products for Example 10.3.1 

X2i 	Yj 
Cig/ Day Cot IA2Index x 	x . 

	

2j 	 X ij X 2j 	 X2i yi  

	

1 	.0000 4.1648 1 .00 17.346 .00 4.165 .000 

	

1 	.0000 3.7314 1 .00 13.923 .00 3.731 .000 

	

1 	.0000 5.7484 1 .00 33.044 .00 5.748 .000 

	

1 	.0000 4.4370 1 .00 19.687 .00 4.437 .000 

	

1 	.0000 6.4687 1 .00 41.844 .00 6.469 .000 

	

3 	.0000 3.8923 9 .00 15.150 .00 11.677 .000 

	

8 	10.5950 5.2952 64 112.26 28.039 84.76 42.361 56.103 

	

8 	4.6154 4.6031 64 21.30 21.189 36.92 36.825 21.245 

	

8 	27.1902 	5.8112 	64 739.31 33.770 217.52 46.489 158.007 

	

8 	5.5319 3.6890 64 30.60 13.609 44.26 29.512 20.408 

	

8 	2.7778 3.3722 64 7.72 11.372 22.22 26.978 9.367 

	

10 	19.7856 	8.0213 100 391.47 64.341 197.86 80.213 158.705 

	

10 	22.8045 10.8367 100 520.05 117.435 228.05 108.367 247.126 

	

15 	.0000 4.1148 225 .00 16.931 .00 61.721 .000 

	

15 	14.5193 	5.5429 225 210.81 30.724 217.79 83.144 80.479 

	

15 	36.7113 	11.3531 	225 1347.72 128.892 550.67 170.296 416.785 

	

20 	21.2267 	7.5637 400 450.57 57.210 424.53 151.275 160.554 

	

20 	21.1273 	7.2157 400 446.36 52.067 422.55 144.315 152.449 

	

24 	63.2125 	13.5000 	576 3995.82 182.250 1517.10 324.000 853.369 

Totals 	177 	250.098 	119.362 	2585 8273.98 898.822 3964.22 1341.72 2334.60 
Means 9.3158 	13.1630 6.2822 

Using  the data in Table 10.3.2, we compute 

/2 
 - E (x i„ - 	= E4,/  - (Exii )

2  In 

= 2585 - (177)2/19 = 936.105263 

E  /2 (̀x, -x2)2  = 	- (EX 2i )
2
1n 

= 8273.98 - (250.098)2/19 = 4981.92686 

= E (x,„ - q(x2„ - 	= Ex,,x2„ - 	x2iin 

= 3964.22 - (177.000)(250.098)/19 = 1634.35968 

= E (x,, - (yj  - j5) = Exuyj  - E xi, Eyjin 

= 1341.72 - (177.000)(119.362)/19 = 229.76874 

E 4.1y; = E (x 21  - 2  ) (y j  -3) = 	- E x Eyjin 

= 2334.60 - (250.098)(119.362)/19 = 763.43171 
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When we substitute these values into Equations 10.3.9, we have 

936.105263b1  + 1634.35968b2  = 229.76874 

1634.35968b1  + 4981.92686b2  = 763.43171 

These equations may be solved by any standard method to obtain 

b = — .05171 

b2  = .170204 

We obtain b0  from the relationship 

bc, =5) — b ,x l  — b 2.i2 	 (10.3.11) 

For our example, we have 

b0  = 6.2822 — (—.05171)(9.3158) — (.170204)(13.1630) = 4.5235 

Our sample multiple regression equation, then, is 

= 4.5235 — .05171x1  + .170204x27 	 (10.3.12) 

Extension for Four or More Variables We have used an example contain-
ing only three variables for simplicity. As the number of variables increases, the 
algebraic manipulations and arithmetic calculations become more tedious and 
subject to error, although they are natural extensions of the procedures given in 
the present example. 

Snedecor and Cochran (1) and Steel and Torrie (2) give numerical examples 
for four variables, and Anderson and Bancroft (3) illustrate the calculations 
involved when there are five variables. The techniques used by these authors are 
applicable for any number of variables. 

After the multiple regression equation has been obtained, the next step 
involves its evaluation and interpretation. We cover this facet of the analysis in the 
next section. 

EXERCISES 

Obtain the regression equation for each of the following sets of data. 

10.3.1 The subjects of a study by Malec et al. (A-2) were 16 graduates of a comprehensive, 
postacute brain injury rehabilitation program. The researchers examined the rela-
tionship among a number of variables, including work outcome (scaled from 1 for 
unemployed to 5, which represents competitive nonsheltered employment), score at 
time of initial evaluation on the Portland Adaptability Inventory (PAI), and length of 

(10.3.10) 
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stay (LOS) in days. The following measurements on these three variables were 
collected. 

y 
Work 

Outcome 

x 2 
PAI 
PRE 

x1  
Length 
of Stay 
(days) 

5 19 67 
4 17 157 
2 23 242 
4 14 255 
1 27 227 
4 22 140 
1 23 179 
4 18 258 
4 16 85 
5 22 52 
3 15 296 
1 30 256 
4 21 198 
1 22 224 
4 19 126 
4 8 156 

SOURCE: James Malec, Ph.D. Used by permission. 

10.3.2 David and Riley (A-3) examined the cognitive factors measured by the Allen 
Cognitive Level Test (ACL) as well as the test's relationship to level of psy-
chopathology. Subjects were patients from a general hospital psychiatry unit. 
Among the variables on which the investigators collected data, in addition to ACL, 
were scores on the vocabulary (V) and abstraction (A) components of the Shipley 
Institute of Living Scale, and scores on the Symbol-Digit Modalities Test (SDMT). 
The following measures on 69 patients were recorded. The dependent variable is 
ACL. 

Subject ACL SDMT V A Subject ACL SDMT V A 

1 6.0 70 28 36 17 5.9 42 30 32 
2 5.4 49 34 32 18 4.7 52 17 26 
3 4.7 28 19 8 19 4.7 35 26 26 
4 4.8 47 32 28 20 3.8 41 18 28 
5 4.9 29 22 4 21 6.0 58 32 26 
6 4.5 23 24 24 22 5.6 41 19 16 
7 6.3 40 24 12 23 4.8 13 14 10 
8 5.9 50 18 14 24 5.8 62 27 36 
9 4.1 32 31 20 25 4.5 46 21 20 

10 4.8 27 14 8 26 4.8 52 26 28 
11 4.0 33 24 8 27 4.7 63 22 14 
12 4.5 40 34 36 28 4.5 42 22 26 
13 5.8 66 29 20 29 6.0 66 30 26 
14 6.0 46 27 34 30 5.6 55 26 26 
15 4.5 26 15 10 31 6.3 55 22 28 
16 4.7 42 31 24 32 5.2 43 22 28 



10.3 Obtaining the Multiple Regression Equation 	 425 

Subject ACL SDMT V A Subject ACL SDMT V A 

33 4.8 48 16 10 52 4.5 44 29 24 
34 5.8 47 32 36 53 4.9 51 28 36 
35 4.8 50 26 30 54 4.2 37 20 8 
36 3.7 29 11 16 55 4.5 56 32 36 
37 4.5 17 18 8 56 4.8 37 33 36 
38 4.9 39 14 2 57 6.0 76 26 20 
39 5.0 31 30 32 58 4.0 42 26 8 
40 3.9 61 30 36 59 4.5 20 13 10 
41 3.7 45 31 18 60 4.0 48 27 16 
42 5.6 56 23 18 61 4.7 54 40 40 
43 4.8 53 28 20 62 6.0 53 25 32 
44 5.6 29 17 8 63 4.5 39 20 8 
45 6.6 63 31 30 64 4.8 35 26 10 
46 4.3 19 12 6 65 6.6 63 26 30 
47 4.0 23 18 6 66 4.1 17 16 16 
48 4.2 40 23 8 67 4.5 44 31 24 
49 5.6 20 22 6 68 6.6 47 30 36 
50 3.4 2 13 8 69 4.9 35 10 19 
51 4.0 41 30 22 

SOURCE: Sandra K. David, OTR/L. Used by permission. 

10.3.3 In a study of factors thought to be related to admission patterns to a large general 
hospital, a hospital administrator obtained these data on 10 communities in the 
hospital's catchment area. 

Community 

Persons per 1000 
Population Admitted 
During Study Period 

(Y) 

Index of 
Availability of 
Other Health 

Services 
(X 1 ) 

Index of 
Indigency 

(X2) 

61.6 6.0 6.3 
2 53.2 4.4 5.5 
3 65.5 9.1 3.6 
4 64.9 8.1 5.8 
5 72.7 9.7 6.8 
6 52.2 4.8 7.9 
7 50.2 7.6 4.2 
8 44.0 4.4 6.0 
9 53.8 9.1 2.8 

10 53.5 6.7 6.7 

Total 571.6 69.9 55.6 

	

E = 525.73 
	

= 331.56 	Ey' = 33,349.92 

	

Exkix2i  = 374.31 	x ,iyi  = 4104.32 	E x2iyi  = 3183.57 

10.3.4 The administrator of a general hospital obtained the following data on 20 surgery 
patients during a study to determine what factors appear to be related to length of 
stay. 
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Postoperative 
Length of 

Stay in Days 
(Y) 

Number of Current 
Medical Problems 

(X1 ) 

Preoperative 
Length of 

Stay in Days 
(X2) 

6 1 1 
6 2 1 

11 2 2 
9 1 3 

16 3 3 
16 1 5 
4 1 1 
8 3 1 

11 2 2 
13 3 2 
13 1 4 
9 1 2 

17 3 3 
17 2 4 
12 4 1 
6 1 1 
5 1 1 

12 3 2 
8 1 2 
9 2 2 

Total 208 38 43 

	

= 90 	E4,1  = 119 	Ey,  j2  = 2478 

	

Ex,x2, = 79 	Exuyi  = 430 	Ex2jyj  = 519 

10.3.5 A random sample of 25 nurses selected from a state registry of nurses yielded the 
following information on each nurse's score on the state board examination and his 
or her final score in school. Both scores relate to the nurse's area of affiliation. 
Additional information on the score made by each nurse on an aptitude test, taken 
at the time of entering nursing school, was made available to the researcher. The 
complete data are as follows. 

State Board Score Final Score Aptitude Test Score 
(Y) (X 1 ) (x2) 

440 87 92 
480 87 79 
535 87 99 
460 88 91 
525 88 84 
480 89 71 
510 89 78 
530 89 78 
545 89 71 
600 89 76 
495 90 89 
545 90 90 
575 90 73 
525 91 71 
575 91 81 
600 91 84 
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State Board Score 
(Y) 

Final Score 	Aptitude Test Score 
(X1 ) 	 (X2) 

490 	 92 	 70 
510 	 92 	 85 
575 	 92 	 71 
540 	 93 	 76 
595 	 93 	 90 
525 	 94 	 94 
545 	 94 	 94 
600 	 94 	 93 
625 	 94 	 73 

Total 	13,425 
	

2263 	 2053 

	

= 204,977 	Ex3., = 170,569 	Eyj2  = 7,264,525 

	

Ex11x 2j  = 185,838 	Exuyi  = 1,216,685 	Ex2iyi  = 1,101,220 

10.3.6 The following data were collected on a simple random sample of 20 patients with 
hypertension. The variables are 

Y = mean arterial blood pressure (mm Hg) 

X, = age (years) 

X2  = weight (kg) 

X3  = body surface area (sq m) 

X4  = duration of hypertension (years) 

X5  = basal pulse (beats/min) 

X6  = measure of stress 

PATIENT Y X1  X2  X3  X4  X3  X6  

1 105 47 85.4 1.75 5.1 63 33 
2 115 49 94.2 2.10 3.8 70 14 
3 116 49 95.3 1.98 8.2 72 10 
4 117 50 94.7 2.01 5.8 73 99 
5 112 51 89.4 1.89 7.0 72 95 
6 121 48 99.5 2.25 9.3 71 10 
7 121 49 99.8 2.25 2.5 69 42 
8 110 47 90.9 1.90 6.2 66 8 
9 110 49 89.2 1.83 7.1 69 62 

10 114 48 92.7 2.07 5.6 64 35 
11 114 47 94.4 2.07 5.3 74 90 
12 115 49 94.1 1.98 5.6 71 21 
13 114 50 91.6 2.05 10.2 68 47 
14 106 45 87.1 1.92 5.6 67 80 
15 125 52 101.3 2.19 10.0 76 98 
16 114 46 94.5 1.98 7.4 69 95 
17 106 46 87.0 1.87 3.6 62 18 
18 113 46 94.5 1.90 4.3 70 12 
19 110 48 90.5 1.88 9.0 71 99 
20 122 56 95.7 2.09 7.0 75 99 
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10.4 
Evaluating the Multiple 
Regression Equation 

Before one uses a multiple regression equation to predict and estimate, it is 
desirable to determine first whether it is, in fact, worth using. In our study of 
simple linear regression we have learned that the usefulness of a regression 
equation may be evaluated by a consideration of the sample coefficient of determi-
nation and estimated slope. In evaluating a multiple regression equation we focus 
our attention on the coefficient of multiple determination and the partial regression 
coefficients. 

The Coefficient of Multiple Determination In Chapter 9 the coefficient of 
determination is discussed in considerable detail. The concept extends logically to 
the multiple regression case. The total variation present in the Y values may be 
partitioned into two components—the explained variation, which measures the 
amount of the total variation that is explained by the fitted regression surface, and 
the unexplained variation, which is that part of the total variation not explained by 
fitting the regression surface. The measure of variation in each case is a sum of 
squared deviations. The total variation is the sum of squared deviations of each 
observation of Y from the mean of the observations and is designated by ayj  —5)2  
or SST. The explained variation, designated by a5 —5)2, is the sum of squared 
deviations of the calculated values from the mean of the observed Y values. This 
sum of squared deviations is called the sum of squares due to regression (SSR). The 
unexplained variation, written as E(51  —5)2, is the sum of squared deviations of 
the original observations from the calculated values. This quantity is referred to 
as the sum of squares about regression or the error sum of squares (SSE). We may 
summarize the relationship among the three sums of squares with the following 
equation: 

E(YJ — 5)2  = E(.9 -3)2  + E(YJ -5)2  
SST = SSR + SSE 	 (10.4.1) 

total sum of squares = explained (regression) sum of squares 

+ unexplained (error) sum of squares 

The total, explained, and unexplained sum of squares are computed as follows: 

SST = E (y, —5)2  = EY/2  — EY/ )2/n 
	

(10.4.2) 

SSR = E (5 —5)2  

= b. 	+ b2Ex2,y,' + • • • +bkEx',,,y,' 	(10.4.3) 

SSE = SST — SSR 	 (10.4.4) 
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The coefficient of multiple determination, Ry2 12  k  is obtained by dividing the 
explained sum of squares by the total sum of squares. That is, 

E(s -5)2  
Ry2.12 ...k 	

E(y, -3)2  
(10.4.5) 

The subscript y.12 	k indicates that in the analysis Y is treated as the dependent 
variable and the X variables from X 1  through Xk  are treated as the independent 
variables. The value of Ry2 12...k  indicates what proportion of the total variation in 
the observed Y values is explained by the regression of Y on X1 , X 2, . , Xk. In 
other words, we may say that Ry2.12...k  is a measure of the goodness of fit of the 
regression surface. This quantity is analogous to r 2, which was computed in 
Chapter 9. 

Example 	Refer to Example 10.3.1. Compute Ry2 12. 
10.4.1 

Solution: For our illustrative example we have (using the data from Table 10.3.2 
and some previous calculations) 

SST = 898.822 — (119.362)2 /19 = 148.9648 

SSR = (— .05171)(229.76874) + (.170204)(763.43171) = 118.0578 

SSE = 148.9648 — 118.0578 = 30.907 

118.0578 
R 2 = 	 — .7925 y.I2 148.9648 

We say that 79.25 percent of the total variation in the Y values is explained by the 
fitted regression plane; that is, by the linear relationship with X1  and X2. 

Testing the Regression Hypothesis To determine whether the overall 
regression is significant (that is, to determine whether 	I2 R2y  is significant), we may 
perform a hypothesis test as follows. 

1. Data The research situation and the data generated by the research are 
examined to determine if multiple regression is an appropriate technique for 
analysis. 

2. Assumptions We presume that the multiple regression model and its underly-
ing assumptions as presented in Section 10.2 are applicable. 

3. Hypotheses In general, the null hypothesis is Ho: 01  = f32 = P3 = • • • = Pk  = 
0 and the alternative is HA: not all 13 = 0. In words, the null hypothesis states 
that all the independent variables are of no value in explaining the variation in 
the Y values. 
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TABLE 10.4.1 ANOVA Table for Multiple Regression 

Source 
	

SS 	d.f. 	 MS 	 V.R. 

Due to 	SSR 	k 	MSR = SSR/k 	MSR/MSE 
regression 

About 	 SSE 	n — k — 1 	MSE = SSE/ 
regression 	 (n — k — 1) 

Total 
	

SST 	n — 

4. Test Statistic The appropriate test statistic is V.R., which is computed as part 
of an analysis of variance. The general ANOVA table is shown as Table 10.4.1. 
In Table 10.4.1, MSR stands for mean square due to regression and MSE 
stands for mean square about regression or, as it is sometimes called, the error 
mean square. 

5. Distribution of the Test Statistic When 1/0  is true and the assumptions are met, 
V.R. is distributed as F with k and n — k — 1 degrees of freedom. 

6. Decision Rule Reject 1/0  if the computed value of V.R. is equal to or greater 
than the critical value of F. 

7. Calculation of Test Statistic See Table 10.4.1. 

8. Statistical Decision Reject or fail to reject 1/0  in accordance with the decision 
rule. 

9. Conclusion If we reject 1/0, we conclude that, in the population from which the 
sample was drawn, the dependent variable is linearly related to the indepen-
dent variables as a group. If we fail to reject 1/0, we conclude that, in the 
population from which our sample was drawn, there is no linear relationship 
between the dependent variable and the independent variables as a group. 

We illustrate the hypothesis testing procedure by means of the following 
example. 

Example 
10.4.2 

We wish to test the null hypothesis of no linear relationship among the three 
variables discussed in Example 10.3.1: I-450IA2 index, number of cigarettes smoked 
per day, and urinary cotinine level. 

Solution: 

1. Data See the description of the data given in Example 10.3.1. 

2. Assumptions We presume that the assumptions discussed in Section 10.2 are 
met. 

3. Hypotheses 

Ho: = PI  = 02  = 0 

HA: = not all pi  = 0 
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TABLE 10.4.2 ANOVA Table, Example 10.3.1 

Source SS d.f. MS V.R. 

Due to regression 118.0578 2 59.0289 30.55 
About regression 30.907 16 1.9317 

Total 148.9648 18 

4. Test Statistic The test statistic is V.R. 

5. Distribution of the Test Statistic If 1/0  is true and the assumptions are met, the 
test statistic is distributed as F with 2 numerator and 16 denominator degrees 
of freedom. 

6. Decision Rule Let us use a significance level of a = .01. The decision rule, 
then, is reject Ho  if the computed value of V.R. is equal to or greater than 
6.23. 

7. Calculation of Test Statistic The ANOVA for the example is shown in Table 
10.4.2, where we see that the computed value of V.R. is 30.55. 

8. Statistical Decision Since 30.55 is greater than 6.23, we reject Ho. 

9. Conclusion We conclude that, in the population from which the sample came, 
there is a linear relationship among the three variables. 

Since 30.55 is greater than 7.51, the p value for the test is less than .005. 

Inferences Regarding Individual frs Frequently we wish to evaluate the 
strength of the linear relationship between Y and the independent variables 
individually. That is, we may want to test the null hypothesis that p, = 0 against 
the alternative p, # 0 (i = 1, 2, ..., k). The validity of this procedure rests on the 
assumptions stated earlier: that for each combination of X, values there is a 
normally distributed subpopulation of Y values with variance o-2. When these 
assumptions hold true, it can be shown that each of the sample estimates 6, is 
normally distributed with mean 0, and variance c”o-2. Since o-2  is unknown, it will 
have to be estimated. An estimate is provided by the mean square about regression 
that is shown in the ANOVA table. We may designate this quantity generally as 

y 
,2 
'.12... k• For our particular example we have, from Table 10.4.2, 412  = 1.9317, and 
sy.12  = 1.3898. We must digress briefly at this point, however, to explain the 
computation of c. 

Computation of an  The cti  values are called Gauss multipliers. For those 
familiar with matrix algebra it may be enlightening to point out that they may be 
obtained by inverting the matrix of sums of squares and cross products that can be 
constructed by using the left-hand terms of the normal equations given in Equation 
10.3.5. The c's may be found without the use of matrix algebra by solving the 
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following two sets of equations: 

V ,2 
cll 4.„,,v1; 	C12Exiii x'2;  = 1  

E x'u x 	x.  2;  + C12E'22;  = 0 

a 
C21 LrX1j + C22 Ex'01 

V
2;  = 0 

c21Exli x2;  + C22 EX2j = 1  

(10.4.6) 

(10.4.7) 

In these equations c12  = c21. Note also that the sums of squares and cross 
products are the same as those in the normal equations (Equation 10.3.5). 

When the analysis involves more than two independent variables, the c's are 
obtained by expanding Equations 10.4.6 and 10.4.7 so that there is one set of 
equations for each independent variable. Each set of equations also contains as 
many individual equations as there are independent variables. The 1 is placed to 
the right of the equal sign in all equations containing a term of the form c„Ex',2. 
For example, in Equation 10.4.6, a 1 is to the right of the equal sign in the 
equation containing 	Ezekiel and Fox (4) have written out the equations for 
the case of three independent variables, and they, as well as Snedecor and Cochran 
(1), Steel and Torrie (2), and Anderson and Bancroft (3), demonstrate the use of 
the abbreviated Doolittle method (5) of obtaining the c's as well as the regression 
coefficients. Anderson and Bancroft (3) give a numerical example for four indepen-
dent variables. 

When we substitute data from our illustrative example into Equations 10.4.6 
and 10.4.7, we have 

936.105263c11  

1634.35968c11  

936.105263c21  

1634.35968c21  

+ 1634.35968c12  

+ 4981.92686c12  

+ 1634.35968c22  

+ 4981.92686c22  

= 

= 

= 

= 

1 

0 

} 

0 

1 

} 

The solution of these equations yields 

C11 = .002500367 

Cl2 c21 	— .000820265 

C22 = .00046982 

Hypothesis Tests for the pi  We may now return to the problem of inference 
procedures regarding the individual partial regression coefficients. To test the null 
hypothesis that 0z  is equal to some particular value, say /3,0, the following t 



b, — 0 	— .0517 

1.38981/.002500367 
t = 

sbi 
— .7439 
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statistic may be computed: 

t = 
b — Pio 	

(10.4.8) 

where the degrees of freedom are equal to n — k — 1, and 

Sbi = Sy.12...k VC7i. 
	 (10.4.9) 

The standard error of the difference between two partial regression coefficients 
is given by 

jj S (b -bj) = 	 Cz"z 	c — 2ci1) 

so that we may test 1/0: 13i  = 13i  by computing 

b — 

(10.4.10) 

t= 

5(bi -b1) 
(10.4.11) 

which has n — k — 1 degrees of freedom. 

Example 	Let us refer to Example 10.3.1 and test the null hypothesis that number of 
10.4.3 	cigarettes smoked per day (Cig/Day) is irrelevant in predicting the IA2Index. 

Solution: 

1. Data See Example 10.3.1. 

2. Assumptions See Section 10.2. 

3. Hypotheses 

Ho: = 0 

HA: /31 # 0  

Let a = .05 

4. Test Statistic See Equation 10.4.8. 

5. Distribution of the Test Statistic When 1/0  is true and the assumptions are met, 
the test statistic is distributed as Student's t with 16 degrees of freedom. 

6. Decision Rule Reject Ho  if the computed t is either greater than or equal to 
2.1199 or less than or equal to — 2.1199. 

7. Calculation of the Test Statistic By Equation 10.4.8 we compute 



	

b2  — 0 	.1702 
t = 	 

b2 
= 5.6499 

1.38981/.00046982 
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8. Statistical Decision The null hypothesis is not rejected, since the computed 
value of t, —.7439, is between — 2.1199 and + 2.1199, the critical values of t 
for a two-sided test when a = .05 and the degrees of freedom are 16. 

9. Conclusion We conclude, then, that there may not be a significant linear 
relationship between IA2Index and number of cigarettes smoked per day in the 
presence of urinary cotinine level. At least these data do not provide evidence 
for such a relationship. In other words, the data of the present sample do not 
provide sufficient evidence to indicate that number of cigarettes smoked per 
day, when used in a regression equation along with urinary cotinine, is a useful 
variable in predicting the IA2Index. [For this test, p > 2(.10) = .20.] 

Now, let us perform a similar test for the second partial regression coefficient, N2: 

H0: P 2  = 0 

H A: P 2  0 

a = .05 

In this case the null hypothesis is rejected, since 5.6499 is greater than 2.1199. Vie 
conclude that there is a linear relationship between urinary cotinine level and -iA2 
Index in the presence of number of cigarettes smoked per day, and that uriAary 
cotinine level, used in this manner, is a useful variable for predicting IA2 Index. 
[For this test, p < 2(.005) = .01.] 

Confidence Intervals for the pi  When the researcher has been led to 
conclude that a partial regression coefficient is not 0, he or she may be interested 
in obtaining a confidence interval for this /3 g. Confidence intervals for the pi  may 
be constructed in the usual way by using a value from the t distribution for the 
reliability factor and standard errors given above. 

A 100(1 — a) percent confidence interval for /3, is given by 

bi ± ti-(a/2),n-k-1Sy.12...k 	iii 

For our illustrative example we may compute the following 95 percent confi-
dence interval for /32: 

.1702 + (2.1199)(1.3898)1/.00046982 

.1702 + .063860664 

.1063, .2341 
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We may give this interval the usual probabilistic and practical interpretations. We 
are 95 percent confident that P2  is contained in the interval from .1036 to .2341 
since, in repeated sampling, 95 percent of the intervals that may be constructed in 
this manner will include the true parameter. 

Some Precautions One should be aware of the problems involved in carry-
ing out multiple hypothesis tests and constructing multiple confidence intervals 
from the same sample data. The effect on a of performing multiple hypothesis 
tests from the same data is discussed in Section 8.2. A similar problem arises when 
one wishes to construct confidence intervals for two or more partial regression 
coefficients. The intervals will not be independent, so that the tabulated confidence 
coefficient does not, in general, apply. In other words, all such intervals would not 
be 100(1 — a) percent confidence intervals. Durand (6) gives a procedure that may 
be followed when confidence intervals for more than one partial regression coeffi-
cient are desired. See also the book by Neter et al. (7). 

Another problem sometimes encountered in the application of multiple regres-
sion is an apparent incompatibility in the results of the various tests of significance 
that one may perform. In a given problem for a given level of significance, one or 
the other of the following situations may be observed. 

1. R 2  and all 6, significant. 

2. R 2  and some but not all b, significant. 

3. R 2  significant but none of the b, significant. 

4. All b, significant but not R 2. 

5. Some b, significant, but not all nor R2. 

6. Neither R2  nor any b, significant. 

Geary and Leser (8) identify these six situations and, after pointing out that 
situations 1 and 6 present no problem (since they both imply compatible results), 
discuss each of the other situations in some detail. 

Notice that situation 2 exists in our illustrative example, where we have a 
significant R 2  but only one out of two significant regression coefficients. Geary and 
Leser (8) point out that this situation is very common, especially when a large 
number of independent variables have been included in the regression equation, 
and that the only problem is to decide whether or not to eliminate from the 
analysis one or more of the variables associated with nonsignificant coefficients. 

EXERCISES 

10.4.1 Refer to Exercise 10.3.1. (a) Calculate the coefficient of multiple determination; (b) 
perform an analysis of variance; (c) test the significance of each b, (i > 0). Let 
a = .05 for all tests of significance. Determine the p value for all tests. 

10.4.2 Refer to Exercise 10.3.2. Do the analysis suggested in 10.4.1. 
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10.4.3 Refer to Exercise 10.3.3. Do the analysis suggested in 10.4.1. 

10.4.4 Refer to Exercise 10.3.4. Do the analysis suggested in 10.4.1. 

10.4.5 Refer to Exercise 10.3.5. Do the analysis suggested in 10.4.1. 

10.4.6 Refer to Exercise 10.3.6. Do the analysis suggested in 10.4.1. 

10.5 
Using the Multiple 
Regression Equation 

As we learned in the previous chapter, a regression equation may be used to obtain 
a computed value of Y,5, when a particular value of X is given. Similarly, we may 
use our multiple regression equation to obtain a 5 value when we are given 
particular values of the two or more X variables present in the equation. 

Just as was the case in simple linear regression, we may, in multiple regression, 
interpret a f value in one of two ways. First we may interpret f as an estimate of 
the mean of the subpopulation of Y values assumed to exist for particular 
combinations of X, values. Under this interpretation f is called an estimate, and 
when it is used for this purpose, the equation is thought of as an estimating equation. 
The second interpretation off is that it is the value Y is most likely to assume for 
given values of the X,. In this case f is called the predicted value of Y, and the 
equation is called a prediction equation. In both cases, intervals may be constructed 
about the f value when the normality assumption of Section 10.2 holds true. When 

is interpreted as an estimate of a population mean, the interval is called a 
confidence interval, and when 5, is interpreted as a predicted value of Y, the interval 
is called a prediction interval. Now let us see how each of these intervals is 
constructed. 

The Confidence Interval for the Mean of a Subpopulation of Y Values 
Given Particular Values of the Xi  We have seen that a 100(1 — a) percent 
confidence interval for a parameter may be constructed by the general procedure 
of adding to and subtracting from the estimator a quantity equal to the reliability 
factor corresponding to 1 — a multiplied by the standard error of the estimator. 
We have also seen that in multiple regression the estimator is 

= bo  + b,xu  + b2x2;  + • • • +b,x0 	 (10.5.1) 

The standard error of this estimator for the case of two independent variables is 
given by 

t2 
Sy.I2 	

1 	

CI IXIJ 	C22X2J 	A 
9 

Cl2XljX2/ (10.5.2) 
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where x'ij  values are particular values of the X;  expressed as deviations from their 
mean. Expression 10.5.2 is easily generalized to any number of independent 
variables. See for example, Anderson and Bancroft (3). The 100(1 — a) percent 
confidence interval for the three-variable case, then, is as follows: 

1 

5 ± tl -(a/2), n -k- I S  y .12 + C  11 X  — 	'l j2  V n 	+ C  224i + 2c12x iii  x'   2j (10.5.3) 

Example 
10.5.1 

To illustrate the construction of a confidence interval for a subpopulation of Y 
values for given values of the X, we refer to Example 10.3.1. The regression 
equation is 

= 4.5235 — .05171x1  + .170204x2j  

We wish to construct a 95 percent confidence interval for the mean IA2Index (Y) 
in a population of subjects all of whom smoke 12 cigarettes a day (X1) and whose 
urinary cotinine levels (X2) are all 10. 

Solution: The point estimate of the mean of IA2Index is 

= 4.5235 — .05171(12) + .170204(10) = 5.60502 

To compute the standard error of this estimate, we first obtain xis  = (xi./  — 
(12 — 9.32) = 2.68 and x21  = ( x2.1  — 	= (10 — 13.16) = —3.16. Recall that c11  
.002500367, c22  = .00046982, and c12  = — .000820265. The reliability factor for 95 
percent confidence and 16 degrees of freedom is t = 2.1199. Substituting these 
values into Expression 10.5.3 gives 

5.60502 ± 2.1199(1.3898) 

x V(1/19) + (.002500367)(2.68)2  + (.00046982)(-3.16)2  + 2( — .000820265)(2.68)( —3.16) 

= 5.60502 ± .879810555 

= 4.7252,6.4848. 

We interpret this interval in the usual ways. We are 95 percent confident that the 
interval from 4.7252 to 6.4848 includes the mean of the subpopulation of Y values 
for the specified combination of X, values, since this parameter would be included 
in about 95 percent of the intervals that can be constructed in the manner shown. 

The Prediction Interval for a Particular Value of Y Given Particular 
Values of the X When we interpret 5 as the value Y is most likely to assume 
when particular values of the X, are observed, we may construct a prediction 
interval in the same way in which the confidence interval was constructed. The only 
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difference in the two is the standard error. The standard error of the prediction is 
slightly larger than the standard error of the estimate, which causes the prediction 
interval to be wider than the confidence interval. 

The standard error of the prediction for the three-variable case is given by 

1 
s 	1 + — + c x'2 	+ 2c x'.x' y.12 	 11 lj  + C2242/ 	12 lj  2j 

so that the 100(1 — a) percent prediction interval is 

(10.5.4) 

1 
t 1 --(a /2), n --k 1Sy.12 	1 	

r2 	
C22X2j 	2C124i4i

n 
(10.5.5) 

Example 
10.5.2 

Let us refer again to Example 10.3.1. Suppose we have a subject who smokes 12 
cigarettes per day and has a urinary cotinine level of 10. What do we predict this 
subject's IA2Index to be? 

Solution: The point prediction, which is the same as the point estimate obtained 
previously, is 

= 4.5235 — .05171(12) + .170204(10) = 5.60502 

The values needed for the construction of the prediction interval are the same as 
for the confidence interval. When we substitute these values into Expression 10.5.5 
we have 

5.60502 ± 2.1199(1.3898) 

X VI + (1/19) + (.002500367)(2.68)2  + (.00046982)( - 3.16)2  + 2( - .000820265)(2.68)( - 3.16) 

= 5.60502 ± 3.068168195 

= 2.5368,8.6732. 

We are 95 percent confident that this subject would have an IA2Index somewhere 
between 2.5368 and 8.6732. 

Computer Analysis Figure 10.5.1 shows the results of a computer analysis of 
the data of Example 10.3.1 using the MINITAB multiple regression program. The 
data were entered into columns 1 through 3 and renamed by the following 
command 

NAME C3 'Y', C2 'X2', C3 'X1' 

The following commands were issued to obtain the analysis and accompanying 
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The regression equation is 
Y=4.52-0.0517 X1+0.170 X2 
Predictor 	Coef 	Stdev 	t-ratio 
Constant 
X1 
X2 

	

4.5234 	0.5381 

	

-0.05170 	0.06950 

	

0.17020 	0.03013 

8.41 
-0.74 
5.65 

0.000 
0.468 
0.000 

s =1.390 R- sq = 79.2% R-sq 	(adj)=76.7% 

Analysis 	of Variance 

Source DF 	SS MS F p 
Regression 2 	118.059 59.029 30.55 0.000 
Error 16 	30.912 1.932 
Total 18 	148.970 

Source DF 	SEQ 	SS 
X1 1 	56.401 
X2 1 	61.658 

Obs. 	X1 Y 	Fit Stdev. 	Fit Residual St. 	Resid 
1 	1.0 4.165 	4.472 0.496 -0.307 -0.24 
2 	1.0 3.731 	4.472 0.496 -0.740 -0.57 
3 	1.0 5.748 	4.472 0.496 1.277 0.98 
4 	1.0 4.437 	4.472 0.496 -0.035 -0.03 
5 	1.0 6.469 	4.472 0.496 1.997 1.54 
6 	3.0 3.892 	4.368 0.434 -0.476 -0.36 
7 	8.0 5.295 	5.913 0.325 -0.618 -0.46 
8 	8.0 4.603 	4.895 0.375 -0.292 -0.22 
9 	8.0 5.811 	8.738 0.589 -2.926 -2.32R 

10 	8.0 3.689 	5.051 0.362 -1.362 -1.02 
11 	8.0 3.372 	4.583 0.406 -1.210 -0.91 
12 	10.0 8.021 	7.374 0.360 0.647 0.48 
13 	10.0 10.837 	7.888 0.409 2.949 2.22R 
14 	15.0 4.115 	3.748 0.808 0.367 0.32 
15 	15.0 5.543 	6.219 0.485 -0.676 -0.52 
16 	15.0 11.353 	9.996 0.580 1.357 1.07 
17 	20.0 7.564 	7.102 0.663 0.461 0.38 
18 	20.0 7.216 	7.085 0.664 0.130 0.11 
19 	24.0 13.500 	14.042 1.043 -0.542 -0.59X 
R denotes 	an obs. 	with 	a 	large 	st. 	resid. 
X denotes 	an obs. 	whose 	X 	value 	gives 	it large 	influence. 

Figure 10.5.1 Partial printout of analysis of data of Example 10.3.1, using 
MINITAB regression analysis program. 

printout: 

BRIEF 3 
REGRESS Y IN C3 ON 2 PREDICTORS IN C1 C2 
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SAS 

DEP VARIABLE: 
	

IA2INDEX 

ANALYSIS 

SUM OF 

SOURCE 	DF 	SQUARES 

OF VARIANCE 

MEAN 

SQUARE 	F VALUE 	PROB>F 

MODEL 
	

2 118.06041 59.03020419 
	

30.555 0.0001 

ERROR 
	

16 30.91079933 1.93192496 

C TOTAL 
	

18 148.97121 

	

1.389937 	R- SQUARE 

	

6.282174 	ADJ R- SQ 

22.1251 

PARAMETER ESTIMATES 

ROOT MSE 

DEP MEAN 

C.V. 

VARIABLE DF 

INTERCEP 1 

CIGDAY 	1 

COT 	1 

PARAMETER 

ESTIMATE 

4.52338314 

-0.05169327 

0.17020054 

STANDARD 

ERROR 

0.53806674 

0.06950225 

0.03012742 

0.7925 

0.7666 

T FOR HO: 

PARAMETER = 0 

8.407 

-0.744 

5.649 

PROB>ITI 

0.0001 

0.4678 

0.0001 

Figure 10.5.2 Partial SAS regression printout for the data of Example 10.3.1. 

Note that the column labeled Stdev.Fit contains, for each set of the observed X's, 
numerical values of the standard error obtained by Expression 10.5.2. 

The entries under SEQ SS show how much of the regression sum of squares, 
118.059 is attributable to each of the explanatory variables X, and X2. The 
residuals are the differences between the observed Y values and the fitted or 
predicted Y values. The entries under St.Resid are the standardized residuals. 
Standardized residuals are frequently calculated by dividing the raw residuals by 
the standard deviation, s, that appears on the printout. The standardized residuals 
on the printout are the result of a different procedure that we will not go into. On 
the printout, unusual observations are marked with an X if the predictor is 
unusual, and by an R if the response is unusual. For further details on the 
interpretation of these codes consult your MINITAB manual. 

Figure 10.5.2 shows the partial SAS regression printout for the data in 
Example 10.3.1. 

EXERCISES 

For each of the following exercises compute the 5 value and construct (a) 95 percent 
confidence and (b) 95 percent prediction intervals for the specified values of X,. 

10.5.1 Refer to Exercise 10.3.1 and let x 11  = 200 and x21  = 20. 

10.5.2 Refer to Exercise 10.3.2 and let x is  = 50, x2.1  = 30, and x31 = 25. 

10.5.3 Refer to Exercise 10.3.3 and let x11  = 5 and x21  = 6. 
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10.5.4 Refer to Exercise 10.3.4 and let xi.)  = 1 and x2i  = 2. 

10.5.5 Refer to Exercise 10.3.5 and let xij  = 90 and x23  = 80. 

10.5.6 Refer to Exercise 10.3.6 and let x i  = 50, x2.1  = 95.0, x3  = 2.00, x41  = 6.00, 
x53 

= 75, 
and x61  = 70. 

10.6 
The Multiple Correlation Model 

We pointed out in the preceding chapter that while regression analysis is con-
cerned with the form of the relationship between variables, the objective of 
correlation analysis is to gain insight into the strength of the relationship. This is 
also true in the multivariable case, and in this section we investigate methods for 
measuring the strength of the relationship among several variables. First, however, 
let us define the model and assumptions on which our analysis rests. 

The Model Equation We may write the correlation model as 

yj  = Po  + 131X11 	P2 X2j  + • • • +13k Xki 	e 	 (10 .6 .1) 

where yj  is a typical value from the population of values of the variable Y, the P's 
are the regression coefficients defined in Section 10.2, the x zi  are particular 
(known) values of the random variables X,. This model is similar to the multiple 
regression model, but there is one important distinction. In the multiple regression 
model, given in Equation 10.2.1, the Xi  are nonrandom variables, but in the 
multiple correlation model the X, are random variables. In other words, in the 
correlation model there is a joint distribution of Y and the X that we call a 
multivariate distribution. Under this model, the variables are no longer thought of as 
being dependent or independent, since logically they are interchangeable and 
either of the X, may play the role of Y. 

Typically random samples of units of association are drawn from a population 
of interest, and measurements of Y and the X are made. 

A least-squares plane or hyperplane is fitted to the sample data by methods 
described in Section 10.3, and the same uses may be made of the resulting 
equation. Inferences may be made about the population from which the sample 
was drawn if it can be assumed that the underlying distribution is normal, that is, 
if it can be assumed that the joint distribution of Y and X;  is a multivariate normal 
distribution. In addition, sample measures of the degree of the relationship among 
the variables may be computed and, under the assumption that sampling is from a 
multivariate normal distribution, the corresponding parameters may be estimated 
by means of confidence intervals, and hypothesis tests may be carried out. Specifi-
cally, we may compute an estimate of the multiple correlation coefficient that measures 
the dependence between Y and the X;. This is a straightforward extension of the 
concept of correlation between two variables that we discuss in Chapter 9. We may 
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also compute partial correlation coefficients that measure the intensity of the relation-
ship between any two variables when the influence of all other variables has been 
removed. 

The Multiple Correlation Coefficient As a first step in analyzing the 
relationships among the variables, we look at the multiple correlation coefficient. 

The multiple correlation coefficient is the square root of the coefficient of 
multiple determination and, consequently, the sample value may be computed by 
taking the square root of Equation 10.4.5. That is, 

   

E(5 -3)2  

E(y, —3)2  

 

Ry.12 k = VRy2.12... k = (10.6.2) 

The numerator of the term under the radical in Equation 10.6.2, which is the 
explained sum of squares, is given by Equation 10.4.3, which we recall contains b1  
and b2, the sample partial regression coefficients. We compute these by the 
methods of Section 10.3. 

To illustrate the concepts and techniques of multiple correlation analysis, let 
us consider an example. 

Example 
10.6.1 

Benowitz et al. (A-4) note that an understanding of the disposition kinetics and 
bioavailability from different routes of exposure is central to an understanding of 
nicotine dependence and the rational use of nicotine as a medication. The re-
searchers reported their investigation of these phenomena and reported the results 
in the journal Clinical Pharmacology & Therapeutics. Their subjects were healthy men, 
24 to 48 years of age, who were regular cigarette smokers. Among the data 
collected on each subject were puffs per cigarette, total particulate matter per 
cigarette, and nicotine intake per cigarette. The data on nine subjects are shown in 
Table 10.6.1. We wish to analyze the nature and strength of the relationship 
among these three variables. 

Solution: First, the various sums, sums of squares, and sums of cross products 
must be computed. They are as follows: 

	

Exo  = 95.5000 	Ex, = 360.700 
	

yi  = 22.4500 

	

xTj  = 1061.75 	E x22j  = 15546.3 
	

yi2  = 60.8605 

	

Ex ii x 2j  = 3956.25 	E x 	= 251.660 
	

Ex2iyi  = 954.332 

When we compute the sums of squares and cross products of 

_Y; = (Y, —3) 

= (x1 . — 	and 	x2i = 
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TABLE 10.6.1 Smoking Data for 9 Subjects 

X 1  X 2  

7.5 21.9 1.38 
9.0 46.4 1.78 
8.5 24.0 1.68 

10.0 28.8 2.12 
14.5 43.8 3.26 
11.0 48.1 2.98 
9.0 50.8 2.56 

12.0 47.8 3.47 
14.0 49.1 3.22 

Xi  = puffs/cigarette, X2 = total particulate mat-
ter (mg/cigarette), Y = nicotine intake/cigarette 

(mg) 
SOURCE: Neal L. Benowitz, Peyton Jacob III, Char-
les Denaro, and Roger Jenkins, "Stable Isotope 
Studies of Nicotine Kinetics and Bioavailability," 
Clinical Pharmacology & Therapeutics, 49 (1991), 
270-277. 

we have 

Ex',J2  = 1061.75 - (95.5)2/9 = 48.38889 

Ex'221  = 15546.3 - (360.7)2/9 = 1090.24556 

Ey:12  = 60.8605 - (22.45)2/9 = 4.86022 

Ex'ijx2 = 3956.25 - (95.5)(360.7)/9 = 128.82222 

= 251.66 - (95.5)(22.45)/9 = 13.44056 

Ex'ziy.; = 954.332 - (360.7)(22.45)/9 = 54.58589 

The normal equations, by Equations 10.3.9, are 

} 48.38889b1  + 128.82222b2  = 13.44056 
128.82222b1  + 1090.24556b2  = 54.58589 

The simultaneous solution of these equations gives b, = .21077, b2  = .02516. We 
obtain bo  by substituting appropriate values into Equation 10.3.11: 

bo  = 2.494 - ( .21077)(10.611) - ( .02516)(40.08) = - .75089 
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The least-squares equation, then, is 

St = - .75089 + .21077x1j  + .02516x21  

This equation may be used for estimation and prediction purposes and may be 
evaluated by the methods discussed in Section 10.4. 

Calculation of R 212  We now have the necessary quantities for computing the y 
multiple correlation coefficient. We first compute the explained sum of squares by 
Equation 10.4.3: 

SSR = (.21077)(13.44056) + (.02516)(54.58589) 

= 4.20625 

The total sum of squares by Equation 10.4.2 is 

SST = 60.8605 — (22.45)2/9 = 4.86022 

The coefficient of multiple determination, then, is 

4.20625 
R2  = 	 = . 

Y.12  4.86022 865444  

and the multiple correlation coefficient is 

Ry.12  = V.865444 = .93029 

Interpretation of Ry.12  We interpret Ry.12 as a measure of the correlation among 
the variables nicotine intake per cigarette, number of puffs per cigarette, and total 
particulate matter per cigarette in the sample of nine healthy men between the 
ages of 24 and 48. If our data constitute a random sample from the population of 
such persons we may use Ry12 as an estimate of py.12, the true population multiple 
correlation coefficient. We may also interpret Ry.12  as the simple correlation 
coefficient between yj  and y, the observed and calculated values, respectively, of 
the "dependent" variable. Perfect correspondence between the observed and calcu-
lated values of Y will result in a correlation coefficient of 1, while a complete lack 
of a linear relationship between observed and calculated values yields a correlation 
coefficient of 0. The multiple correlation coefficient is always given a positive sign. 

We may test the null hypothesis that 0 . y.12... k = 0 by computing 

R2  y.12... k 

1 
F = 	  2 _ 

n — k — 1 
(10.6.3) 

k 

The numerical value obtained from Equation 10.6.3 is compared with the tabulated 
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value of F with k and n — k — 1 degrees of freedom. The reader will recall that 
this is identical to the test of H0: 01  = 02  = • • • = Pk  = 0 described in Section 

, y2 

10.4. 
For our present example let us test the null hypothesis that 0 	= 0 against 

the alternative that p),.12 	0. We compute 

.865444 	9 — 2 — 1 
F —     = 19.2955 

(1 — .865444) 	2 

Since 19.2955 is greater than 14.54, p < .005, so that we may reject the null 
hypothesis at the .005 level of significance and conclude that nicotine intake is 
linearly correlated with puffs per cigarette and total particulate matter per 
cigarette in the sampled population. 

Further comments on the significance of observed multiple correlation coefficients 
may be found in Ezekiel and Fox (4), who discuss a paper on the subject by R. A. 
Fisher (9) and present graphs for constructing confidence intervals when the 
number of variables is eight or less. Kramer (10) presents tables for constructing 
confidence limits when the number of variables is greater than eight. 

Partial Correlation The researcher may wish to have a measure of the 
strength of the linear relationship between two variables when the effect of the 
remaining variables has been removed. Such a measure is provided by the partial 
correlation coefficient. For example, the partial sample correlation coefficient 5,1.2  is 
a measure of the correlation between Y and X, when X2  is held constant. 

The partial correlation coefficients may be computed from the simple correlation 
coefficients. The simple correlation coefficients measure the correlation between two 
variables when no effort has been made to control other variables. In other words, 
they are the coefficients for any pair of variables that would be obtained by the 
methods of simple correlation discussed in Chapter 9. 

Suppose we have three variables, Y, X1, and X2. The sample partial correla-
tion coefficient measuring the correlation between Y and X, with X2  held 
constant, for example, is written 5,12. In the subscript, the symbol to the right of 
the decimal point indicates which variable is held constant, while the two symbols 
to the left of the decimal point indicate which variables are being correlated. For 
the three-variable case, there are two other sample partial correlation coefficients 
that we may compute. They are ry21  and r12.),. 

The Coefficient of Partial Determination The square of the partial corre-
lation coefficient is called the coefficient of partial determination. It provides useful 
information about the interrelationships among variables. Consider 5,12, for exam-
ple. Its square, 91,!1.2, tells us what proportion of the remaining variability in Y is 
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explained by X 1  after X2  has explained as much of the total variability in Y as it 
can. 

Calculating the Partial Correlation Coefficients For three variables the 
following simple correlation coefficients are obtained first: 

ryl, the simple correlation between Y and X1  

ry2, the simple correlation between Y and X2  

r12, the simple correlation between X, and X2  

These simple correlation coefficients may be computed as follows: 

 r 	2 E 	Exii  Eyi  Y I =  

t2 	r  r = E x2;y1V La x 2  j  Ldyj  2 
y 2 

r12 =x
E ii2 Ex2j  

(10.6.4) 

(10.6.5) 

(10.6.6) 

The sample partial correlation coefficients that may be computed in the 
three-variable case are 

1. The partial correlation between Y and X1  when X2  is held constant: 

ry1.2 = ry1  — rj2r,2 )/1/(1 — ry22 )(1 — q2) 
	

(10.6.7) 

2. The partial correlation between Y and X2  when X, is held constant: 

ry2.1 = (ry2 	rylr12)/1/(1 	ry2I)( I — 112) 
	

(10.6.8) 

3. The partial correlation between X1  and X2  when Y is held constant: 

r120, = (r12 	rylry2)/V(1 	ry21)(1 	ry22) 
	

(10.6.9) 

Example 
	

To illustrate the calculation of sample partial correlation coefficients, let us refer to 
10.6.2 
	

Example 10.6.1, and calculate the partial correlation coefficients among the vari- 
ables nicotine intake (Y), puffs per cigarette (X 1), and total particulate matter 
(X2). 



k 	1 — 2  ry1.2 
t  = ry1.2

...k 

(10.6.10) 

t= .8322 
— 

V 9 — 2 — 1 

1 	83222 
= 3.6764 
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Solution: First, we calculate the simple correlation coefficients for each pair of 
variables as follows: 

rj, = 13.44056/V(48.38889)(4.86022) = .8764 

5,2 = 54.58589/V(1090.24556)(4.86022) = .7499 

r12  = 128.82222/V(48.38889)(1090.24556) = .5609 

We use the simple correlation coefficients to obtain the following partial 
correlation coefficients: 

51.2  = [.8764 — (.7499)(.5609)]/V(1 — .74992)(1 — .56092) = .8322 

52.1  = [.7499 — (.8764)(.5609)]/V(1 — .87642)(1 — .56092) = .6479 

r120, = [.5609 — (.8764)(.7499)]/V(1 — .87642)(1 — .74992) = — .3023 

Testing Hypotheses About Partial Correlation Coefficients We may test 
the null hypothesis that any one of the population partial correlation coefficients is 
0 by means of the t test. For example, to test Ho: 0y1.2 k = 0, we compute 

which is distributed as Student's t with n — k — 1 degrees of freedom. 
Let us illustrate the procedure for our current example by testing 1/0: py1.2  = 0 

against the alternative, HA: 0y1.2  # 0. The computed t is 

Since the computed t of 3.6764 is larger than the tabulated t of 2.4469 for 6 
degrees of freedom and a= .05, (two-sided test), we may reject Ho  at the .05 level 
of significance and conclude that there is a significant correlation between nicotine 
intake and puff per cigarette when total particulate matter is held constant. 
Significance tests for the other two partial correlation coefficients will be left as an 
exercise for the reader. 

Although our illustration of correlation analysis is limited to the three-variable 
case, the concepts and techniques extend logically to the case of four or more 
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variables. The number and complexity of the calculations increase rapidly as the 
number of variables increases. 

EXERCISES 

10.6.1 The objective of a study by Steinhorn and Green (A-5) was to determine whether the 
metabolic response to illness in children as measured by direct means is correlated 
with the estimated severity of illness. Subjects were 12 patients between the ages of 
two and 120 months with a variety of illnesses including sepsis, bacterial meningitis, 
and respiratory failure. Severity of illness was assessed by means of the Physiologic 
Stability Index (PSI) and the Pediatric Risk of Mortality scoring system (PRISM). 
Scores were also obtained on the Therapeutic Intervention Scoring System (TISS) 
and the Nursing Utilization Management Intervention System (NUMIS) instru-
ments. Measurements were obtained on the following variables commonly used as 
biochemical markers of physiologic stress: total urinary nitrogen (TUN), minute 
oxygen consumption (Vo2), and branch chain to aromatic amino acid ratio (BC : AA). 
The resulting measurements on these variables were as follows: 

PRISM PSI TISS NUMIS Vol  TUN BC : AA 

15.0 14.0 10.0 8.0 146.0 3.1 1.8 
27.0 18.0 52.0 10.0 171.0 4.3 1.4 
5.0 4.0 15.0 8.0 121.0 2.4 2.2 

23.0 18.0 22.0 8.0 185.0 4.1 1.4 
4.0 12.0 27.0 8.0 130.0 2.2 1.7 
6.0 4.0 8.0 8.0 101.0 2.0 2.4 

18.0 17.0 42.0 8.0 127.0 4.6 1.7 
15.0 14.0 47.0 9.0 161.0 3.7 1.6 
12.0 11.0 51.0 9.0 145.0 6.4 1.3 

1.0 4.0 15.0 7.0 116.0 2.5 2.3 
50.0 63.0 64.0 10.0 190.0 7.8 1.6 

9.0 10.0 42.0 8.0 135.0 3.7 1.8 

SOURCE: David M. Steinhorn and Thomas P. Green, "Severity of Illness Correlates With 
Alterations in Energy Metabolism in the Pediatric Intensive Care Unit," Critical Care 

Medicine, 19 (1991), 1503-1509. © by Williams & Wilkins, 1991. 

a. Compute the simple correlation coefficients between all possible pairs of vari-
ables. 

b. Compute the multiple correlation coefficient among the variables NUMIS, TUN, 
Vol, and BC : AA. Test the overall correlation for significance. 

c. Calculate the partial correlations between NUMIS and each one of the other 
variables specified in part b while the other two are held constant. (These are 
called second-order partial correlation coefficients.) You will want to use a 
software package such as SAS°  to perform these calculations. 

d. Repeat c above with the variable PRISM instead of NUMIS. 

e. Repeat c above with the variable PSI instead of NUMIS. 

f. Repeat c above with the variable TISS instead of NUMIS. 

10.6.2 The following data were obtained on 12 males between the ages of 12 and 18 years 
(all measurements are in centimeters). 
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Height 	Radius Length 	Femur Length 
(Y) 	 (X 1 ) 	 (X2) 

	

149.0 
	

21.00 
	

42.50 

	

152.0 
	

21.79 
	

43.70 

	

155.7 
	

22.40 
	

44.75 

	

159.0 
	

23.00 
	

46.00 

	

163.3 
	

23.70 
	

47.00 

	

166.0 
	

24.30 
	

47.90 

	

169.0 
	

24.92 
	

48.95 

	

172.0 
	

25.50 
	

49.90 

	

174.5 
	

25.80 
	

50.30 

	

176.1 
	

26.01 
	

50.90 

	

176.5 
	

26.15 
	

50.85 

	

179.0 
	

26.30 
	

51.10 

Total 	1992.1 	290.87 	 573.85 

= 7087.6731 	E4 = 27541.8575 	Ey1 = 331851.09 

Ex02, = 13970.5835 	Exiiyi  = 48492.886 	Ex21yj  = 95601.09 

a. Find the sample multiple correlation coefficient and test the null hypothesis that 
Py.12 = 0 

b. Find each of the partial correlation coefficients and test each for significance. Let 
a = .05 for all tests. 

c. Determine the p value for each test. 
d. State your conclusions. 

10.6.3 The following data were collected on 15 obese girls. 

Weight in 	Lean Body 	Mean Daily 
Kilograms 	Weight 	Caloric Intake 

(Y) 	 (X 1 ) 	 (X2) 

	

79.2 	 54.3 	 2670 

	

64.0 	 44.3 	 820 

	

67.0 	 47.8 	 1210 

	

78.4 	 53.9 	 2678 

	

66.0 	 47.5 	 1205 

	

63.0 	 43.0 	 815 

	

65.9 	 47.1 	 1200 

	

63.1 	 44.0 	 1180 

	

73.2 	 44.1 	 1850 

	

66.5 	 48.3 	 1260 

	

61.9 	 43.5 	 1170 

	

72.5 	 43.3 	 1852 

	

101.1 	 66.4 	 1790 

	

66.2 	 47.5 	 1250 

	

99.9 	 66.1 	 1789 

Total 
	

1087.9 	741.1 	 22739 

= 37,439.95 	E4 = 39,161,759 	Ey' = 81,105.63 

Ex, 2i  = 1,154,225.2 	Exiiyi  = 55,021.31 	Ex2iyi  = 1,707,725.3 
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a. Find the multiple correlation coefficient and test it for significance. 
b. Find each of the partial correlation coefficients and test each for significance. Let 

a = .05 for all tests. 
c. Determine the p value for each test. 
d. State your conclusions. 

10.6.4 A research project was conducted to study the relationships among intelligence, 
aphasia, and apraxia. The subjects were patients with focal left hemisphere damage. 
Scores on the following variables were obtained through application of standard 
tests. 

Y = intelligence 

X1  = ideomotor apraxia 

X2  = constructive apraxia 

X3  = lesion volume (pixels) 

X 4  = severity of aphasia 

The results are shown in the following table. Find the multiple correlation coeffi-
cient and test for significance. Let a = .05 and find the p value. 

Subject Y X, X2 X3 X4 

1 66 7.6 7.4 2296.87 2 
2 78 13.2 11.9 2975.82 8 
3 79 13.0 12.4 2839.38 11 
4 84 14.2 13.3 3136.58 15 
5 77 11.4 11.2 2470.50 5 
6 82 14.4 13.1 3136.58 9 
7 82 13.3 12.8 2799.55 8 
8 75 12.4 11.9 2565.50 6 
9 81 10.7 11.5 2429.49 11 

10 71 7.6 7.8 2369.37 6 
11 77 11.2 10.8 2644.62 7 
12 74 9.7 9.7 2647.45 9 
13 77 10.2 10.0 2672.92 7 
14 74 10.1 9.7 2640.25 8 
15 68 6.1 7.2 1926.60 5 

10.7 
Summary 

In this chapter we examine how the concepts and techniques of simple linear 
regression and correlation analysis are extended to the multiple-variable case. The 
least-squares method of obtaining the regression equation is presented and illus-
trated. This chapter also is concerned with the calculation of descriptive measures, 
tests of significance, and the uses to be made of the multiple regression equation. 
In addition, the methods and concepts of correlation analysis, including partial 
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correlation, are discussed. For those who wish to extend their knowledge of 
multiple regression and correlation analysis the references at the end of the 
chapter provide a good beginning. 

When the assumptions underlying the methods of regression and correlation 
presented in this and the previous chapter are not met, the researcher must resort 
to alternative techniques. One alternative is to use a nonparametric procedure 
such as the ones discussed by Daniel (11, 12). 

REVIEW QUESTIONS AND EXERCISES 

1. What are the assumptions underlying multiple regression analysis when one wishes to 
infer about the population from which the sample data have been drawn? 

2. What are the assumptions underlying the correlation model when inference is an 
objective? 

3. Explain fully the following terms: 

a. Coefficient of multiple determination 
b. Multiple correlation coefficient 
c. Simple correlation coefficient 
d. Partial correlation coefficient 

4. Describe a situation in your particular area of interest where multiple regression 
analysis would be useful. Use real or realistic data and do a complete regression analysis. 

5. Describe a situation in your particular area of interest where multiple correlation 
analysis would be useful. Use real or realistic data and do a complete correlation 
analysis. 

In the exercises that follow carry out the indicated analysis and test hypotheses at 
the indicated significance levels. Compute the p-value for each test. 

6. The following table shows certain pulmonary function values observed in 10 hospitalized 
patients. 

Xi  
Vital 

Capacity (Liters) 

X2  
Total Lung 

Capacity (Liters) 

Y 
Forced Expiratory 
Volume (Liters) 

per Second 

2.2 2.5 1.6 
1.5 3.2 1.0 
1.6 5.0 1.4 
3.4 4.4 2.6 
2.0 4.4 1.2 
1.9 3.3 1.5 
2.2 3.2 1.6 
3.3 3.3 2.3 
2.4 3.7 2.1 
.9 3.6 .7 

Compute the multiple correlation coefficient and test for significance at the .05 level. 



452 	Chapter 10 • Multiple Regression and Correlation 

7. The following table shows the weight and total cholesterol and triglyceride levels in 15 
patients with primary type II hyperlipoproteinemia just prior to initiation of treatment. 

X, 	 X2  
Total Cholesterol 	Triglyceride 

Weight (kg) 	(mg / 100 ml) 	(mg / 100 ml) 

76 302 139 
97 336 101 
83 220 57 
52 300 56 
70 382 113 
67 379 42 
75 331 84 
78 332 186 
70 426 164 
99 399 205 
75 279 230 
78 332 186 
70 410 160 
77 389 153 
76 302 139 

Compute the multiple correlation coefficient and test for significance at the .05 level. 

8. In a study of the relationship between creatinine excretion, height, and weight the data 
shown in the following table were collected on 20 infant males. 

Infant 

Creatinine 
Excretion 
(mg / day) Weight (kg) 

X1  
Height (cm) 

X2  

1 100 9 72 
2 115 10 76 
3 52 6 59 
4 85 8 68 
5 135 10 60 
6 58 5 58 
7 90 8 70 
8 60 7 65 
9 45 4 54 

10 125 11 83 
11 86 7 64 
12 80 7 66 
13 65 6 61 
14 95 8 66 
15 25 5 57 
16 125 11 81 
17 40 5 59 
18 95 9 71 
19 70 6 62 
20 120 10 75 

a. Find the multiple regression equation describing the relationship among these 
variables. 

b. Compute R 2  and do an analysis of variance. 
c. Let X1  = 10 and X2  = 60 and find the predicted value of Y. 
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9. A study was conducted to examine those variables throught to be related to the job 
satisfaction of nonprofessional hospital employees. A random sample of 15 employees 
gave the following results: 

Score on Job 
Satisfaction 

Test 
(Y) 

Coded 
Intelligence 

Score 
(X1 ) 

Index of 
Personal 

Adjustment 
(X2) 

54 15 8 
37 13 1 
30 15 1 
48 15 7 
37 10 4 
37 14 2 
31 8 3 
49 12 7 
43 1 9 
12 3 1 
30 15 1 
37 14 2 
61 14 10 
31 9 1 
31 4 5 

a. Find the multiple regression equation describing the relationship among these 
variables. 

b. Compute the coefficient of multiple determination and do an analysis of variance. 
c. Let X1  = 10 and X2  = 5 and find the predicted value of Y. 

10. A medical research team obtained the index of adiposity, basal insulin, and basal glucose 
values on 21 normal subjects. The results are shown in the following table. The 
researchers wished to investigate the strength of the association among these variables. 

Index of 
Adiposity 

Y 

Basal Insulin 
(p.0 / ml) 

X1  

Basal Glucose 
(mg / 100 ml) 

x2  

90 12 98 
112 10 103 
127 14 101 
137 11 102 
103 10 90 
140 38 108 
105 9 100 
92 6 101 
92 8 92 
96 6 91 

114 9 95 
108 9 95 
160 41 117 
91 7 101 

115 9 86 
167 40 106 
108 9 84 
156 43 117 
167 17 99 
165 40 104 
168 22 85 

Compute the multiple correlation coefficient and test for significance at the .05 level. 
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11. As part of a study to investigate the relationship between stress and certain other 
variables the following data were collected on a simple random sample of 15 corporate 

executives. 

a. Find the least-squares regression equation for these data. 
b. Construct the analysis of variance table and test the null hypothesis of no relation-

ship among the five variables. 
c. Test the null hypothesis that each slope in the regression model is equal to zero. 
d. Find the multiple coefficient of determination and the multiple correlation coeffi-

cient. Let a = .05 and find the p value for each test. 

Measure of 
Stress ( Y ) 

Measure of 
Firm Size (X ) 1 

Number of Years 
in Present 

Position (X2) 

Annual 
Salary 

( X 1000) 
(X3) Age (X4) 

101 812 15 $30 38 
60 334 8 20 52 
10 377 5 20 27 
27 303 10 54 36 
89 505 13 52 34 
60 401 4 27 45 
16 177 6 26 50 

184 598 9 52 60 
34 412 16 34 44 
17 127 2 28 39 
78 601 8 42 41 

141 297 11 84 58 
11 205 4 31 51 

104 603 5 38 63 
76 484 8 41 30 

For each of the studies described in Exercises 12 through 16, answer as many of the 
following questions as possible: 

(a) Which is more relevant, regression analysis or correlation analysis, or are both 
techniques equally relevant? 

(b) Which is the dependent variable? 
(c) What are the independent variables? 
(d) What are the appropriate null and alternative hypotheses? 
(e) Which null hypotheses do you think were rejected? Why? 
(f) Which is the more relevant objective, prediction or estimation, or are the two 

equally relevant? Explain your answer. 

(g) What is the sampled population? 
(h) What is the target population? 
(i) Which variables are related to which other variables? Are the relationships direct or 

inverse? 
(j) Write out the regression equation using appropriate numbers for parameter esti-

mates. 
(k) What is the numerical value of the coefficient of multiple determination? 
(1) Give numerical values for any correlation coefficients that you can. 

12. Hursting et al. (A-6) evaluated the effects of certain demographic variables on pro-
thrombin fragment 1.2 (F1.2) concentrations in a healthy population. Data were ob- 
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tained from 357 healthy individuals. In a multiple linear regression model, the loga-
rithms of F1.2 concentrations were regressed on age, race, sex, and smoking status. The 
significant explanatory variables were age, sex, and smoking. 

13. The relations between mechanical parameters and myosin heavy chain isoforms were 
studied in ovariectomized rats and estrogen-treated, ovariectomized rats by Hewett 
et al. (A-7). The researchers found that both maximum velocity of shortening (Vmax) and 
maximum isometric force (Pmax ) correlated significantly with myosin heavy chain iso-
form (SM1) as a percentage of the total isoform species. The investigators used a 
multiple regression analysis with a model in which Vmax  is to be predicted from a 
knowledge of percent SM1 and Pmax  in that order. The model intercept is — .246, the 
regression coefficient associated with percent SM1 is .005, and the regression coefficient 
associated with Pmax  is .00005. Student t tests of the significance of the regression 
coefficients yielded p values of p < .0002 for percent SM1 and p < .61 for Pmax. 

14. Maier et al. (A-8) conducted a study to investigate the relationship between erythropoi-
etin concentration in umbilical venous blood and clinical signs of fetal hypoxia. Subjects 
were 200 consecutively born neonates. Using a multiple regression analysis the investiga-
tors found that the erythropoietin concentration correlated significantly (p < .01) with 
fetal growth retardation and umbilical acidosis but not with gestational age, meconium-
stained amniotic fluid, abnormal fetal heart rate pattern, or Apgar score at 5 minutes. 

15. In a study by Sinha et al. (A-9) the correlation between dietary vitamin C and plasma 
ascorbic acid (AA) was examined in 68 nonsmoking male volunteers aged 30-59 years. 
The determinants of plasma AA were examined by a multiple regression model 
containing dietary vitamin C, calories, body weight, and amount of beverages consumed. 
A calculation of the relationship between vitamin C intake and plasma AA yielded 
r = .43 (p < .0003). 

16. Carr et al. (A-10) investigated the relation between serum lipids, membrane fluidity, 
insulin, and the activity of the sodium—hydrogen exchanger in human lymphocytes from 
83 subjects with no current disease. As part of a multiple regression analysis, tests were 
conducted of the strength of the relationship between the maximal proton efflux rate 
and age (p = .005), systolic blood pressure (p = .04), membrane anisotropy (p = .03), 
and serum cholesterol (p = .03). 

Exercises for Use With the Large Data Sets Available on Computer Disk from the Publisher 

1. Refer to the data on 500 patients who have sought treatment for the relief of respiratory 
disease symptoms (RESPDIS, Disk 2). A medical research team is conducting a study to 
determine what factors may be related to respiratory disease. The dependent variable Y 
is a measure of the severity of the disease. A larger value indicates a more serious 
condition. The independent variables are as follows. 

X1  = education (highest grade completed) 

X2  = measure of crowding of living quarters 

X3  = measure of air quality at place of residence 

(a larger number indicates poorer quality) 

X, = nutritional status (a large number indicates a higher level of nutrition) 

X5  = smoking status (0 = smoker, 1 = nonsmoker) 
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Select a simple random sample of subjects from this population and conduct a statistical 

analysis that you think would be of value to the research team. Prepare a narrative report 

of your results and conclusions. Use graphic illustrations where appropriate. Compare 
your results with those of your classmates. Consult your instructor regarding the size of 

sample you should select. 

2. Refer to the data on cardiovascular risk factors (RISKFACT, Disk 3). The subjects are 
1000 males engaged in sedentary occupations. You wish to study the relationships among 

risk factors in this population. The variables are 

Y = oxygen consumption 

X, = systolic blood pressure (mm Hg) 

X2 = total cholesterol (mg/DL) 

X, = HDL cholesterol (mg/DL) 

X4 = triglycerides (mg/DL) 

Select a simple random sample from this population and carry out an appropriate 
statistical analysis. Prepare a narrative report of your findings and compare them with 
those of your classmates. Consult with your instructor regarding the size of the sample. 
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11.1  
Introduction' 

The basic concepts and methodology of regression analysis are covered iri Chapters 

9 and 10. In Chapter 9 we discuss the situation in which the objective is to obtain 

an equation that can be used to make predictions and estimates about some 

dependent variable from a knowledge of some other single variable that we call the 

independent, predictor, or explanatory variable. In Chapter 10 the ideas and 

techniques learned in Chapter 9 are expanded to cover the situation in which it is 

believed that the inclusion of information on two or more independent variables 
will yield a better equation for use in making predictions and estimations. Regres-

sion analysis is a complex and powerful statistical tool that is widely employed in 

health sciences research. To do the subject justice requires more space than is 

available in an introductory statistics textbook. However, for the benefit of those 
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who wish additional coverage of regression analysis we present in this chapter some 

additional topics that should prove helpful to the student and practitioner of 

statistics. 

11.2 
Qualitative Independent Variables Nm.m 

The independent variables considered in the discussion in Chapter 10 were all 
quantitative; that is, they yielded numerical values that either were counts or were 
measurements in the usual sense of the word. For example, some of the indepen-
dent variables used in our examples and exercises were age, urinary cotinine level, 
number of cigarettes smoked per day, and minute oxygen consumption, aptitude 
test scores, and number of current medical problems. Frequently, however, it is 
desirable to use one or more qualitative variables as independent variables in the 
regression model. Qualitative variables, it will be recalled, are those variables 
whose "values" are categories and convey the concept of attribute rather than 
amount or quantity. The variable marital status, for example, is a qualitative 
variable whose categories are "single," "married," "widowed," and "divorced." 
Other examples of qualitative variables include sex (male or female), diagnosis, 
race, occupation, and immunity status to some disease. In certain situations an 
investigator may suspect that including one or more variables such as these in the 
regression equation would contribute significantly to the reduction of the error 
sum of squares and thereby provide more precise estimates of the parameters of 
interest. 

Suppose, for example, that we are studying the relationship between the 
dependent variable systolic blood pressure and the independent variables weight 
and age. We might also want to include the qualitative variable sex as one of the 
independent variables. Or suppose we wish to gain insight into the nature of the 
relationship between lung capacity and other relevant variables. Candidates for 
inclusion in the model might consist of such quantitative variables as height, 
weight, and age, as well as qualitative variables like sex, area of residence (urban, 
suburban, rural), and smoking status (current smoker, ex-smoker, never smoked). 

Dummy Variables In order to incorporate a qualitative independent vari-
able in the multiple regression model it must be quantified in some manner. This 
may be accomplished through the use of what are known as dummy variables. 

A dummy variable is a variable that assumes only a finite number of values (such as 0 
or 1) for the purpose of identing the different categories of a qualitative variable. 

The term "dummy" is used to indicate the fact that the numerical values (such 
as 0 and 1) assumed by the variable have no quantitative meaning but are used 
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merely to identify different categories of the qualitative variable under considera-
tion. 

The following are some examples of qualitative variables and the dummy 
variables used to quantify them. 

Qualitative Variable 	 Dummy Variable 

Sex (male, female): 
X1  = 

{

1 for male 
0 for female 

Place of residence (urban, rural, suburban): 
x l  = 

X2 = 

I 1 for urban 
k 0 for rural and suburban 

f 1 for rural 
k 0 for urban and suburban 

Smoking status [current smoker, ex-smoker 
(has not smoked for 5 years or less), ex-smoker 
(has not smoked for more than 5 years), never 
smoked]: 

= 

X2 = 

X3 = 

{

{

1 for current smoker 
0 otherwise 

I for ex-smoker ( 5 years) 
0 otherwise 

{ 1 for ex-smoker ( > 5 years) 
0 otherwise 

Note in these examples that when the qualitative variable has k categories, 
k — 1 dummy variables must be defined for all the categories to be properly coded. 
This rule is applicable for any multiple regression containing an intercept constant. 
The variable sex, with two categories, can be quantified by the use of only one 
dummy variable, while three dummy variables are required to quantify the variable 
smoking status, which has four categories. 

The following examples illustrate some of the uses of qualitative variable in 
multiple regression. In the first example we assume that there is no interaction 
between the independent variables. Since the assumption of no interaction is not 
realistic in many instances, we illustrate, in the second example, the analysis that is 
appropriate when interaction between variables is accounted for. 

Example 
11.2.1 

In a study of factors thought to be associated with birth weight, data from a simple 
random sample of 32 birth records were examined. Table 11.2.1 shows part of the 
data that were extracted from each record. There we see that we have two 
independent variables: length of gestation in weeks, which is quantitative; and 
smoking status of mother, a qualitative variable. 

Solution: For the analysis of the data we will quantify smoking status by means of 
a dummy variable that is coded 1 if the mother is a smoker and 0 if she is a 
nonsmoker. The data in Table 11.2.1 are plotted as a scatter diagram in Figure 
11.2.1. The scatter diagram suggests that, in general, longer periods of gestation 
are associated with larger birth weights. 
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TABLE 11.2.1 Data Collected on a Simple Random Sample of 32 Births, Example 11.2.1 

Case 

Y 
Birth Weight 

(Grams) 

X1  
Gestation 
(Weeks) 

x2  

Smoking Status 
of Mother 

1 2940 38 Smoker (S) 
2 3130 38 Nonsmoker (N) 
3 2420 36 S 
4 2450 34 N 
5 2760 39 S 
6 2440 35 S 
7 3226 40 N 
8 3301 42 S 
9 2729 37 N 

10 3410 40 N 
11 2715 36 S 
12 3095 39 N 
13 3130 39 S 
14 3244 39 N 
15 2520 35 N 
16 2928 39 S 
17 3523 41 N 
18 3446 42 S 
19 2920 38 N 
20 2957 39 S 
21 3530 42 N 
22 2580 38 S 
23 3040 37 N 
24 3500 42 S 
25 3200 41 S 
26 3322 39 N 
27 3459 40 N 
28 3346 42 S 
29 2619 35 N 
30 3175 41 S 
31 2740 38 S 
32 2841 36 N 

To obtain additional insight into the nature of these data we may enter them 
into a computer and employ an appropriate program to perform further analyses. 
For example, we enter the observations y1  = 2940, x11  = 38, x21  = 1, for the first 
case, y2  = 3130, x12  = 38, x22 = 0 for the second case, and so on. Figure 11.2.2 
shows the computer output obtained with the use of the MINITAB multiple 
regression program. 

We see in the printout that the multiple regression equation is 

y;  = b0  + 	+ b2x21 

—2390 + 143x1j  — 245x23 	 (11.2.1) 
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Figure 11.2.1 Birth weights and lengths of gestation for 32 births: 
(•) smoking and (0) nonsmoking mothers. 

To observe the effect on this equation when we wish to consider only the births 
to smoking mothers, we let x2., = 1. The equation then becomes 

fij  = —2390 + 143x11  — 245(1) 

	

—2635 + 143xij 	 (11 .2 .2) 

which has a y-intercept of —2635 and a slope of 143. Note that the y-intercept for 
the new equation is equal to (b0  + 61 ) = [— 2390 + (-245)] = —2635. 

Now let us consider only births to nonsmoking mothers. When we let x2  = 0, 
our regression equation reduces to 

= —2390 + 143x — 245(0) 

	

= —2390 + 143xij 	 (11.2.3) 

The slope of this equation is the same as the slope of the equation for smoking 
mothers, but the y-intercepts are different. The y-intercept for the equation 
associated with nonsmoking mothers is larger than the one for the smoking 
mothers. These results show that for this sample babies born to mothers who do 
not smoke weighed, on the average, more than babies born to mothers who do 
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The regression equation is 

y = 	- 2390 + 143 x1 + -245 x2 

Predictor Coef Stdev t-ratio p 
Constant -2389.6 349.2 -6.84 0.000 
x1 143.100 9.128 15.68 0.000 
x2 -244.54 41.98 -5.83 0.000 

s = 115.5 	R-sq = 89.6% 

Analysis of Variance 

SOURCE 	DP 	SS 

R-sq(adj) 	= 	88.9% 

NS 
Regression 2 3348720 1674360 125.45 	0.000 
Error 29 387070 13347 
Total 31 3735789 

SOURCE DP SEQ SS 
x1 1 2895839 
x2 1 452881 

Figure 11.2.2 Partial computer printout, MINITAB multiple regression analysis, 
Example 11.2.1. 
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Figure 11.2.3 Birth weights and length of gestation for 32 births and 
the fitted regression lines: (•) smoking and (.) nonsmoking mothers. 
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smoke, when length of gestation is taken into account. The amount of the 
difference, on the average, is 245 grams. Stated another way, we can say that 
for this sample babies born to mothers who smoke weighed, on the average, 
245 grams less than the babies born to mothers who do not smoke, when length of 
gestation is taken into account. Figure 11.2.3 shows the scatter diagram of the 
original data along with a plot of the two regression lines (Equations 11.2.2 and 
11.2.3). 

Example 
11.2.2 

At this point a question arises regarding what inferences we can make about the 
sampled population on the basis of the sample results obtained in Example 11.2.1. 
First of all, we wish to know if the sample difference of 245 grams is significant. In 
other words, does smoking have an effect on birth weight? We may answer this 
question through the following hypothesis testing procedure. 

Solution: 

1. Data The data are as given in Example 11.2.1. 

2. Assumptions We presume that the assumptions underlying multiple regression 
analysis are met. 

3. Hypotheses Ho: P2  = 0; HA: 02  0 0. Suppose we let a = .05. 

4. Test Statistic The test statistic is t = (b2  — 0)/s b2. 

5. Distribution of Test Statistic When the assumptions are met and 1/0  is true the 
test statistic is distributed as Student's t with 29 degrees of freedom. 

6. Decision Rule We reject 1/0  if the computed t is either greater than or equal 
to 2.0452 or less than or equal to —2.0452. 

7. Calculation of Test Statistic The calculated value of the test statistic appears in 
Figure 11.2.2 as the t ratio for the coefficient associated with the variable 
appearing in column 3 of Table 11.2.1. This coefficient, of course, is b2. We see 
that the computed t is —5.83. 

8. Statistical Decision Since —5.83 < —2.0452, we reject 1/0. 

9. Conclusion We conclude that, in the sampled population, whether or not the 
mothers smoke does have an effect on the birth weights of their babies. 

For this test we have p < 2(.005) since —5.83 is less than —2.7564. 

A Confidence Interval for 132  Given that we are able to conclude that in the 
sampled population the smoking status of the mothers does have an effect on the 
birth weights of their babies, we may now inquire as to the magnitude of the effect. 
Our best point estimate of the average difference in birth weights, when length of 
gestation is taken into account, is 245 grams in favor of babies born to mothers 
who do not smoke. We may obtain an interval estimate of the mean amount of the 
difference by using information from the computer printout by means of the 
following expression: 

b2 	tSb2 
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For a 95 percent confidence interval we have 

— 244.54 ± 2.0452(41.98) 

—330.3975, — 158.6825 

Thus we are 95 percent confident that the difference is somewhere between about 
159 grams and 331 grams. 

Advantages of Dummy Variables The reader may have correctly surmised 
that an alternative analysis of the data of Example 11.2.1 would consist of fitting 
two separate regression equations: one to the subsample of mothers who smoke 
and another to the subsample of those who do not. Such an approach, however, 
lacks some of the advantages of the dummy variable technique and is a less 
desirable procedure when the latter procedure is valid. If we can justify the 
assumption that the two separate regression lines have the same slope, we can get 
a better estimate of this common slope through the use of dummy variables, which 
entails pooling of the data from the two subsamples. In Example 11.2.1 the 
estimate using a dummy variable is based on a total sample size of 32 observations, 
whereas separate estimates would each be based on a sample of only 16 observa-
tions. The dummy variable approach also yields more precise inferences regarding 
other parameters since more degrees of freedom are available for the calculation of 
the error mean square. 

Use of Dummy Variables — Interaction Present Now let us consider the 
situation in which interaction between the variables is assumed to be present. 
Suppose, for example, that we have two independent variables: one quantitative 
variable x 1  and one qualitative variable with three response levels yielding the two 
dummy variables X2  and X3. The model, then, would be 

yi  = /30 +R1 X1J +  132X2j  + P3X33  04X 1j X2)  135X1 j X3j 	(11.2.4) 

in which P4X1J X2i  and p5x1,x3, are called interaction terms and represent the 
interaction between the quantitative and the qualitative independent variables. 
Note that there is no need to include in the model the term containing X2JX3j; it 
will always be zero because when X2  = 1, X3  = 0 and when X3  = 1, X2  = 0. The 
model of Equation 11.2.4 allows for a different slope and 17-intercept for each level 
of the qualitative variable. 

Suppose we use dummy variable coding to quantify the qualitative variable as 
follows: 

1 for level 1 
k 0 otherwise 

I 1 for level 2 

l0 otherwise 

X3  = 

X2  = 
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The three sample regression equations for the three levels of the qualitative 
variable, then, are as follows: 

Level 1 (X2  = 1, X3  = 0): 

= bo  + b 	+ b2(1) + b3(0) + b4x,3(1) + b5x,i(0) 

= b0  + bi x + b2  + b4x 1i  

= (b0  + b2) + (b 1  + b4)xl1 

Level 2 (X2  = 0, X3  = 1): 

= bo 	b i Xij 	b2(0) 	b3(1) 	64 X1 (0) 	65X1i(1) 

= bo 	b3 	b5X1j  

=(b0 b3) (b1  b5)Xij  

Level 3 (X2  = 0, X3  = 0): 

= bo 	b i X 	b2(0) 	b3(0) 	b4X1i(0) 	b5X1i(0) 

= b0  + 

Let us illustrate these results by means of an example. 

(11.2.5) 

(11.2.6) 

(11.2 .7) 

Example 
11.2.3 

A team of mental health researchers wishes to compare three methods (A, B, and 
C) of treating severe depression. They would also like to study the relationship 
between age and treatment effectiveness as well as the interaction (if any) between 
age and treatment. Each member of a simple random sample of 36 patients, 
comparable with respect to diagnosis and severity of depression, was randomly 
assigned to receive treatment A, B, or C. The results are shown in Table 11.2.2. 
The dependent variable Y is treatment effectiveness, the quantitative independent 
variable X, is patient's age at nearest birthday, and the independent variable type 
of treatment is a qualitative variable that occurs at three levels. The following 
dummy variable coding is used to quantify the qualitative variable: 

X 2 = 
{ 0 otherwise 

X = { 1 if treatment B 
3 	0 otherwise 

1 if treatment A 

The scatter diagram for these data is shown in Figure 11.2.4. Table 11.2.3 
shows the data as they were entered into a computer for analysis, and Figure 11.2.5 
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TABLE 11.2.2 Data for Example 11.2.3 

Measure of 
Effectiveness Age 

Method of 
Treatment 

56 21 A 
41 23 B 
40 30 B 
28 19 C 
55 28 A 
25 23 C 
46 33 B 
71 67 C 
48 42 B 
63 33 A 
52 33 A 
62 56 C 
50 45 C 
45 43 B 
58 38 A 
46 37 C 
58 43 B 
34 27 C 
65 43 A 
55 45 B 
57 48 B 
59 47 C 
64 48 A 
61 53 A 
62 58 B 
36 29 C 
69 53 A 
47 29 B 
73 58 A 
64 66 B 
60 67 B 
62 63 A 
71 59 C 
62 51 C 
70 67 A 
71 63 C 

contains the printout of the analysis using the MINITAB multiple regression 
program. 

Solution: Now let us examine the printout to see what it provides in the way of 
insight into the nature of the relationships among the variables. The least-squares 
equation is 

= 6.21 + 	+ 41.3x2i  + 22.7x3j  — .703xux2i  — .510xux3i 
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Figure 11.2.4 Scatter diagram of data for Example 11.2.3 

(•) treatment A, ( • ) treatment B, (•) treatment C. 

The three regression equations for the three treatments are as follows: 

Treatment A (Equation 11.2.5): 

• = (6.21 + 41.3) + (1.03 — .703)xij  

= 47.51 + .327x1j  

Treatment B (Equation 11.2.6): 

• = (6.21 + 22.7) + (1.03 — .510)x1  

= 28.91 + .520x13  

Treatment C (Equation 11.2.7): 

Yi  = 6.21 + 1.03x13  

Figure 11.2.6 contains the scatter diagram of the original data along with the 
regression equations for the three treatments. Visual inspection of Figure 11.2.6 
suggests that treatments A and B do not differ greatly with respect to their slopes, 
but their y-intercepts are considerably different. The graph suggests that treat-
ment A is better than treatment B for younger patients, but the difference is less 
dramatic with older patients. Treatment C appears to be decidedly less desirable 
than both treatments A and B for younger patients, but is about as effective as 
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TABLE 11.2.3 Data for Example 11.2.3 Coded for Computer Analysis 

X1  ,X3  XiX2  X,X3  

56 21 1 0 21 0 
55 28 1 0 28 0 
63 33 1 0 33 0 
52 33 1 0 33 0 
58 38 1 0 38 0 
65 43 1 0 43 0 
64 48 1 0 48 0 
61 53 1 0 53 0 
69 53 1 0 53 0 
73 58 1 0 58 0 
62 63 1 0 63 0 
70 67 1 0 67 0 
41 23 0 1 0 23 
40 30 0 1 0 30 
46 33 0 1 0 33 
48 42 0 1 0 42 
45 43 0 1 0 43 
58 43 0 1 0 43 
55 45 0 1 0 45 
57 48 0 1 0 48 
62 58 0 1 0 58 
47 29 0 1 0 29 
64 66 0 1 0 66 
60 67 0 1 0 67 
28 19 0 0 0 0 
25 23 0 0 0 0 
71 67 0 0 0 0 
62 56 0 0 0 0 
50 45 0 0 0 0 
46 37 0 0 0 0 
34 27 0 0 0 0 
59 47 0 0 0 0 
36 29 0 0 0 0 
71 59 0 0 0 0 
62 51 0 0 0 0 
71 63 0 0 0 0 

treatment B for older patients. These subjective impressions are compatible with 
the contention that there is interaction between treatments and age. 

Inference Procedures The relationships we see in Figure 11.2.6, however, 
are sample results. What can we conclude about the population from which the 
sample was drawn? 

For an answer let us look at the t ratios on the computer printout in Figure 
11.2.5. Each of these is the test statistic 

bi  — 0 
t = 	 

Sbi 



The regression equation is 
y = 6.21 + 1.03 x1 
- 0.510 x5 

Predictor 	Coef 

+ 41.3 x2 + 22.7 x3 - 0.703 x4 

Stdev 	t-ratio 
Constant 6.211 3.350 	1.85 0.074 
x1 1.03339 0.07233 	14.29 0.000 
x2 41.304 5.085 	8.12 0.000 
x3 22.707 5.091 	4.46 0.000 
x4 -0.7029 0.1090 	-6.45 0.000 
x5 -0.5097 0.1104 	-4.62 0.000 

s = 3.925 R-sq = 91.4% 	R-sq(adj) = 90.0% 

Analysis of Variance 

SOURCE 	Dr SS 	AS 	F 
Regression 5 4932.85 986.57 64.04 0.000 
Error 	30 462.15 15.40 
Total 	35 5395.00 

SOURCE 	Dr SEQ SS 
xl 	 1 3424.43 
x2 	 1 803.80 
x3 	 1 	1.19 
x4 	 1 375.00 
x5 	 1 328.42 
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Figure 11.2.5 Computer printout, MINITAB multiple regression analysis, 
Example 11.2.3. 

for testing Ho: p= 0. We see by Equation 11.2.5 that the y-intercept of the 
regression line for treatment A is equal to bo  + b2. Since the t ratio of 8.12 for 
testing Ho: P2  = 0 is greater than the critical t of 2.0423 (for a = .05), we can 
reject H0  that 02  = 0 and conclude that the y-intercept of the population regres-
sion line for treatment A is different from the y-intercept of the population 
regression line for treatment C, which has a y-intercept of Po. Similarly, since the t 
ratio of 4.46 for testing Ho: P3  = 0 is also greater than the critical t of 2.0423, we 
can conclude (at the .05 level of significance) that the y-intercept of the population 
regression line for treatment B is also different from the y-intercept of the 
population regression line for treatment C. (See the y-intercept of Equation 
11.2.6.) 

Now let us consider the slopes. We see by Equation 11.2.5 that the slope of the 
regression line for treatment A is equal to b1  (the slope of the line for treatment 
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Figure 11.2.6 Scatter diagram of data for Example 11.2.3 with 
the fitted regression lines: (.) treatment A, ( •) treatment B, (•) 
treatment C. 

C) + b4. Since the t ratio of — 6.45 for testing Ho: /34  = 0 is less than the critical t 
of —2.0423, we can conclude (for a = .05) that the slopes of the population 
regression lines for treatments A and C are different. Similarly, since the computed 
t ratio for testing H0: /35  = 0 is also less than — 2.0423, we conclude (for a = .05) 
that the population regression lines for treatments B and C have different slopes 
(see the slope of Equation 11.2.6). Thus we conclude that there is interaction 
between age and type of treatment. This is reflected by a lack of parallelism among 
the regression lines in Figure 11.2.6. 

Another question of interest is this: Is the slope of the population regression 
line for treatment A different from the slope of the population regression line for 
treatment B? To answer this question requires computational techniques beyond 
the scope of this text. The interested reader is referred to the books by Neter et al. 
(1) and Kleinbaum et al. (2) for help with this problem. 

In Section 10.4 the reader was warned that there are problems involved in 
making multiple inferences from the same sample data. The references cited in 
that section may be consulted for procedures to be followed when multiple 
inferences, such as those discussed in this section, are desired. 

We have discussed only two situations in which the use of dummy variables is 
appropriate. More complex models involving the use of one or more qualitative 
independent variables in the presence of two or more quantitative variables may be 
appropriate in certain circumstances. More complex models are discussed by 
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Mendenhall and McClave (3), Kleinbaum et al. (2), Draper and Smith (4), and 
Neter et al. (1). 

EXERCISES 

For each exercise do the following: 

(a) Draw a scatter diagram of the data using different symbols for the different categorical 
variables. 

(b) Use dummy variable coding and regression to analyze the data. 

(c) Perform appropriate hypothesis tests and construct appropriate confidence intervals 
using your choice of significance and confidence levels 

(d) Find the p value for each test that you perform. 

11.2.1 Woo et al. (A-1) point out that current methods of measuring cardiac output require 
the invasive insertion of a thermodilution catheter, a procedure accompanied by 
risks and complications. These researchers examined the noninvasive method of 
transthoracic electrical bioimpedance (TEB) in comparison with the invasive proce-
dure (Td). Their subjects were critically ill patients with poor left ventricular 
function and with either ischemic or idiopathic dilated cardiomyopathy. Resulting 
pairs of cardiac outputs measured by the two methods were divided into two 
categories, those in which the difference between outputs for the two methods was 
less than .5 1/min and those in which the difference was greater than .5 1/min. The 
results were as follows: 

Less than .51 / min. 
Difference 

More than .51 / min. 
Difference 

Td TEB Td TEB Td TEB 

4.88 5.03 3.64 2.8 3.97 2.9 
2.8 3.23 7.41 8.1 3.64 4.18 
4.82 4.37 3.98 2.57 5.48 4.08 
5.7 5.6 8.57 5.5 7.73 3.57 
3.7 3.4 2.18 3.3 4.74 5.3 
2.86 3.13 3.38 2.73 4.64 2.9 
2.36 2.83 2.49 5.8 3.49 4.23 
4.04 4.03 3.1 7 2.57 3.47 
4.33 4.4 2.69 5.9 4.3 6.33 
4.51 4.8 2.64 3.4 3.1 4.1 
7.36 7.2 4.16 5.6 5.82 6.9 
2.38 2.37 1.9 3.73 3.28 5.33 
3.29 3.13 3.4 4.3 6.58 7.93 
5.2 5.35 7.5 6.6 4.79 3.4 
3.49 3.13 4.41 3.25 8.05 5.7 
4.08 4.5 5.06 3.13 2.92 5.13 
3.89 3.4 6.5 10.03 
3.41 3.9 5.59 3.03 
4.38 4 4.48 2.17 
2.8 2.73 2.63 5.7 
3.5 3.15 6.03 7 
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Table (continued) 

Less than .51 / min. 
Difference 

More than .51 / min. 
Difference 

Td TEB Td TEB 	Td 	TEB 

3.45 3.47 2.92 4.2 
4.17 4.1 5.75 4.53 
2.49 2.77 3.43 6.17 
4.89 4.63 4.36 6.17 

2.18 3.03 
4.95 2.9 
3.91 4.58 
6.23 3.63 
4.76 3.77 
3.66 2.85 
4.95 6.17 
2.7 3.53 
3.58 2.23 
3.13 2.05 
2.9 4.9 
6.19 5.63 
6.1 7.4 
7.15 5.1 

SOURCE: Mary A. Woo, DNSc., R.N. Used by permission. 

11.2.2 According to Schwartz et al. (A-2) investigators have demonstrated that in patients 
with obstructive sleep apnea weight reduction results in a decrease in apnea 
severity. The mechanism involved is unclear, but Schwartz and his colleagues 
hypothesize that decreases in upper airway collapsibility account for decreases in 
apnea severity with weight loss. To determine whether weight loss causes decreases 
in collapsibility, they measured the upper airway critical pressure before and after 
reduction in body mass index in 13 patients with obstructive sleep apnea. Thirteen 
weight-stable control subjects matched for age, body mass index, gender (all men), 
and nonrapid eye movement disordered breathing rate were studied before and 
after usual care intervention. The following are the changes in upper airway critical 
pressure (CPCRIT) (cm H2O) and body mass index (CBMI) (kg/m2) following 
intervention and group membership (0 = weight-loss group, 1 = usual-care group) 
of the subjects. 

Subject CPCRIT CBMI Group 

1 -4.0 - 7.4420 0 
2 -5.2 -6.2894 0 
3 -9.2 -8.9897 0 
4 -5.9 -4.2663 0 
5 -7.2 -8.0755 0 
6 -6.3 -10.5133 0 
7 -4.7 -3.1076 0 
8 -9.3 - 6.6595 0 
9 -4.9 -5.7514 0 

10 .4 -5.3274 0 
11 -2.7 -10.5106 0 
12 - 10.4 -14.9994 0 
13 -1.7 -2.5526 0 



11.2 Qualitative Independent Variables 	 475 

Subject CPCRIT CBMI Group 

14 .2 -.9783 1 
15 -2.7 .0000 1 
16 -2.8 .0000 1 
17 -1.8 .4440 1 
18 -2.2 1.3548 1 
19 -.3 -.9278 1 
20 -.9 - .7464 1 
21 - .4 1.9881 1 
22 -1.7 -.9783 1 
23 -2.7 1.3591 1 
24 1.3 .9031 1 
25 1.0 -1.4125 1 
26 .3 -.1430 1 

SOURCE: Alan R. Schwartz, M.D. Used by permission. 

11.2.3 The purpose of a study by Loi et al. (A-3) was to investigate the effect of mexiletine 
on theophylline metabolism in young, healthy male and female nonsmokers. Theo-
phylline is a bronchodilator used in the treatment of asthma and chronic obstructive 
pulmonary disease. Mexiletine is an effective type I antiarrhythmic agent used in 
the treatment of ventricular arrhythmias. The following table shows the percent 
change in plasma clearance of theophylline (Y), the mean steady-state plasma 
concentration of mexiletine (µg/ml) (X), and gender of the 15 subjects who 
participated in the study. 

Subject Y X Gender° 

1 41.0 1.05 1 
2 46.2 .46 1 
3 44.3 .58 1 
4 53.1 .70 1 
5 57.8 1.07 1 
6 48.4 .68 1 
7 31.3 .71 1 
8 39.6 .87 1 
9 21.8 .73 0 

10 49.1 .72 0 
11 47.4 .82 0 
12 27.3 .54 0 
13 39.7 .58 0 
14 48.5 1.53 0 
15 39.7 .57 0 

= female, 0 = male. 
SOURCE: Robert E. Vestal, M.D. Used by permission. 

11.2.4 Researchers wished to study the effect of biofeedback and manual dexterity on the 
ability of patients to perform a complicated task accurately. Twenty-eight patients 
were randomly selected from those referred for physical therapy. The 28 were then 
randomly assigned to either receive or not receive biofeedback. The dependent 
variable is the number of consecutive repetitions of the task completed before an 
error was made. The following are the results. 
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Biofeedback 
Manual 

Dexterity Score 

Number of 
Repetitions 

(Y) 

Yes 225 88 
Yes 88 102 
No 162 73 
Yes 90 105 
No 245 51 
Yes 150 52 
Yes 87 106 
Yes 212 76 
Yes 112 100 
Yes 77 112 
No 137 89 
No 171 52 
No 199 49 
Yes 137 75 
No 149 50 
Yes 251 75 
No 102 75 
Yes 90 112 
No 180 55 
Yes 25 115 
No 142 50 
No 88 87 
No 87 106 
No 101 91 
Yes 211 75 
Yes 136 70 
No 100 100 
Yes 100 100 

11.3 
Variable Selection Procedures 

6 NE 

Health sciences researchers contemplating the use of multiple regression analysis 
to solve problems usually find that they have a large number of variables from 
which to select the independent variables to be employed as predictors of the 
dependent variable. Such investigators will want to include in their model as many 
variables as possible in order to maximize the model's predictive ability. The 
investigator must realize, however, that adding another independent variable to a 
set of independent variables always increases the coefficient of determination R2. 
Therefore, independent variables should not be added to the model indiscrimi-
nately, but only for good reason. In most situations, for example, some potential 
predictor variables are more expensive than others in terms of data-collection 
costs. The cost-conscious investigator, therefore, will not want to include an 
expensive variable in a model unless there is evidence that it makes a worthwhile 
contribution to the predictive ability of the model. 
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The investigator who wishes to use multiple regression analysis most effectively 
must be able to employ some strategy for making intelligent selections from 
among those potential predictor variables that are available. Many such strategies 
are in current use, and each has its proponents. The strategies vary in terms of 
complexity and the tedium involved in their employment. Unfortunately, the 
strategies do not always lead to the same solution when applied to the same 
problem. 

Stepwise Regression Perhaps the most widely used strategy for selecting 
independent variables for a multiple regression model is the stepwise procedure. 
The procedure consists of a series of steps. At each step of the procedure each 
variable then in the model is evaluated to see if, according to specified criteria, it 
should remain in the model. 

Suppose, for example, that we wish to perform stepwise regression for a model 
containing k predictor variables. The criterion measure is computed for each 
variable. Of all the variables that do not satisfy the criterion for inclusion in the 
model, the one that least satisfies the criterion is removed from the model. If a 
variable is removed in this step, the regression equation for the smaller model is 
calculated and the criterion measure is computed for each variable now in the 
model. If any of these variables fail to satisfy the criterion for inclusion in the 
model, the one that least satisfies the criterion is removed. If a variable is removed 
at this step, the variable that was removed in the first step is reentered into the 
model, and the evaluation procedure is continued. This process continues until no 
more variables can be entered or removed. 

The nature of the stepwise procedure is such that, although a variable may be 
deleted from the model in one step, it is evaluated for possible reentry into the 
model in subsequent steps. 

MINITAB'S STEPWISE procedure, for example, uses the associated F statistic 
as the evaluative criterion for deciding whether a variable should be deleted or 
added to the model. Unless otherwise specified, the cutoff value is F = 4. The 
printout of the STEPWISE results contains t statistics (the square root of F) 

rather than F statistics. At each step MINITAB calculates an F statistic for each 
variable then in the model. If the F statistic for any of these variables is less than 
the specified cutoff value (4 if some other value is not specified), the variable with 
the smallest F is removed from the model. The regression equation is refitted 
for the reduced model, the results are printed, and the procedure goes to the next 
step. If no variable can be removed, the procedure tries to add a variable. An F 
statistic is calculated for each variable not then in the model. Of these variables, 
the one with the largest associated F statistic is added, provided its F statistic is 
larger than the specified cutoff value (4 if some other value is not specified). The 
regression equation is refitted for the new model, the results are printed, and the 
procedure goes on to the next step. The procedure stops when no variable can be 
added or deleted. 

To change the criterion for allowing a variable to enter the model from 4 to 
some other value K, we use the subcommand FENTER = K. The new criterion F 
statistic, then, is K rather than 4. To change the criterion for deleting a variable 
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from the model, from 4 to some other value K, we use the subcommand 

FREMOVE = K. We must choose FENTER to be greater than or equal to 
FREMOVE. The following example illustrates the use of the stepwise procedure 
for selecting variables for a multiple regression model. 

Example 
11.3.1 

A nursing director would like to use nurses' personal characteristics to develop a 
regression model for predicting the job performance (JOBPER). The following 
variables are available from which to choose the independent variables to include in 
the model: 

X, = assertiveness (ASRV) 

X2  = enthusiasm (ENTH) 

X3  = ambition (AMB) 

X4  = communication skills (COMM) 

X5  = problem solving skills (PROB) 

X6  = initiative (INIT) 

We wish to use the stepwise procedure for selecting independent variables from 
those available in the table to construct a multiple regression model for predicting 
job performance. 

Solution: Table 11.3.1 shows the measurements taken on the dependent variable, 
JOBPER, and each of the six independent variables for a sample of 30 nurses. 

We use MINITAB to obtain a useful model by the stepwise procedure. 
Observations on the dependent variable job performance (JOBPER) and the six 
candidate independent variables are stored, as before, in MINITAB columns 1 
through 7, respectively. Figure 11.3.1 shows the appropriate MINITAB command 
and the printout of the results. 

To obtain the results in Figure 11.3.1, the values of FENTER and FREMOVE 
both were set automatically at 4. In step 1 there are no variables to be considered 
for deletion from the model. The variable AMB (column 4) has the largest 
associated F statistic which is F = (9.74)2  = 94.8676. Since 94.8676 is greater than 
4, AMB is added to the model. In step 2 the variable INIT (column 7) qualifies for 
addition to the model since its associated F of (— 2.2)2  = 4.84 is greater than 4 and 
it is the variable with the largest associated F statistic. It is added to the model. 
After step 2 no other variable could be added or deleted, and the procedure 
stopped. We see, then, that the model chosen by the stepwise procedure is a 
two-independent-variable model with AMB and INIT as the independent variables. 
The estimated regression equation is: 

.5) = 31.96 + .787x3  — .45x6 
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TABLE 11.3.1 Measurements on Seven Variables for Example 11.3.1 

Y X, X2  X 3  X4  Xs X6 

45 74 29 40 66 93 47 
65 65 50 64 68 74 49 
73 71 67 79 81 87 33 
63 64 44 57 59 85 37 
83 79 55 76 76 84 33 
45 56 48 54 59 50 42 
60 68 41 66 71 69 37 
73 76 49 65 75 67 43 
74 83 71 77 76 84 33 
69 62 44 57 67 81 43 
66 54 52 67 63 68 36 
69 61 46 66 64 75 43 
71 63 56 67 60 64 35 
70 84 82 68 64 78 37 
79 78 53 82 84 78 39 
83 65 49 82 65 55 38 
75 86 63 79 84 80 41 
67 61 64 75 60 81 45 
67 71 45 67 80 86 48 
52 59 67 64 69 79 54 
52 71 32 44 48 65 43 
66 62 51 72 71 81 43 
55 67 51 60 68 81 39 
42 65 41 45 55 58 51 
65 55 41 58 71 76 35 
68 78 65 73 93 77 42 
80 76 57 84 85 79 35 
50 58 43 55 56 84 40 
87 86 70 81 82 75 30 
84 83 38 83 69 79 41 

STEPWISE REGRESSION OF 	y 	ON 6 PREDICTORS, WITH N = 	30 
STEP 	1 	2 

CONSTANT 	7.226 	31.955 

C4 	 0.888 	0.787 
T- RATIO 	9.74 	8.13 

C7 	 -0.45 
T- RATIO 	 -2.20 

S 	 5.90 	5.53 
R- SQ 	77.21 	80.68 

Figure 11.3.1 MINITAB printout of stepwise procedure for the data of 
Table 11.3.1. 
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EXERCISES 

11.3.1 One of the objectives of a study by Brower et al. (A-4) was to determine if there are 
particular demographic, pharmacologic, or psychological correlates of dependence 
on anabolic-androgenic steroids (AASs). The subjects were male weight lifters, all 
users of AASs, who completed an anonymous, self-administered questionnaire. 
Variables on which data were collected included number of dependency symptoms 
(COUNT), number of different steroid drugs tried (DRUGNO), maximum dosage 
expressed as a c-score (MAXDOSE), difference in body weight in pounds before and 
after using steroids (NETWGT), number of aggressive symptoms reported 
(SIDEAGG), feeling not big enough before using steroids (on a scale of 1-5, with 1 
signifying never feeling not big enough and 5 signifying feeling not big enough all 
the time) (NOTBIG), feeling not big enough after using steroids (same scale as for 
NOTBIG) (NOTBIG2), score on screening test for alcoholism (CAGE), and differ-
ence in the amount of weight in pounds lifted by the bench press method before and 
after using steroids (NETBENCH). The results for 31 subjects were as follows. Do a 
stepwise regression analysis of these data with COUNT as the dependent variable. 

COUNT DRUGNO MAXDOSE CAGE SIDEAGG NOTBIG NOTBIG2 NETWGT NETBENCH 

3 5 2.41501 0 4 3 2 53 205 
7 7 1.56525 1 4 4 4 40 130 
3 2 1.42402 1 4 3 3 34 90 
3 0 .81220 0 4 3 3 20 75 
3 2 -1.22474 2 4 3 4 20 -15 
3 7 1.61385 0 2 3 3 34 125 
1 1 -1.02328 0 2 4 3 25 40 
2 4 -.47416 0 4 4 5 44 85 
4 2 1.24212 2 0 4 3 25 50 
3 6 2.41501 0 4 3 3 55 125 
0 2 .00000 0 2 1 1 17 65 
2 1 2.94491 0 2 2 2 20 75 
1 0 -1.08538 0 4 3 3 -60 100 
0 2 -.56689 3 4 3 3 5 50 
1 1 -.84476 2 1 5 3 13 40 
1 3 -.29054 2 4 3 2 15 30 
4 7 .20792 0 4 4 5 17 70 
6 0 - .54549 3 4 4 4 16 15 
3 3 1.42402 0 4 4 4 52 195 
3 5 1.46032 0 4 4 5 35 90 
4 1 .41846 4 4 4 3 15 50 
3 2 .81220 1 4 1 1 20 30 
2 8 1.61385 0 2 3 2 43 125 
3 1 - .42369 4 1 1 4 0 20 
2 4 1.89222 1 2 2 3 15 75 
4 5 1.14967 2 3 3 3 49 130 
6 3 - .41145 0 4 5 3 27 70 
0 1 - .63423 0 0 3 3 15 25 
3 1 2.39759 1 2 4 4 20 50 
2 3 - .43849 2 2 3 3 13 65 
7 8 2.03585 0 2 4 4 55 155 

SOURCE: Kirk J. Brower, M.D. Used by permission. 
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11.3.2 Erickson and Yount (A-5) point out that an unintended fall in body temperature is 
commonly associated with surgery. They compared the effect of three combinations 
of aluminum-coated plastic covers (head cover, body covers, and both) and a control 
condition on tympanic temperature in 60 adults having major abdominal surgery 
under general anesthesia. Covers were applied from the time of transport to the 
operating room until exit from the postanesthesia care unit (PACU). The variables 
on which the investigators obtained measurements were pretransport temperature 
(TTEMP1), temperature at PACU admission (TTEMP4), age (AGE), body mass 
index (BMI), surgery time (SURGTM), body covers (BODY), head covers (HEAD), 
and cover with warmed blanket at operating room entry (BODYCOV). The results 
were as follows. Do a stepwise regression analysis of these data. The dependent 
variable is 11'EMP4. 

AGE BMI SURGTM BODY HEAD BODYCOV TTEMP1 TTEMPT4 

59 19.2 1.2 1 1 1 99.8 97.5 
39 26.6 1.3 0 0 0 99.0 96.2 
75 23.7 1.7 1 0 0 98.5 96.6 
34 24.0 .8 0 1 1 100.4 99.6 
71 18.2 1.3 1 1 0 98.9 94.8 
65 22.0 1.3 0 1 1 99.8 97.3 
41 25.3 .6 1 0 1 99.7 99.3 
46 20.5 1.0 1 0 0 100.7 98.1 
56 28.8 1.7 0 0 1 98.8 97.2 
42 27.2 2.6 0 1 0 99.6 95.8 
51 37.7 1.8 0 0 1 100.3 98.7 
38 22.7 1.0 1 0 1 100.0 98.6 
68 28.3 2.0 1 1 0 99.7 95.9 
37 29.8 1.0 0 0 1 100.6 99.5 
35 36.2 2.2 0 1 1 100.4 99.0 
65 34.9 1.6 1 1 0 100.3 97.6 
71 31.4 3.7 1 0 0 99.1 97.2 
65 27.5 .8 1 1 0 98.3 96.8 
60 31.2 1.1 0 0 1 98.9 98.0 
48 20.9 1.2 0 0 1 99.9 97.4 
37 25.9 1.6 1 1 1 99.4 100.1 
66 30.1 1.3 1 0 0 99.3 97.8 
71 26.7 1.4 0 1 1 100.4 98.5 
30 21.1 1.6 1 0 0 100.2 98.6 
69 28.9 2.0 1 1 0 99.9 99.2 
47 31.2 2.7 0 1 0 100.3 96.8 
30 28.3 1.6 0 0 1 99.8 97.6 
42 39.6 2.5 0 0 0 99.9 99.0 
39 26.6 1.7 1 1 0 100.0 99.0 
42 29.6 1.4 0 0 1 99.8 98.2 
34 35.3 1.4 0 1 1 99.7 98.1 
57 31.4 1.3 0 1 1 99.1 97.9 
54 42.1 2.3 1 0 0 98.9 98.2 
40 23.8 .9 1 1 0 99.1 97.1 
45 29.9 1.7 1 1 1 100.5 99.3 
50 28.7 2.0 1 0 0 99.4 96.9 
46 33.4 1.3 0 1 1 99.2 97.4 
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Table (continued) 

AGE BMI SURGTM BODY HEAD BODYCOV TTEMPI TTEMPT4 

33 25.3 1.4 0 0 1 99.0 98.6 
45 32.1 1.8 0 1 1 99.2 97.8 
63 33.4 .7 1 0 0 100.2 100.3 
57 27.1 .7 1 1 0 98.5 97.5 
43 21.7 1.2 0 0 0 100.6 98.7 
75 25.6 1.1 1 1 0 99.1 97.2 
45 48.6 2.4 0 1 1 100.4 98.7 
41 21.5 1.5 0 0 0 100.0 96.7 
75 25.7 1.6 0 1 0 99.6 97.2 
40 28.4 2.6 1 0 0 100.6 97.8 
71 19.4 2.2 0 0 1 99.6 96.2 
76 29.1 3.5 1 1 0 99.9 96.6 
61 29.3 1.6 0 1 0 99.1 97.1 
38 30.4 1.7 1 1 1 99.8 98.8 
25 21.6 2.8 0 0 1 99.2 96.9 
80 24.6 4.2 1 0 0 100.5 96.0 
62 26.6 1.9 1 0 0 99.2 97.6 
34 20.4 1.5 0 1 1 100.1 96.6 
70 27.5 1.3 1 0 1 98.9 98.4 
41 27.4 1.3 0 0 1 99.0 96.3 
43 24.6 1.3 1 1 1 99.5 97.3 
65 24.8 2.1 1 0 0 100.0 99.1 
45 21.5 1.9 0 1 1 100.4 95.6 

SOURCE: Roberta S. Erickson, Ph.D., R.N. Used by permission. 

11.3.3 Infant growth and the factors influencing it are considered in a study by Kusin et al. 
(A-6). Subjects were infants born in two villages in Madura, East Java. The 
researchers wished to assess the relation between infant feeding and growth 
through a longitudinal study in which growth and the intake of breast milk and 
additional foods were measured simultaneously. The variables on which measure-
ments were obtained were birthweight in kilograms (GG), weight in kilograms at a 
specified age (GEW), calories from breastmilk (BMKC2), protein from breastmilk 
(BMPR2), sex (0 = girl, 1 = boy) (SX), breast feeding pattern (1 = mixed, 2, 
3 = exclusively breastfed) (EB), calories from additional food (OTHER2), and pro-
tein from additional food (OTHPR2). The following data are for 28 subjects at 30 
weeks of age. Perform a stepwise regression analysis of these data. 

GG SX GEW EB BMKC2 OTHER2 BMPR2 OTHP 

2.50 1 5.8 1 300.33 153.00 5.86 2.89 
3.10 1 6.7 1 366.60 450.00 7.15 8.50 
2.90 1 6.4 1 344.04 153.00 6.71 2.89 
3.30 1 5.4 1 28.20 500.80 .55 11.90 
3.30 1 7.1 1 383.52 342.00 7.48 6.46 
2.80 2 6.0 1 389.16 63.00 7.59 1.19 
3.00 2 6.5 1 407.49 .00 7.95 .00 
3.00 1 6.9 1 415.95 208.40 8.11 3.73 
3.40 1 8.3 1 396.21 126.00 7.73 2.38 
3.00 1 6.6 3 455.43 .00 8.88 .00 
3.00 2 6.0 1 353.91 126.00 6.90 2.38 
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GG SX GEW EB BMKC2 OTHER2 BMPR2 OTHPR2 

3.00 1 7.5 1 382.11 318.40 7.45 5.24 
2.80 2 6.6 1 417.36 104.40 8.14 1.97 
3.10 1 6.9 1 322.89 243.00 6.30 4.59 
3.20 1 7.1 1 338.40 228.70 6.60 3.64 
2.75 1 7.0 1 365.19 198.00 7.12 3.74 
2.70 2 8.7 3 482.22 .00 9.40 .00 
3.50 1 8.5 1 366.60 270.00 7.15 5.10 
2.80 2 4.9 1 280.59 144.00 5.47 2.72 
3.10 1 6.9 3 296.10 .00 5.78 .00 
3.00 1 8.0 1 363.78 166.00 7.10 2.92 
3.25 1 8.7 1 399.88 99.00 7.80 1.87 
3.30 1 7.6 2 305.97 .00 5.97 .00 
3.00 1 6.9 1 372.24 288.00 7.26 5.44 
3.30 2 6.3 2 358.14 .00 6.99 .00 
3.20 1 8.9 2 441.33 .00 8.61 .00 
3.00 2 6.7 1 473.76 185.40 9.24 3.50 
3.60 2 7.5 1 432.87 126.00 8.44 2.38 

SOURCE: Ulla Renqvist. Used by permission. 

11.4 
Lo istic Re • ression 

Up to now our discussion of regression analysis has been limited to those situations 
in which the dependent variable is a continuous variable such as weight, blood 
pressure, or plasma levels of some hormone. Much research in the health sciences 
field is motivated by a desire to describe, understand, and make use of the 
relationship between independent variables and a dependent (or outcome) variable 
that is discrete. Particularly plentiful are circumstances in which the outcome 
variable is dichotomous. A dichotomous variable, we recall, is a variable that can 
assume only one of two mutually exclusive values. These values are usually coded 
Y = 1 for a success and Y = 0 for a nonsuccess, or failure. Dichotomous variables 
include those whose two possible values are such categories as died, did not die; 
cured, not cured; disease occurred, disease did not occur; and smoker, nonsmoker. 
The health sciences professional who either engages in research or needs to 
understand the results of research conducted by others will find it advantageous to 
have, at least, a basic understanding of logistic regression, the type of regression 
analysis that is usually employed when the dependent variable is dichotomous. The 
purpose of the present discussion is to provide the reader with this level of 
understanding. We shall limit our presentation to the case in which there is only 
one independent variable that may be either continuous or dichotomous. 

The Logistic Regression Model We recall that in Chapter 9 we referred to 
regression analysis involving only two variables as simple linear regression analysis. 
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The simple linear regression model was expressed by the equation 

y =a +PX -Fe 
	

(11.4.1) 

in which y is an arbitrary observed value of the continuous dependent variable. 
When the observed value of Y is Aryi„, the mean of a subpopulation of Y values for 
a given value of X, the quantity e, the difference between the observed Y and the 
regression line (see Figure 9.2.1) is zero, and we may write Equation 11.4.1 as 

A y i x  = a + I3x 	 (11.4.2) 

which may also be written as 

E(ylx) = a + f3x 	 (11.4.3) 

Generally the right-hand side of Equations 11.4.1 through 11.4.3 may assume any 
value between minus infinity and plus infinity. 

Even though only two variables are involved, the simple linear regression 
model is not appropriate when Y is a dichotomous variable because the expected 
value (or mean) of Y is the probability that Y = 1 and, therefore, is limited to the 
range 0 through 1, inclusive. Equations 11.4.1 through 11.4.3, then, are incompati-
ble with the reality of the situation. 

If we let p = P(Y = 1), then the ratio p/(1 — p) can take on values between 0 
and plus infinity. Furthermore, the natural logarithm (ln) of p /(1 — p) can take on 
values between minus infinity and plus infinity just as can the right-hand side of 
Equations 11.4.1 through 11.4.3. Therefore, we may write 

In 	 
1 p [ P I= 

a + I3x (11.4.4) 

Equation 11.4.4 is called the logistic regression model because the transformation of 
1.50. (that is, p) to ln[p/(1 — p)] is called the logit transformation. Equation 11.4.4 
may also be written as 

exp(a + /3x) 
P - 	  1 + exp(a + Px) 

(11.4.5) 

in which exp is the inverse of the natural logarithm. 
The logistic regression model is widely used in health sciences research. For 

example, the model is frequently used by epidemiologists as a model for the 
probability (interpreted as the risk) that an individual will acquire a disease during 
some specified time period during which he/she is exposed to a condition (called a 
risk factor) known to be or suspected of being associated with the disease. 
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TABLE 11.4.1 Two Cross-Classified Dichotomous Variables Whose 

Values Are Coded 1 and 0 

Dependent 
Variable (1' ) 
	

Independent Variable ( X ) 

1 

01,1 
	 n,,0  

2 
	

no, 1 	 n0,0 

Logistic Regression — Dichotomous Independent Variable The simplest 
situation in which logistic regression is applicable is one in which both the 
dependent and the independent variable are dichotomous. The values of the 
dependent (or outcome) variable usually indicate whether or not a subject acquired 
a disease or whether or not the subject died. The values of the independent 
variable indicate the status of the subject relative to the presence or absence of 
some risk factor. In the discussion that follows we assume that the dichotomies of 
the two variables are coded 0 and I. When this is the case the variables may be 
cross-classified in a table, such as Table 11.4.1, that contains two rows and two 
columns. The cells of the table contain the frequencies of occurrence of all possible 
pairs of values of the two variables: (1, 1), (1, 0), (0, 1) and (0,0). 

An objective of the analysis of data that meet these criteria is a statistic known 
as the odds ratio. To understand the concept of the odds ratio, we must understand 
the term odds, which is frequently used by those who place bets on the outcomes of 
sporting events or participate in other types of gambling activities. Using probabil-
ity terminology, Freund (5) defines odds as follows. 

DEFINITION 

The odds for success are the ratio of the probability of success to the 
probability of failure. 

The odds ratio is a measure of how much greater (or less) the odds are for 
subjects possessing the risk factor to experience a particular outcome. This 
conclusion assumes that the outcome is a rare event. For example, when the 
outcome is the contracting of a disease, the interpretation of the odds ratio 
assumes that the disease is rare. 

Suppose, for example, that the outcome variable is the acquisition or nonacqui-
sition of skin cancer and the independent variable (or risk factor) is high levels of 
exposure to the sun. Analysis of such data collected on a sample of subjects might 
yield an odds ratio of 2, indicating that the odds of skin cancer are two times 
higher among subjects with high levels of exposure to the sun than among subjects 
without high levels of exposure. 

Computer software packages that perform logistic regression frequently pro-
vide as part of their output estimates of a and (3 and the numerical value of the 
odds ratio. As it turns out the odds ratio is equal to exp(P). 
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TABLE 11.4.2 Cases of Acute Pelvic Inflammatory Disease and 
Control Subjects Classified by Smoking Status 

Ever Smoked? Cases Controls Total 

Yes 77 123 200 
No 54 171 225 
Total 131 294 425 

SOURCE: Delia Scholes, Janet R. Daling, and Andy S. Stergachis, "Cur-
rent Cigarette Smoking and Risk of Acute Pelvic Inflammatory Disease," 
American Journal of Public Health, 82 (1992), 1352-1355. Used by permis-
sion of the American Public Health Association, the copyright holder. 

Example 
11.4.1 

In a study of cigarette smoking and risk of acute pelvic inflammatory disease, 
Scholes et al. (A-7) reported the data shown in Table 11.4.2. We wish to use logistic 
regression analysis to determine how greater the odds are of finding cases of the 
disease among subjects who have ever smoked than among those who have never 
smoked. 

  

Solution: We may use the SAS software package to analyze these data. The 
independent variable is smoking status (SMOKE), and the dependent variable is 
status relative to the presence of acute pelvic inflammatory disease. Use of the SAS 
command PROC LOGIST yields, as part of the resulting output, the statistics 
shown in Figure 11.4.1. 

We see that the estimate of a is — 1.1527 and the estimate of /3 is .6843. The 
estimated odds ratio, then, is OR= exp(.6843) = 1.98. Thus we estimate that the 
odds of finding a case of pelvic inflammatory disease to be almost two times as high 
among subjects who have ever smoked as among subjects who have never smoked. 

  

Logistic Regression — Continuous Independent Variable Now let us 
consider the situation in which we have a dichotomous dependent variable and a 
continuous independent variable. We shall assume that a computer is available to 
perform the calculations. Our discussion, consequently, will focus on an evaluation 

  

	

Parameter 	Standard 

Variable 	Estimate 	Error 

INTERCPT 	-1.1527 	0.1561 
SMOKE 	 0.6843 	0.2133 

 

Figure 11.4.1 Partial output from use of SAS 
command PROC LOGIST with the data of 
Table 11.4.2. 
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TABLE 11.4.3 Hispanic Americans with Total Serum Cholesterol (TC) Levels Greater Than 
or Equal to 240 Milligrams per Deciliter by Age Group 

Age Group 
(Years) Number Examined (n 1 ) Number with TC 	240 (nida 

25-34 522 41 
35-44 330 51 
45-54 344 81 
55-64 219 81 
65-74 114 50 

SOURCE: M. Carroll, C. Sempos, R. Fulwood, et al. Serum Lipids and Lipoproteins of Hispanics, 1982-84. 
National Center for Health Statistics. Vital Health Statistics, 11(240), (1990). 
The original publication reported percentages rather than frequencies. The frequencies appearing 

here were obtained by multiplying the percentages for each age group by the appropriate sample size. 

of the adequacy of the model as a representation of the data at hand, interpreta-
tion of key elements of the computer printout, and the use of the results to answer 
relevant questions about the relationship between the two variables. 

Example 
11.4.2 

In a survey of Hispanic Americans conducted by the National Center for Health 
Statistics the data on total serum cholesterol (TC) levels and age shown in Table 
11.4.3 were collected (A-8). We wish to use these data to obtain information 
regarding the relationship between age and the presence or absence of TC values 
greater than or equal to 240. We wish also to know if we may use the results of our 
analysis to predict the likelihood of a Hispanic American's having a TC value 240 
if we know that person's age. 

Solution: The independent variable is the continuous variable age (AGE) and the 
dependent or response variable is status with respect to TC level. The dependent 
variable is a dichotomous variable that can assume one of two values: TC 240 or 
TC < 240. Since individual ages are not available we must base our analysis on the 
reported grouped data. We use the SAS software package. The computer input for 
the independent variable consists of the midpoints of the age groups: 29.5, 39.5, 
and so on. The SAS command is PROC CATMOD. A partial printout of the 
analysis is shown in Figure 11.4.2. 

Standard Chi— 

Effect Parameter Estimate Error Square Prob 

INTERCEPT 1 —4.0388 0.2623 237.01 0.0000 

AGE 2 0.0573 0.00521 121.06 0.0000 

Figure 11.4.2 Partial SAS printout of the logistic regression analysis of the data in Table 
11.4.3. 
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9, - 4.0388 + .0573x 

39.5 

Figure 11.4.3 Fitted logistic regression line for Example 
1 1 .4.2. 

The slope of our regression is .0573 and the intercept is —4.0388. The 
regression, then, is given by 

yi  = —4.0388 + .0573x 

where 9, = ln(n,/n,2), n il  is the number of subjects in the ith age category who 
have TC values greater than or equal to 240, and n,1  + n z2  = n, the total number 
of subjects in the ith category who were examined. 

Test of Ho  that /3 = 0 We search a conclusion about the adequacy of the logistic 
model by testing the null hypothesis that the slope of the regression line is zero. 
The test statistic is z = b/sb, where z is the standard normal statistic, b is the 
sample slope (.0573), and sb  is its standard error (.00521) as shown in Figure 11.4.2. 
From these numbers we compute z = .0573/.00521 = 10.99808, which has an 
associated p value of less than .0001. We conclude, therefore, that the logistic 
model is adequate. The square of z is chi-square with 1 degree of freedom, a 
statistic that is shown in Figure 11.4.2. 

To obtain a visual impression of how well the model fits the data we plot the 
midpoints of the age categories against ln(n i dn,2) and superimpose the fitted 
regression line on the graph. The results are shown in Figure 11.4.3. 

Using the logistic regression to estimate p We may use Equation 11.4.5 and the 
results of our analysis to estimate p, the probability that a Hispanic American of a 
given age (within the range of ages represented by the data) will have a TC 



MAXIMUM-LIKELIHOOD 

Sample 	AGE 	EXM 

PREDICTED 	VALUES 	FOR 	RESPONSE 
	 Observed- 	 

Function 	 Standard 
Number 	Function 	Error 

FUNCTIONS AND 	PROBABILITIES 
	 Predicted- 

Standard 
Function 	Error 	Residual 

1 29.5 1 -2.4622952 0.16269372 -2.3493245 0.12050719 -0.1129707 
0 P1 0.07854406 0.01177494 0.08711948 0.0095839 -0.0085754 
1 P2 0.92145594 0.01177494 0.91288052 0.0095839 0.00857541 

2 39.5 1 -1.6993861 0.15228944 -1.7766203 0.08256409 0.07723419 
0 P1 0.15454545 0.01989831 0.14472096 0.01021952 0.0098245 
1 P2 0.84545455 0.01989831 0.85527904 0.01021952 -0.0098245 

3 49.5 1 -1.1777049 0.12707463 -1.2039161 0.06720744 0.02621126 
0 P1 0.23546512 0.02287614 0.23077929 0.01194843 0.00468583 
1 P2 0.76453488 0.02287614 0.76922071 0.01194843 -0.0046858 

4 59.5 1 -0.5328045 0.13997163 -0.6312119 0.08753496 0.0984074 
0 P1 0.36986301 0.0326224 0.34723579 0.01984095 0.02262723 
1 P2 0.63013699 0.0326224 0.65276421 0.01984095 -0.0226272 

5 69.5 1 -0.2468601 0.18874586 -0.0585077 0.12733053 -0.1883524 
0 P1 0.43859649 0.04647482 0.48537724 0.03180541 -0.0467807 
1 P2 0.56140351 0.04647482 0.51462276 0.03180541 0.04678075 

Figure 11.4.4 Additional SAS printout of the logistic regression analysis of the data from Example 11.4.2. 



490 	Chapter 11 • Regression Analysis —Some Additional Techniques 

value 240. Suppose, for example, that we wish to estimate the probability that a 
Hispanic American who is 29.5 years of age will have a TC value 240. Substitut-
ing 29.5 and the results shown in Figure 11.4.2 into Equation 11.4.5 gives 

exp[ —4.0388 + (.0573)(29.5)] 
	  —  

p  - 1 + exp[ —4.0388 + (.0573)(29.5)] 	
.08719 

 

SAS calculates the estimated probabilities for the given values of X. Those for the 
midpoints of our five age groups are shown in Figure 11.4.4. We note that because 
of rounding the values on the SAS printout differ from those we obtain by Equation 
11.4.5. We see that the printout also contains the standard errors of the estimates, 
the observed proportions and their standard errors, the differences between ob-
served and estimated values, and the values of 5 used to plot the regression line 
for Figure 11.4.3. 

Further Reading We have discussed only the basic concepts and applications 
of logistic regression. The technique has much wider application. For example, it 
may be used in situations in which there are two or more independent variables 
that may be continuous, dichotomous, or polytomous (discrete with more than two 
categories). Stepwise regression analysis may be used with logistic regression. 
There are also techniques available for constructing confidence intervals for odds 
ratios. The reader who wishes to learn more about logistic regression may consult 
the books by Fienberg (6), Hosmer and Lemeshow (7), Kahn and Sempos (8), 
Kleinbaum, Kupper, and Morgenstern (9), Schlesselman (10), and Woolson (11). 
Some of the references listed at the end of Chapters 9 and 10 also contain 
discussions of logistic regression. 

EXERCISES 

11.4.1 A sample of 500 elementary school children were cross-classified by nutritional 
status and academic performance as follows: 

Nutritional Status and Academic 
Performance of 500 Elementary School Children 

Academic 
Performance 

Nutritional Status 

Poor Good Total 

Poor 105 15 120 
Satisfactory 80 300 380 

Total 185 315 500 
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Use logistic regression analysis to find the regression coefficients and the estimate of 
the odds ratio. Write an interpretation of your results. 

11.4.2 The following table shows, within each group, the number of patients admitted to a 
psychiatric treatment program and the number who were improved at the end of 
one year of treatment. 

Age Group Number Admitted Number Improved 

20-24 30 6 
25-29 32 8 
30-34 34 11 
35-39 40 17 
40-44 35 18 
45-49 45 31 
50-54 30 22 
55-59 25 19 
60-64 20 16 

Use logistic regression to analyze these data as was done in Example 11.4.2. Write 
an interpretation of your results and a discussion of how they might be of use to a 
health professional. 

11.5 
Summar 

This chapter is included for the benefit of those who wish to extend their 
understanding of regression analysis and their ability to apply techniques to models 
that are more complex than those covered in Chapters 9 and 10. In this chapter we 
present some additional topics from regression analysis. We discuss the analysis 
that is appropriate when one or more of the independent variables is dichotomous. 
In this discussion the concept of dummy variable coding is presented. A second 
topic that we discuss is how to select the most useful independent variables when 
we have a long list of potential candidates. The technique we illustrate for the 
purpose is stepwise regression analysis. Finally, we present the basic concepts and 
procedures that are involved in logistic regression analysis. We cover two situa-
tions, the case in which the independent variable is dichotomous and the case in 
which the independent variable is continuous. 

Since the calculations involved in obtaining useful results from data that are 
appropriate for analysis by means of the techniques presented in this chapter are 
complicated and time-consuming when attempted by hand, it is recommended that 
a computer be used to work the exercises. For those who wish to pursue these 
topics further a list of references is presented at the end of the chapter. 
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REVIEW QUESTIONS AND EXERCISES 
€313M04 

1. What is a qualitative variable? 

2. What is a dummy variable? 

3. Explain and illustrate the technique of dummy variable coding. 

4. Why is a knowledge of variable selection techniques important to the health sciences 

researcher? 

5. What is stepwise regression? 

6. Explain the basic concept involved in stepwise regression. 

7. When is logistic regression used? 

8. Write out and explain the components of the logistic regression model. 

9. Define the word odds. 

10. What is an odds ratio? 

11. Give an example in your field in which logistic regression analysis would be appropriate 
when the independent variable is dichotomous. 

12. Give an example in your field in which logistic regression analysis would be appropriate 
when the independent variable is continuous. 

13. Find a published article in the health sciences field in which each of the following 
techniques is employed: 

a. Dummy variable coding 
b. Stepwise regression 
c. Logistic regression 

Write a report on the article in which you identify the variables involved, the reason for the 
choice of the technique, and the conclusions that the authors reach on the basis of their 
analysis. 

14. The objective of a study by Porrini et al. (A-9) was to evaluate dietary intakes and their 
correlation to certain risk factors for coronary heart disease. The subjects were adults 
living in northern Italy. One of the risk factors for which data were collected was total 
cholesterol level (TC). Data on the following dietary variables were collected: energy 
(ENERGY), total fat (TOTFAT), saturated fat (SATFAT), polyunsaturated fat (POLY-
FAT), vegetable fat (VEGFAT), animal fat (ANIMFAT), cholesterol (CHOL), fiber 
(FIBER), alcohol (ALCOHOL). In addition, measurements on body mass index (BMI) 
were taken. The measurement units are energy, mJ; cholesterol, mg; body mass index, 
kg/m2; and grams (g) for all other variables. The following table shows the values for 
these variables for male subjects between the ages of 20 and 39 years. Use stepwise 
regression analysis to select the most useful variables to be in a model for predicting 
total cholesterol level. 



TC ENERGY TOTFAT SATFAT POLYFAT VEGFAT ANIMFAT CHOL FIBER ALCOHOL BMI 

223 2280.3 67.3 23.5 6.4 32.6 34.7 207.5 22.0 23.8 2¢,7 
179 1718.9 68.0 29.0 7.5 29.6 38.3 332.5 15.2 .0 23.8 
197 1644.8 58.9 20.4 10.7 28.1 30.8 272.9 12.5 26.3 21.8 
187 2574.3 91.4 26.0 8.8 56.9 34.5 286.2 30.7 27.5 23.1 
325 2891.7 97.3 37.0 10.4 35.9 61.4 309.5 23.2 63.6 28.3 
281 2211.0 102.8 32.0 10.8 43.8 59.0 357.9 19.5 16.9 26.4 
250 1853.4 69.9 27.7 10.0 24.1 45.8 346.0 14.2 2.3 23.6 
183 2399.5 116.2 36.8 12.6 54.7 61.5 242.5 22.9 4.5 30.0 
211 2028.9 62.6 22.3 7.5 30.6 32.0 213.5 19.9 63.6 27.7 
248 2489.5 65.9 21.8 13.1 37.5 28.3 414.5 18.0 63.6 20.8 
198 2242.8 85.9 28.8 6.1 42.1 43.7 239.9 21.3 .0 22.7 
250 2754.5 53.9 17.4 5.0 22.4 31.5 159.0 24.3 91.5 21.9 
178 2043.5 63.3 26.4 12.7 31.3 32.0 207.4 15.9 60.2 22.1 
222 2077.6 70.6 29.0 8.1 22.4 48.2 302.3 22.1 16.7 26.6 
205 2986.9 61.1 16.0 13.1 39.7 21.4 274.0 29.6 34.1 22.2 
159 3229.2 92.1 34.7 10.2 31.4 60.8 258.2 24.6 84.8 21.9 
215 1544.9 76.6 30.7 16.1 30.7 45.8 301.9 19.5 10.6 29.8 
196 2700.8 93.7 33.6 9.1 40.8 52.9 372.5 32.8 .0 21.6 
275 2646.6 105.9 32.4 12.4 59.2 46.7 414.2 30.1 5.3 27.3 
269 2905.5 92.0 33.1 9.0 33.0 59.0 425.0 29.8 52.5 26.9 
300 4259.5 133.9 38.0 21.2 82.4 51.5 519.1 40.9 39.8 28.7 
220 3512.0 113.2 44.0 17.8 43.4 69.8 550.9 43.3 43.7 26.0 
180 3130.6 123.6 37.6 14.1 65.7 57.8 342.0 26.3 .0 24.9 
226 4358.6 167.5 54.4 34.3 91.2 76.3 437.5 38.5 31.8 23.1 
202 3832.2 152.8 72.8 12.8 62.9 89.8 788.4 19.1 9.1 24.4 
185 1782.5 67.9 20.7 8.0 19.8 48.0 295.1 16.2 9.6 18.8 



Table (continued) 

TC ENERGY TOTFAT SATFAT POLYFAT VEGFAT ANIMFAT CHOL FIBER ALCOHOL BMI 

172 2041.3 78.8 31.5 5.8 42.0 36.8 487.5 17.1 31.8 21.0 
285 4061.6 94.2 33.6 14.1 31.5 62.7 491.2 21.9 156.7 28.4 
194 4280.2 142.5 51.5 7.3 56.0 86.5 747.0 46.9 31.8 23.5 
257 2834.6 85.7 36.3 9.7 27.9 57.9 464.7 35.4 59.8 24.1 
198 4032.4 143.6 52.3 16.9 67.3 76.3 446.9 62.2 31.8 23.1 
180 3245.8 101.4 33.1 13.2 50.2 51.2 409.1 44.8 21.2 24.6 
177 2379.4 74.3 24.3 7.8 35.3 39.0 257.4 20.9 63.5 27.3 
183 2771.6 98.7 30.7 10.6 48.1 50.5 492.9 30.2 20.5 20.9 
248 1888.4 71.7 21.9 14.6 33.0 38.7 215.4 20.9 .0 26.0 
167 2387.1 32.3 11.0 2.5 22.4 9.9 234.2 43.3 .0 24.9 
166 1474.0 60.2 20.5 12.6 22.8 37.4 222.5 11.9 6.0 25.2 
197 2574.0 93.7 30.4 9.0 41.8 52.0 404.4 27.2 32.5 24.2 
191 2999.0 110.1 38.5 12.2 43.3 66.8 421.3 24.8 36.1 23.8 
183 2746.2 76.1 19.3 10.0 43.4 32.7 240.9 21.0 98.8 25.3 
200 2959.8 91.7 30.5 10.2 42.6 49.1 403.2 40.0 65.0 29.0 
206 4104.3 156.0 50.7 15.8 96.1 59.8 423.1 39.1 27.7 20.5 
229 2731.9 122.2 38.9 26.3 77.0 45.2 365.2 27.0 .7 25.3 
195 3440.6 132.1 42.1 12.4 65.6 66.4 526.1 45.1 41.7 23.2 
202 3000.5 114.0 36.6 12.3 44.2 69.8 306.4 34.2 .0 27.8 
273 2588.8 86.7 24.2 20.3 48.7 38.0 252.1 19.9 57.7 21.8 
220 2144.1 91.0 23.3 10.4 52.6 38.3 310.2 23.3 43.9 24.6 
155 2259.9 85.5 21.9 10.9 56.2 29.3 182.3 20.8 53.0 23.4 
295 3694.9 121.8 43.7 21.7 47.9 73.8 418.5 16.1 88.6 25.4 
211 3114.2 101.1 31.2 11.5 42.0 59.1 277.2 34.0 34.6 28.4 
214 2183.0 85.9 31.6 7.4 33.5 52.4 372.9 21.7 37.0 23.8 

SOURCE: Marisa Porrini. Used by permission. 
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15. In the following table are the cardiac output (1/min) and oxygen consumption (Vo2) 
values for a sample of adults (A) and children (C), who particulated in a study designed 
to investigate the relationship among these variables. 

Measurements were taken both at rest and during exercise. Treat cardiac output as 
the dependent variable and use dummy variable coding and analyze the data by 
regression techniques. Explain the results. Plot the original data and the fitted regres-
sion equations. 

Cardiac 
Output (1 / min) Vo2  (1 / min) Age Group 

4.0 .21 A 
7.5 .91 C 
3.0 .22 C 
8.9 .60 A 
5.1 .59 C 
5.8 .50 A 
9.1 .99 A 
3.5 .23 C 
7.2 .51 A 
5.1 .48 C 
6.0 .74 C 
5.7 .70 C 

14.2 1.60 A 
4.1 .30 C 
4.0 .25 C 
6.1 .22 A 
6.2 .61 C 
4.9 .45 C 

14.0 1.55 A 
12.9 1.11 A 
11.3 1.45 A 
5.7 .50 C 

15.0 1.61 A 
7.1 .83 C 
8.0 .61 A 
8.1 .82 A 
9.0 1.15 C 
6.1 .39 A 

16. A simple random sample of normal subjects between the ages of 6 and 18 yielded the 
data on total body potassium (mEq) and total body water (liters) shown in the following 
table. 

Let total potassium be the dependent variable and use dummy variable coding to 
quantify the qualitative variable. Analyze the data using regression techniques. Explain 
the results. Plot the original data and the fitted regression equations. 

Total Body 
Potassium 

Total Body 
Water Sex 

795 13 M 
1590 16 F 
1250 15 M 
1680 21 M 
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Table (continued) 

Total Body 
Potassium 

Total Body 
Water Sex 

800 10 F 
2100 26 M 
1700 15 F 
1260 16 M 
1370 18 F 
1000 11 F 
1100 14 M 
1500 20 F 
1450 19 M 
1100 14 M 
950 12 F 

2400 26 M 
1600 24 F 
2400 30 M 
1695 26 F 
1510 21 F 
2000 27 F 
3200 33 M 
1050 14 F 
2600 31 M 
3000 37 M 
1900 25 F 
2200 30 F 

17. The data shown in the following table were collected as part of a study in which the 
subjects were preterm infants with low birth weights born in three different hospitals. 

Use dummy variable coding and multiple regression techniques to analyze these 
data. May we conclude that the three sample hospital populations differ with respect to 
mean birth weight when gestational age is taken into account? May we conclude that 
there is interaction between hospital of birth and gestational age? Plot the original data 
and the fitted regression equations. 

Birth Gestation Hospital 
Weight (kg) Age (weeks) of Birth 

1.4 30 A 
.9 27 B 

1.2 33 A 
1.1 29 C 
1.3 35 A 
.8 27 B 

1.0 32 A 
.7 26 A 

1.2 30 C 
.8 28 A 

1.5 32 B 
1.3 31 A 
1.4 32 C 
1.5 33 B 
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Birth Gestation Hospital 
Weight (kg) Age (weeks) of Birth 

1.0 27 A 
1.8 35 B 
1.4 36 C 
1.2 34 A 
1.1 28 B 
1.2 30 B 
1.0 29 C 
1.4 33 C 
.9 28 A 

1.0 28 C 
1.9 36 B 
1.3 29 B 
1.7 35 C 
1.0 30 A 
.9 28 A 

1.0 31 A 
1.6 31 B 
1.6 33 B 
1.7 34 B 
1.6 35 C 
1.2 28 A 
1.5 30 B 
1.8 34 B 
1.5 34 C 
1.2 30 A 
1.2 32 C 

18. Hertzman et al. (A-10) conducted a study to identify determinants of elevated blood lead 
levels in preschool children; to compare the current situation with past information; to 
determine historical trends in environmental lead contamination in a Canadian commu-
nity; and to find a basis for identifying appropriate precautions and protection against 
future lead exposure. Subjects were children between the ages of two and five years 
inclusive who resided in a Canadian community that is the site of one of North 
America's largest lead-zinc smelters. Subjects were divided into two groups: (1) cases, 
consisting of children who had blood lead levels of 18 µg/ml or greater and (2) controls, 
consisting of subjects whose blood lead levels were 10µg/dl or less. Lead levels were 
ascertained for samples of drinking water, paint, household dust, home-grown vegeta-
bles, and soil. Among the analyses performed by the investigators was a multiple logistic 
regression analysis with age, sex, and the logarithms of the lead levels of the environ-
mental samples (covariates) as the independent variables. They found that soil lead level 
was the strongest risk factor for high blood lead levels. The analysis yielded an odds 
ratio of 14.25, which could be interpreted as "each ten-fold increase in soil lead level 
would increase the relative proportion of cases to controls by 14.25-fold." The following 
table shows the soil lead levels for the cases (coded 1) and the controls (coded 0). Use 
logistic regression to analyze these data. Obtain the odds ratio and compare it with the 
one obtained by the authors' analysis. Test for significance at the .05 level and find the 
p-value. 
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Subject 	Soil Lead 
Category 	Level (ppm) 

Subject 
Category 

Soil Lead 
Level (ppm) 

Subject 
Category 

Soil Lead 
Level (ppm) 

1 = case 1290 0 197 1 852 
0 = control 90 1 916 0 137 
1 894 1 755 0 137 
0 193 1 59 0 125 
1 1410 1 1720 1 562 
1 410 1 574 0 325 
1 1594 1 403 1 1317 
0 321 1 61 1 2125 
0 40 1 1290 1 2635 
0 96 1 1409 1 2635 
0 260 1 880 0 544 
0 433 1 40 1 731 
0 260 1 40 1 815 
0 227 0 68 0 328 
0 337 0 777 1 1455 
1 867 1 1975 0 977 
1 1694 1 1237 1 624 
0 302 0 133 1 392 
1 2860 0 269 1 427 
1 2860 0 357 1 1000 
1 4320 0 315 1 1009 
1 859 0 315 0 1010 
0 119 0 255 1 3053 
1 115 0 422 0 1220 
0 192 0 400 0 46 
1 1345 0 400 0 181 
0 55 0 229 0 87 
0 55 1 229 0 131 
1 606 0 768 0 131 
1 1660 0 886 1 1890 
0 82 1 58 1 221 
0 1470 0 508 1 221 
1 600 1 811 0 79 
1 2120 1 527 1 1570 
1 569 1 1753 1 909 
0 105 0 57 1 1720 
1 503 0 769 1 308 
0 161 0 677 1 97 
0 161 1 677 0 200 
1 1670 1 424 0 1135 
0 132 1 2230 0 320 
1 974 0 421 1 5255 
1 3795 1 628 0 176 
0 548 1 1406 0 176 
1 622 1 378 0 100 
0 788 1 812 
1 2130 1 812 

SOURCE: Shona Kelly. Used by permission. 
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For each of the studies described in Exercises 19 through 21, answer as many of the 
following questions as possible. 

(a) Which is the dependent variable? 
(b) What are the independent variables? 
(c) What are the appropriate null and alternative hypotheses? 
(d) Which null hypotheses do you think were rejected? Why? 
(e) Which is the more relevant objective, prediction or estimation, or are the two 

equally relevant? Explain your answer. 
(f) What is the sampled population? 

(g) What is the target population? 
(h) Which variables are related to which other variables? Are the relationships direct or 

inverse? 
(1) Write out the regression equation using appropriate numbers for parameter esti-

mates. 
(j) Give numerical values for any other statistics that you can. 
(k) Identify each variable as to whether it is quantitative or qualitative. 
(1) Explain the meaning of any statistics for which numerical values are given. 

19. Brock and Brock (A-11) used a multiple regression model in a study of the influence of 
selected variables on plasma cholinesterase activity (ChE) in 650 males and 437 females 
with ChE-1 phenotype U or UA. With ChE measured on a logarithmic scale the 
researchers developed a linear model with an intercept term of 2.016 and regression 
coefficients and their associated variables as follows: ChE-1 phenotype (—.308), sex 
( — .104), weight (.00765), height (— .00723). The researchers reported R = .535, p < 
.001 

20. Ueshima et al. (A-12) report on a study designed to evaluate the response of patients 
with chronic atrial fibrillation (AF) to exercise. Seventy-nine male patients with AF 
underwent resting two-dimensional and M-mode echocardiography and symptom-limited 
treadmill testing with ventilatory gas exchange analysis. In a stepwise regression 
analysis to evaluate potential predictors of maximal oxygen uptake (Vo2  max), the 
variables entering the procedure at steps I through 7, respectively, and the resulting R 2, 
and associated p values were as follows: maximal systolic blood pressure (.35, < .01), 
maximal heart rate (0.45, .03), left ventricular ejection fraction (.47, .45), age (.49, .51), 
left atrial dimension (.50, .53), left ventricular diastolic dimension (.50, .75), left ventricu-
lar systolic dimension (.50, .84). 

21. Ponticelli et al. (A-13) found arterial hypertension present at the end of one year in 81.6 
percent of 212 cyclosporine-treated renal transplant recipients with stable graft func-
tion. Through logistic regression analysis the authors found that the presence of 
hypertension before transplantation (p = .0001; odds ratio 3.5), a plasma creatinine 
level higher than 2 mg/dl at one year (p = .0001, odds ratio 3.8), and a maintenance 
therapy with corticosteriods (p = .008, odds ratio 3.3) were positively associated with 
hypertension at one year after transplantation. 

Exercise for Use With the Large Data Sets Available on Computer Disk from the Publisher 

1. Refer to the weight loss data on 588 cancer patients and 600 healthy controls (WGTLOSS, 
Disk 2). Weight loss among cancer patients is a well-known phenomenon. Of interest to 
clinicians is the role played in the process by metabolic abnormalities. One investigation 
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into the relationships among these variables yielded the following data on whole-body 
protein turnover (Y) and percentage of ideal body weight for height (X). Subjects were 

lung cancer patients and healthy controls of the same age. Select a simple random 
sample of size 15 from each group and do the following. 

a. Draw a scatter diagram of the sample data using different symbols for each of the 

two groups. 
b. Use dummy variable coding to analyze these data. 
c. Plot the two regression lines on the scatter diagram. May one conclude that the two 

sampled populations differ with respect to mean protein turnover when percentage of 
ideal weight is taken into account? 

May one conclude that there is interaction between health status and percentage of 
ideal body weight? Prepare a verbal interpretation of the results of your analysis and 
compare your results with those of your classmates. 

REFERENCES 
541 

References Cited 

1. John Neter, William Wasserman, and Michael H. Kutner, Applied Linear Regression Models, Second 
Edition, Irwin, Homewood, Ill., 1989. 

2. David G. Kleinbaum, Lawrence L. Kupper, and Keith E. Muller, Applied Regression Analysis and Other 

Multivariable Methods, Second Edition, PWS-Kent, Boston, 1988. 

3. William Mendenhall and James T. McClave, A Second Course in Business Statistics: Regression Analysis, 
Dellen Publishing Company, San Francisco, 1981. 

4. N. R. Draper and H. Smith, Applied Regression Analysis, Second Edition, Wiley, New York, 1981. 

5. John E. Freund, Introduction to Probability, Dickenson Publishing Company, Encino, Calif., 1973. 

6. Stephen E. Feinberg, The Analysis of Cross-Classified Categorical Data, Second Edition, The MIT Press, 
Cambridge, Mass., 1980. 

7. David W. Hosmer and Stanley Lemeshow, Applied Logistic Regression, Wiley, New York, 1989. 

8. Harold A. Kahn and Christopher T. Sempos, Statistical Methods in Epidemiology, Oxford University 

Press, New York, 1989. 

9. David G. Kleinbaum, Lawrence L. Kupper, and Hal Morgenstern, Epidemiologic Research: Principles 
and Quantitative Methods, Lifetime Learning Publications, Belmont, Calif., 1982. 

10. James J. Schlesselman, Case-Control Studies: Design, Conduct, Analysis, Oxford University Press, New 
York, 1982. 

11. Robert F. Woolson, Statistical Methods for the Analysis of Biomedical Data, Wiley, New York, 1987. 

Other References, Books 

1. K. W. Smillie, An Introduction to Regression and Correlation, Academic Press, New York, 1966. 

2. Peter Sprent, Models in Regression, Methuen, London, 1969. 

Other References, Journal Articles 

1. David M. Allen, "Mean Square-Error of Prediction as a Criterion for Selecting Variables," Technomet-

ries, 13 (1971), 469-475. 

2. E. M. L. Beale, M. G. Kendall, and D. W. Mann, "The Discarding of Variables in Multivariate 
Analysis," Biometrika, 54 (1967), 357-366. 



References 	 501 

3. M. J. Garside, "The Best Sub-Set in Multiple Regression Analysis," Applied Statistics, 14 (1965), 
196-200. 

4. J. W. Gorman and R. J. Toman, "Selection of Variables for Fitting Equations to Data,"Technometrics, 
8 (1966), 27-52. 

5. R. R. Hocking and R. N. Leslie, "Selection of the Best Sub-Set in Regression Analysis," Technometrics, 
9 (1967), 531-540. 

6. H. J. Larson and T. A. Bancroft, "Sequential Model Building for Prediction in Regression Analysis I," 
Annals of Mathematical Statistics, 34 (1963), 462-479. 

7. D. V. Lindley, "The Choice of Variables in Multiple Regression," Journal of the Royal Statistical Society 
B, 30 (1968), 31-66. 

8. A. Summerfield and A. Lubin, "A Square Root Method of Selecting a Minimum Set of Variables in 
Multiple Regression: I, The Method," Psychometrika, 16 (3): 271 (1951). 

Other References, Other Publications 

1. Wayne W. Daniel, The Use of Dummy Variables in Regression Analysis: A Selected Bibliography With 
Annotations, Vance Bibliographies, Monticello, Ill., November 1979. 

2. E. F. Schultz, Jr. and J. F. Goggans, "A Systematic Procedure for Determining Potent Independent 
Variables in Multiple Regression nd Discriminant Analysis," Agri. Exp. Sta. Bull. 336, Auburn 
University, 1961. 

Applications References 

A-1. Mary A. Woo, Michele Hamilton, Lynne W. Stevenson, and Donna L. Vredevoe, "Comparison of 
Thermodilution and Transthoracic Electrical Bioimpedence Cardiac Outputs," Heart & Lung, 20 
(1991), 357-362. 

A-2. Alan R. Schwartz, Avram R. Gold, Norman Schubert, Alexandra Stryzak, Robert A. Wise, Solbert 
Permutt, and Philip L. Smith, "Effect of Weight Loss on Upper Airway Collapsibility in 
Obstructive Sleep Apnea,' American Review of Respiratory Disease, 144 (1991), 494-498. 

A-3. Cho-Ming Loi, Xiaoxiong Wei, and Robert E. Vestal, "Inhibition of Theophylline Metabolism by 
Mexiletine in Young Male and Female Nonsmokers," Clinical Pharmacology & Therapeutics, 49 
(1991), 571-580. 

A-4. Kirk J. Brower, Frederic C. Blow, James P. Young, and Elizabeth M. Hill, "Symptoms and 
Correlates of Anabolic-Androgenic Steroid Dependence," British Journal of Addiction, 86 (1991), 
759-768. 

A-5. Roberta S. Erickson and Sue T. Yount, "Effect of Aluminized Covers on Body Temperature in 
Patients Having Abdominal Surgery," Heart & Lung, 20 (1991), 255-264. 

A-6. J. A. Kusin, Sri Kardjati, W. M. van Steenbergen, and U. H. Renqvist, "Nutritional Transition 
During Infancy in East Java, Indonesia: 2. A Longitudinal Study of Growth in Relation to the 
Intake of Breast Milk and Additional Foods," European Journal of Clinical Nutrition, 45 (1991), 
77-84. 

A-7 Delia Scholes, Janet R. Doling, and Andy S. Stergachis, "Current Cigarette Smoking and Risk of 
Acute Pelvic Inflammatory Disease," American Journal of Public Health, 82 (1992), 1352-1355. 

A-8. M. Carroll, C. Sempos, R. Fulwood, et al. Serum Lipids and Lipoproteins of Hispanics, 1982-84. 
National Center for Health Statistics. Vital and Health Statistics, 11(240), (1990). 

A-9. M. Porrini, P. Simonetti, G. Testolin, C. Roggi, M. S. Laddomada, and M. T. Tenconi, "Relation 
Between Diet Composition and Coronary Heart Disease Risk Factors," Journal of Epidemiology and 
Community Health, 45 (1991), 148-151. 

A-10. Clyde Hertzman, Helen Ward, Nelson Ames, Shona Kelly, and Cheryl Yates, "Childhood Lead 
Exposure in Trail Revisited," Canadian Journal of Public Health, 82 (November/December 1991), 
385-391. 



502 	Chapter 11 • Regression Analysis —Some Additional Techniques 

A-11. A. Brock and V. Brock, "Factors Affecting Inter-Individual Variation in Human Plasma 
Cholinesterase Activity: Body Weight, Height, Sex, Genetic Polymorphism and Age," Archives of 

Environmental Contamination and Toxicology, 24 (January 1993), 93-99. 

A-12. K. Ueshima, J. Myers, P. M. Ribisl., J. E. Atwood, C. K. Morris, T. Kawaguchi, J. Liu, and V. F. 
Froelicher, "Hemodyanmic Determinants of Exercise Capacity in Chronic Atrial Fibrillation," 
American Heart Journal, 125 (May 1993, No. 5, Part 1), 1301-1305. 

A-13. C. Ponticelli, G. Montagnino, A. Aroldi, C. Angelini, M. Braga, and A. Tarantino, "Hypertension 
After Renal Transplantation," American Journal of Kidney Diseases, 21 (May 1993, No. 5 Supplement 
2), 73-78. 



The Chi-Square 
Distribution and the 
Analysis of Frequencies 

CONTENTS 

12.1 Introduction 

12.2 The Mathematical Properties of the Chi-Square Distribution 

12.3 Tests of Goodness-of-Fit 

12.4 Tests of Independence 

12.5 Tests of Homogeneity 

12.6 The Fisher Exact Test 

12.7 Relative Risk, Odds Ratio, and the Mantel —Haenszel Statistic 

12.8 Summary 

12.1 
Introduction 

In the chapters on estimation and hypothesis testing brief mention is made of the 

chi-square distribution in the construction of confidence intervals for and the 

testing of hypotheses concerning a population variance. This distribution, which is 

one of the most widely used distributions in statistical applications, has many other 

uses. Some of the more common ones are presented in this chapter along with a 

more complete description of the distribution itself, which follows in the next 

section. 
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The chi-square distribution is the most frequently employed statistical tech-

nique for the analysis of count or frequency data. For example, we may know for a 

sample of hospitalized patients how many are male and how many are female. For 

the same sample we may also know how many have private insurance coverage, 

how many have Medicare insurance, and how many are on Medicaid assistance. We 

may wish to know, for the population from which the sample was drawn, if the type 

of insurance coverage differs according to gender. For another sample of patients 

we may have frequencies for each diagnostic category represented and for each 

geographic area represented. We might want to know if, in the population from 

which the sample was drawn, there is a relationship between area of residence and 

diagnosis. We will learn how to use chi-square analysis to answer these types of 

questions. 

There are other statistical techniques that may be used to analyze frequency 

data in an effort to answer other types of questions. In this chapter we will also 

learn about these techniques. 

12.2 
The Mathematical Properties 
of the Chi-S• uare Distribution 

The chi-square distribution may be derived from normal distributions. Suppose 
that from a normally distributed random variable Y with mean p, and variance o.2  

we randomly and independently select samples of size n = 1. Each value selected 
may be transformed to the standard normal variable z by the familiar formula 

— A 
= 

CT 
(12.2.1) 

Each value of z may be squared to obtain z2. When we investigate the sampling 
distribution of Z2, we find that it follows a chi-square distribution with 1 degree of 
freedom. That is, 

	

v 	Li, )2 

X0) 

	

(-" 
	

_z2 

Now suppose that we randomly and independently select samples of size n = 2 
from the normally distributed population of Y values. Within each sample we may 
transform each value of y to the standard normal variable z and square as before. 
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If the resulting values of z2  for each sample are added, we may designate this sum 
by 

(Y1 —  )2 	(-Y2 —  )
2 

X(2)= 	 = zi
2 
 z2

2  

since it follows the chi-square distribution with 2 degrees of freedom, the number 
of independent squared terms that are added together. 

The procedure may be repeated for any sample size n. The sum of the 
resulting z2  values in each case will be distributed as chi-square with n degrees of 
freedom. In general, then, 

2 	2 	2 

	

X(u) = Z1 ± Z2 	• • • +Zn
2  (12.2.2) 

follows the chi-square distribution with n degrees of freedom. The mathematical 
form of the chi-square distribution is as follows: 

1 	1 
Au) = 	k 	2 k 	/2 

( 	I )! 2  

u (k/2)— 1e  —(u/2) 	u > 0 	(12.2.3) 

where e is the irrational number 2.71828... and k is the number of degrees of 
freedom. The variate u is usually designated by the Greek letter chi (x) and, 
hence, the distribution is called the chi-square distribution. As we pointed out in 
Chapter 6, the chi-square distribution has been tabulated in Table F. Further use 
of the table is demonstrated as the need arises in succeeding sections. 

The mean and variance of the chi-square distribution are k and 2k, respec-
tively. The modal value of the distribution is k — 2 for values of k greater than or 
equal to 2 and is zero for k = 1. 

The shapes of the chi-square distributions for several values of k are shown in 
Figure 6.9.1. We observe in this figure that the shapes for k = 1 and k = 2 are 
quite different from the general shape of the distribution for k > 2. We also see 
from this figure that chi-square assumes values between 0 and infinity. It cannot 
take on negative values, since it is the sum of values that have been squared. A 
final characteristic of the chi-square distribution worth noting is that the sum of 
two or more independent chi-square variables also follows a chi-square distribution. 

Types of Chi-Square Tests As already noted, we make use of the chi-square 
distribution in this chapter in testing hypotheses where the data available for 
analysis are in the form of frequencies. These hypothesis testing procedures are 
discussed under the topics of tests of goodness-offit, tests of independence, and tests of 
homogeneity. We will discover that, in a sense, all of the chi-square tests that we 
employ may be thought of as goodness-of-fit tests, in that they test the goodness-of-
fit of observed frequencies to frequencies that one would expect if the data were 
generated under some particular theory or hypothesis. We, however, reserve the 
phrase "goodness-of-fit" for use in a more restricted sense. We use the term 
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"goodness-of-fit" to refer to a comparison of a sample distribution to some 
theoretical distribution that it is assumed describes the population from which the 
sample came. The justification of our use of the distribution in these situations is 
due to Karl Pearson (1), who showed that the chi-square distribution may be used 
as a test of the agreement between observation and hypothesis whenever the data 
are in the form of frequencies. An extensive treatment of the chi-square distribu-
tion is to be found in the book by Lancaster (2). 

Observed Versus Expected Frequencies The chi-square statistic is most 
appropriate for use with categorical variables, such as marital status, whose values 
are categories like married, single, widowed, and divorced. The quantitative data 
used in the computation of the test statistic are the frequencies associated with 
each category of the one or more variables under study. There are two sets of 
frequencies with which we are concerned, observed frequencies and expected frequencies. 
The observed frequencies are the number of subjects or objects in our sample that 
fall into the various categories of the variable of interest. For example, if we have a 
sample of 100 hospital patients we may observe that 50 are married, 30 are single, 
15 are widowed, and 5 are divorced. Expected frequencies are the number of 
subjects or objects in our sample that we would expect to observe if some null 
hypothesis about the variable is true. For example, our null hypothesis might be 
that the four categories of marital status are equally represented in the population 
from which we drew our sample. In that case we would expect our sample to 
contain 25 married, 25 single, 25 widowed, and 25 divorced patients. 

The Chi-Square Test Statistic The test statistic for the chi-square tests we 
discuss in this chapter is 

x 2  = 
	— Ei )2 1 
	

(12.2.4) 

When the null hypothesis is true, X2  is distributed approximately as )(2  with 
k — r degrees of freedom. In determining the degrees of freedom, k is equal to the 
number of groups for which observed and expected frequencies are available, and r 
is the number of restrictions or constraints imposed on the given comparison. A 
restriction is imposed when we force the sum of the expected frequencies to equal 
the sum of the observed frequencies, and an additional restriction is imposed for 
each parameter that is estimated from the sample. For a full discussion of the 
theoretical justification for subtracting one degree of freedom for each estimated 
parameter, see Cramer (3). 

In Equation 12.2.4, Oz  is the observed frequency for the ith category of the 
variable of interest, and Ez  is the expected frequency (given that H0  is true) for 
the ith category. 

The quantity X2  is a measure of the extent to which, in a given situation, pairs 
of observed and expected frequencies agree. As we will see, the nature of X2  is 
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such that when there is close agreement between observed and expected frequen-
cies it is small, and when the agreement is poor it is large. Consequently only a 
sufficiently large value of X2  will cause rejection of the null hypothesis. 

If there is perfect agreement between the observed frequencies and the 
frequencies that one would expect, given that H0  is true, the term 0, E, in 
Equation 12.2.4 will be equal to zero for each pair of observed and expected 
frequencies. Such a result would yield a value of X2  equal to zero, and we would be 
unable to reject Ho. 

When there is disagreement between observed frequencies and the frequencies 
one would expect given that H0  is true, at least one of the 0, — E, terms in 
Equation 12.2.4 will be a nonzero number. In general, the poorer the agreement 
between the 0, and the E, the greater and/or the more frequent will be these 
nonzero values. As noted previously, if the agreement between the 0, and the E, 
is sufficiently poor (resulting in a sufficiently large X2  value) we will be able to re-
ject Ho. 

When there is disagreement between a pair of observed and expected frequen-
cies, the difference may be either positive or negative, depending on which of the 
two frequencies is the larger. Since the measure of agreement, X2, is a sum of 
component quantities whose magnitudes depend on the difference 0, — E, positive 
and negative differences must be given equal weight. This is achieved by squaring 
each 0, — Ez  difference. Dividing the squared differences by the appropriate 
expected frequency converts the quantity to a term that is measured in original 
units. Adding these individual (0, — E,)2/E, terms yields X2, a summary statistic 
that reflects the extent of the overall agreement between observed and expected 
frequencies. 

The Decision Rule The quantity E[(0 	will be small if the ob- 
served and expected frequencies are close together and will be large if the 
differences are large. 

The computed value of X2  is compared with the tabulated value of x 2  with 
k — r degrees of freedom. The decision rule, then, is: Reject H0  if X2  is greater 
than or equal to the tabulated x 2  for the chosen value of a. 

12.3 
Tests of Goodness-of-Fit 

As we have pointed out, a goodness-of-fit test is appropriate when one wishes to 
decide if an observed distribution of frequencies is incompatible with some precon-
ceived or hypothesized distribution. 

We may, for example, wish to determine whether or not a sample of observed 
values of some random variable is compatible with the hypothesis that it was drawn 
from a population of values that is normally distributed. The procedure for 
reaching a decision consists of placing the values into mutually exclusive categories 
or class intervals and noting the frequency of occurrence of values in each category. 
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We then make use of our knowledge of normal distributions to determine the 
frequencies for each category that one could expect if the sample had come from a 
normal distribution. If the discrepancy is of such magnitude that it could have 
come about due to chance, we conclude that the sample may have come from a 
normal distribution. In a similar manner, tests of goodness-of-fit may be carried 
out in cases where the hypothesized distribution is the binomial, the Poisson, or 
any other distribution. Let us illustrate in more detail with some examples of tests 
of hypotheses of goodness-of-fit. 

Example 
12.3.1 

The Normal Distribution 
A research team making a study of hospitals in the United States collects data 

on a sample of 250 hospitals. The team computes for each hospital the inpatient 
occupancy ratio, a variable that shows, for a 12-month period, the ratio of average 
daily census to the average number of beds maintained. The sample yielded the 
distribution of ratios (expressed as percents), shown in Table 12.3.1. 

We wish to know whether these data provide sufficient evidence to indicate 
that the sample did not come from a normally distributed population. 

Solution: 

1. Data See Table 12.3.1. 

2. Assumptions We assume that the sample available for analysis is a simple 
random sample. 

3. Hypotheses 

H0: In the population from which the sample was drawn, inpatient occupancy 
ratios are normally distributed. 

HA: The sampled population is not normally distributed. 

4. Test Statistic The test statistic is 

X 2  = E 
k 

t=1 

 

— Ei )2 1 

Ei  

 

TABLE 12.3.1 Results of Study Described in Example 12.3.1 

Inpatient 
Occupancy Ratio 	Number of Hospitals 

0.0 to 39.9 	 16 
40.0 to 49.9 	 18 
50.0 to 59.9 	 22 
60.0 to 69.9 	 51 
70.0 to 79.9 	 62 
80.0 to 89.9 	 55 
90.0 to 99.9 	 22 

100.0 to 109.9 	 4 

Total 	 250 
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5. Distribution of the Test Statistic If Ho  is true the test statistic is distributed 
approximately as chi-square with k — r degrees of freedom. The values of k 
and r will be determined later. 

6. Decision Rule We will reject Ho  if the computed value of X2  is equal to or 
greater than the critical value of chi-square. 

7. Calculation of Test Statistic Since the mean and variance of the hypothesized 
distribution are not specified, the sample data must be used to estimate them. 
These parameters, or their estimates, will be needed to compute the frequency 
that would be expected in each class interval when the null hypothesis is true. 
The mean and standard deviation computed from the grouped data of Table 
12.3.1 by the methods of Sections 2.6 and 2.7 are 

= 69.91 

x = 19.02 

As the next step in the analysis we must obtain for each class interval the 
frequency of occurrence of values that we would expect when the null hypothe-
sis is true, that is, if the sample were, in fact, drawn from a normally 
distributed population of values. To do this, we first determine the expected 
relative frequency of occurrence of values for each class interval and then 
multiply these expected relative frequencies by the total number of values to 
obtain the expected number of values for each interval. 

The Expected Relative Frequencies It will be recalled from our study of the normal 
distribution that the relative frequency of occurrence of values equal to or less than 
some specified value, say xo, of the normally distributed random variable X is 
equivalent to the area under the curve and to the left of xo  as represented by the 
shaded area in Figure 12.3.1. We obtain the numerical value of this area by 
converting xo  to a standard normal deviation by the formula zo  = (xo  — it)/o-  and 

xo  

Figure 12.3.1 A normal distribution showing the 
relative frequency of occurrence of values less than 
or equal to xo. The shaded area represents the 
relative frequency of occurrence of values equal to 
or less than xo. 
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finding the appropriate value in Table D. We use this procedure to obtain the 
expected relative frequencies corresponding to each of the class intervals in Table 
12.3.1. We estimateµ and cr with x and s as computed from the grouped sample 
data. The first step consists of obtaining z values corresponding to the lower limit 
of each class interval. The area between two successive z values will give the 
expected relative frequency of occurrence of values for the corresponding class 
interval. 

For example, to obtain the expected relative frequency of occurrence of values 
in the interval 40.0 to 49.9 we proceed as follows: 

The z value corresponding to X = 40.0 is z = 

The z value corresponding to X = 50.0 is z = 

40.0 - 69.91 
= 

= 

-1.57 

-1.05 

19.02 

50.0 - 69.91 

19.02 

In Table D we find that the area to the left of -1.05 is .1469, and the area to the 
left of -1.57 is .0582. The area between -1.05 and -1.57 is equal to .1469 -
.0582 = .0887, which is equal to the expected relative frequency of occurrence of 
values of occupancy ratios within the interval 40.0 to 49.9. This tells us that if the 
null hypothesis is true, that is, if the occupancy ratio values are normally dis-
tributed, we should expect 8.87 percent of the values in our sample to be between 
40.0 and 49.9. When we multiply our total sample size, 250, by .0887 we find the 
expected frequency for the interval to be 22.18. Similar calculations will give the 
expected frequencies for the other intervals as shown in Table 12.3.2. 

Comparing Observed and Expected Frequencies We are now interested in examining 
the magnitudes of the discrepancies between the observed frequencies and the 
expected frequencies, since we note that the two sets of frequencies do not agree. 
We know that even if our sample were drawn from a normal distribution of values, 

TABLE 12.3.2 Class Intervals and Expected Frequencies for Example 12.3.1 

Class Interval 

z = (xi  - 	is 
At Lower Limit 

of Interval 

Expected 
Relative 

Frequency 
Expected 

Frequency 

< 40.0 .0582 14.55 
40.0 to 49.9 - 1.57 .0887 22.18 
50.0 to 59.9 -1.05 .1546 38.65 
60.0 to 69.9 - .52 .1985 49.62 
70.0 to 79.9 .00 .2019 50.48 
80.0 to 89.9 .53 .1535 38.38 
90.0 to 99.9 1.06 .0875 21.88 

100.0 to 109.9 1.58 .0397 9.92 
110.0 and greater 2.11 .0174 4.35 

Total 1.0000 250.00 
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TABLE 12.3.3 Observed and Expected Frequencies and (0, -Ed 2 /Ei  For Example 12.3.1 

Class Interval 

Observed 
Frequency 

(0i ) 

Expected 
Frequency 

(Ed (0i  - Ei )2 /Ei  

< 40.0 16 14.55 .145 
40.0 to 49.9 18 22.18 .788 
50.0 to 59.9 22 38.65 7.173 
60.0 to 69.9 51 49.62 .038 
70.0 to 79.9 62 50.48 2.629 
80.0 to 89.9 55 38.38 7.197 
90.0 to 99.9 22 21.88 .001 

100.0 to 109.9 4 9.92 3.533 
110.0 and greater 0 4.35 4.350 

Total 250 250.00 25.854 

sampling variability alone would make it highly unlikely that the observed and 
expected frequencies would agree perfectly. We wonder, then, if the discrepancies 
between the observed and expected frequencies are small enough that we feel it 
reasonable that they could have occurred by chance alone, when the null hypothesis 
is true. If they are of this magnitude, we will be unwilling to reject the null 
hypothesis that the sample came from a normally distributed population. 

If the discrepancies are so large that it does not seem reasonable that they 
could have occurred by chance alone when the null hypothesis is true, we will want 
to reject the null hypothesis. The criterion against which we judge whether the 
discrepancies are "large" or "small" is provided by the chi-square distribution. 

The observed and expected frequencies along with each value of (0, - E,)2/E, 
are shown in Table 12.3.3. The first entry in the last column, for example, is 
computed from (16 - 14.55)2/14.55 = .145. The other values of (0, - Ei )2/E, are 
computed in a similar manner. 

From Table 12.3.3 we see that X2  = E[(0, - Ei)2/Ei ] = 25.854. The appropri-
ate degrees of freedom are 9 (the number of groups or class intervals) - 3 (for the 
three restrictions: making EE, = EO„ and estimatingµ and o from the sample 
data) = 6. 

8. Statistical Decision When we compare X2  = 25.854 with values of X 2  in Table 
F, we see that it is larger than x.2995  = 18.548, so that we can reject the null 
hypothesis that the sample came from a normally distributed population at the 
.005 level of significance. In other words, the probability of obtaining a value of 
X2  as large as 25.854, when the null hypothesis is true, is less than 5 in 1000 
(p < .005). We say that such a rare event did not occur due to chance alone 
(when H0  is true), so we look for another explanation. The other explanation is 
that the null hypothesis is false. 

9. Conclusion We conclude that in the sampled population, inpatient occupancy 
ratios are not normally distributed. 
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Sometimes the parameters are specified in the null hypothesis. It should be 
noted that had the mean and variance of the population been specified as part of 
the null hypothesis in Example 12.3.1, we would not have had to estimate them 
from the sample and our degrees of freedom would have been 9 — 1 = 8. 

If parameters are estimated from ungrouped sample data rather than from 
grouped data as in our example, the distribution of X2  may not be sufficiently 
approximated by the chi-square distribution to give satisfactory results. The 
problem is discussed by Dahiya and Gurland (4) and Watson (5-7). The same 
problem is encountered when parameters are estimated independently of the 
sample, as discussed by Chase (8). 

Small Expected Frequencies Frequently in applications of the chi-square 
test the expected frequency for one or more categories will be small, perhaps much 
less than 1. In the literature the point is frequently made that the approximation 
of X2  to x2  is not strictly valid when some of the expected frequencies are small. 
There is disagreement among writers, however, over what size expected frequen-
cies are allowable before making some adjustment or abandoning ,y2  in favor of 
some alternative test. Some writers, especially the earlier ones, suggest lower limits 
of 10, whereas others suggest that all expected frequencies should be no less than 
5. Cochran (9, 10), writing in the early 1950s, suggested that for goodness-of-fit 
tests of unimodal distributions (such as the normal) the minimum expected 
frequency can be as low as 1. If, in practice, one encounters one or more expected 
frequencies less than 1, adjacent categories may be combined to achieve the 
suggested minimum. Combining reduces the number of categories and, therefore, 
the number of degrees of freedom. Cochran's suggestions appear to have been 
followed extensively by practitioners in recent years. More recent research on the 
subject of small expected frequencies includes that of Roscoe and Byars (11), 
Yarnold (12), Tate and Hyer (13), Slakter (14, 15), and Lewontin and Felsenstein 
(16). 

Alternatives Although one frequently encounters in the literature the use of 
chi-square to test for normality, it is not the most appropriate test to use when the 
hypothesized distribution is continuous. The Kolmogorov—Smirnov test, described 
in Chapter 13, was especially designed for goodness-of-fit tests involving continuous 
distributions. 

Example 
12.3.2 
The 
Binomial 
Distribution 

In a study designed to determine patient acceptance of a new pain reliever, 100 
physicians each selected a sample of 25 patients to participate in the study. Each 
patient, after trying the new pain relief for a specified period of time, was asked 
whether it was preferable to the pain reliever used regularly in the past. 

The results of the study are shown in Table 12.3.4. 
We are interested in determining whether or not these data are compatible 

with the hypothesis that they were drawn from a population that follows a binomial 
distribution. Again, we employ a chi-square goodness-of-fit test. 
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TABLE 12.3.4 Results of Study Described in Example 12.3.2 

Number of Patients 
Out of 25 
Preferring New 
Pain Reliever 

Number of 
Doctors Reporting 

This Number 

Total Number 
of Patients 

Preferring New 
Pain Reliever 

By Doctor 

0 5 0 
1 6 6 
2 8 16 
3 10 30 
4 10 40 
5 15 75 
6 17 102 
7 10 70 
8 10 80 
9 9 81 

10 or more 0 0 

Total 100 500 

Solution: Since the binomial parameter, p, is not specified, it must be estimated 
from the sample data. A total of 500 patients out of the 2500 patients participating 
in the study said they preferred the new pain reliever, so that our point estimate of 
p is fi = 500/2500 = .20. The expected relative frequencies can be obtained by 
evaluating the binomial function 

f(x) = ( 21.5  ).2x.825-x 

for x = 0, 1, 	, 25. For example, to find the probability that out of a sample of 25 
patients none would prefer the new pain reliever, when in the total population the 
true proportion preferring the new pain reliever is .2, we would evaluate 

f(0) = ( 205 ).20.825-0  

This can be done most easily by consulting Table B, where we see that P(X = 0) = 
.0038. The relative frequency of occurrence of samples of size 25 in which no 
patients prefer the new pain reliever is .0038. To obtain the corresponding 
expected frequency, we multiply .0038 by 100 to get .38. Similar calculations yield 
the remaining expected frequencies which, along with the observed frequencies, 
are shown in Table 12.3.5. We see in this table that the first expected frequency 
is less than 1, so that we follow Cochran's suggestion and combine this group 
with the second group. When we do this, all the expected frequencies are greater 
than 1. 
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TABLE 12.3.5 Calculations for Example 12.3.2 

Number of 
Patients Out of 25 
Preferring New 
Pain Reliever 

Number of 
Doctors Reporting 

This Number 
(Observed 

Frequency, 0.) 

Expected 
Relative 

Frequency 

Expected 
Frequency 

E. 

0 
1 

5111 
 

6 
.0038 
.0236 

.381 
2.36 2.74 

2 8 .0708 7.08 
3 10 .1358 13.58 
4 10 .1867 18.67 
5 15 .1960 19.60 
6 17 .1633 16.33 
7 10 .1109 11.09 
8 10 .0623 6.23 
9 9 .0295 2.95 

10 or more 0 .0173 1.73 

Total 100 1.0000 100.00 

From the data we compute 

(11 - 2.74)2 	(8 - 7.08)2 	(0 - 1.73)2  
X2  =  	 + 	+ 	 = 47.624 

2.74 	 7.08 	 1.73 

The appropriate degrees of freedom are 10 (the number of groups left after 
combining the first two) less 2, or 8. One degree of freedom is lost because we force 
the total of the expected frequencies to equal the total observed frequencies, and 
one degree of freedom is sacrificed because we estimate p from the sample data. 

We compare our computed X2  with the tabulated x2  with 8 degrees of 
freedom and find that it is significant at the .005 level of significance; that is, 
p < .005. We reject the null hypothesis that the data came from a binomial 
distribution. 

Example 	A hospital administrator wishes to test the null hypothesis that emergency admis- 
12.3.3 	sions follow a Poisson distribution with A = 3. Suppose that over a period of 90 
The Poisson days the numbers of emergency admissions were as shown in Table 12.3.6. 
Distribution 

The data of Table 12.3.6 are summarized in Table 12.3.7. 

Solution: To obtain the expected frequencies we first obtain the expected relative 
frequencies by evaluating the Poisson function given by Equation 4.4.1 for each 
entry in the left-hand column of Table 12.3.7. For example, the first expected 
relative frequency is obtained by evaluating 

e-3-o 

f(0) = 	01 



12.3 Tests of Goodness-of-Fit 	 515 

TABLE 12.3.6 Number of Emergency Admissions to a Hospital During a 90-Day Period 

Day 
Emergency 
Admissions Day 

Emergency 
Admissions Day 

Emergency 
Admissions Day 

Emergency 
Admissions 

1 2 24 5 47 4 70 3 
2 3 25 3 48 2 71 5 
3 4 26 2 49 2 72 4 
4 5 27 4 50 3 73 1 
5 3 28 4 51 4 74 1 
6 2 29 3 52 2 75 6 
7 3 30 5 53 3 76 3 
8 0 31 1 54 1 77 3 
9 1 32 3 55 2 78 5 

10 0 33 2 56 3 79 2 
11 1 34 4 57 2 80 1 
12 0 35 2 58 5 81 7 
13 6 36 5 59 2 82 7 
14 4 37 0 60 7 83 1 
15 4 38 6 61 8 84 5 
16 4 39 4 62 3 85 1 
17 3 40 4 63 1 86 4 
18 4 41 5 64 3 87 4 
19 3 42 1 65 1 88 9 
20 3 43 3 66 0 89 2 
21 3 44 1 67 3 90 3 
22 4 45 2 68 2 
23 3 46 3 69 1 

TABLE 12.3.7 Summary of Data Presented in Table 12.3.6 

Number of 
Number of 
	

Days This Number 
Emergency Admissions 	 of Emergency 
in a Day 
	 Admissions of Occurred 

0 	 5 
1 	 14 
2 	 15 
3 	 23 
4 	 16 
5 	 9 
6 	 3 
7 	 3 
8 	 1 
9 	 1 

10 or more 	 0 

Total 	 90 
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TABLE 12.3.8 Observed and Expected Frequencies and Components of X2  
For Example 12.3.3 

Number of 
Emergency 
Admissions 

Number of 
Days This 
Number 

Occurred, Oi  

Expected 
Relative 

Frequency 
Expected 
Frequency 

(Oi —E1)2 

Ei  

0 5 .050 4.50 .056 
1 14 .149 13.41 .026 
2 15 .224 20.16 1.321 
3 23 .224 20.16 .400 
4 16 .168 15.12 .051 
5 9 .101 9.09 .001 
6 3 .050 4.50 .500 
7 3 .022 1.98 .525 
8 1 .008 . 72 
9 1 } 2 .003 .27 } .108 .784 

10 or more 0 .001 .09 

Total 90 1.000 90.00 3.664 

We may use Table C of Appendix II to find this and all the other e xpected relative 
frequencies that we need. Each of the expected relative frequencies is multiplied by 
90 to obtain the corresponding expected frequencies. These values along with the 
observed and expected frequencies and the components of X2, (0, — E,)2/E„ are 
displayed in Table 12.3.8. In Table 12.3.8 we see that 

X2= E (0, — E,)2 1 	(5 —  4.50)2 	(2 — 1.08)2  
+ 	+ 	 — 3.664 

E, 	 4.50 	 1.08 

We also note that the last three expected frequencies are less than 1, so that they 
must be combined to avoid having any expected frequencies less than 1. This 
means that we have only nine effective categories for computing degrees of 
freedom. Since the parameter, A, was specified in the null hypothesis, we do not 
lose a degree of freedom for reasons of estimation, so that the appropriate degrees 
of freedom are 9 — 1 = 8. By consulting Table F of Appendix II, we find that the 
critical value of )(2  for 8 degrees of freedom and a = .05 is 15.507, so that we 
cannot reject the null hypothesis at the .05, or for that matter any reasonable level 
of significance (p > .10). We conclude, therefore, that emergency admissions at 
this hospital may follow a Poisson distribution with A = 3. At least the observed 
data do not cast any doubt on that hypothesis. 

If the parameter A has to be estimated from sample data, the estimate is 
obtained by multiplying each value x by its frequency, summing these products, 
and dividing the total by the sum of the frequencies. 
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Example 
12.3.4 

A certain human trait is thought to be inherited according to the ratio 1 : 2 : 1 for 
homozygous dominant, heterozygous, and homozygous recessive. An examination 
of a simple random sample of 200 individuals yielded the following distribution of 
the trait: dominant, 43; heterozygous, 125, and recessive, 32. We wish to know if 
these data provide sufficient evidence to cast doubt on the belief about the 
distribution of the trait. 

Solution: 

1. Data See statement of the example. 

2. Assumptions We assume that the data meet the requirements for the applica-
tion of the chi-square goodness-of-fit test. 

3. Hypotheses 

1/0: The trait is distributed according to the ratio 1 : 2 : 1 for homozygous 
dominant, heterozygous, and homozygous recessive. 

HA: The trait is not distributed according to the ratio 1 : 2 : 1. 

4. Test Statistic The test statistic is 

X2- 
 EF(o-E)21 

5. Distribution of the Test Statistic If H0  is true, X2  is distributed as chi-square 
with 2 degrees of freedom. 

6. Decision Rule Suppose we let the probability of committing a type I error be 
.05. Reject H0  if the computed value of X2  is equal to or greater than 5.991. 

7. Calculation of the Test Statistic If 1/0  is true, the expected frequencies for the 
three manifestations of the trait are 50, 100, and 50 for dominant, heterozy-
gous, and recessive, respectively. Consequently 

X2  = (43 — 50)2/50 + (125 — 100)2/100 + (32 — 50)2/50 = 13.71 

8. Statistical Decision Since 13.71 > 5.991, we reject H0. 

9. Conclusion We conclude that the trait is not distributed according to the ratio 
1 : 2 : 1. Since 13.71 > 10.597, the p value for the test is p < .005. 

EXERCISES 

12.3.1 The following table shows the distribution of uric acid determinations taken on 250 
patients. Test the goodness-of-fit of these data to a normal distribution with 

= 5.74 and u = 2.01. Let a = .01. 



51 8 Chapter 12 • The Chi-Square Distribution and the Analysis of Frequencies 

Uric Acid 
Determination 

Observed 
Frequency 

<1 1 
1 to 1.99 5 
2 to 2.99 15 
3 to 3.99 24 
4 to 4.99 43 
5 to 5.99 50 
6 to 6.99 45 
7 to 7.99 30 
8 to 8.99 22 
9 to 9.99 10 
10 or higher 5 

Total 250 

12.3.2 The following data were collected on 300 eight-year-old girls. Test, at the .05 level of 
significance, the null hypothesis that the data are drawn from a normally distributed 
population. Use the methods of Chapter 1 to compute the sample mean and 
standard deviation from grouped data. 

Height in 
Centimeters 

Observed 
Frequency 

114 to 115.9 5 
116 to 117.9 10 
118 to 119.9 14 
120 to 121.9 21 
122 to 123.9 30 
124 to 125.9 40 
126 to 127.9 45 
128 to 129.9 43 
130 to 131.9 42 
132 to 133.9 30 
134 to 135.9 11 
136 to 137.9 5 
138 to 139.9 4 

Total 300 

12.3.3 The face sheet of patients' records maintained in a local health department contains 
10 entries. A sample of 100 records revealed the following distribution of erroneous 
entries. 

Number of Erroneous 
Entries Out of 10 Number of Records 

0 8 
1 25 
2 32 
3 24 
4 10 
5 or more 1 

Total 100 

Test the goodness-of-fit of these data to the binomial distribution with p = .20. Find 
value for this test. 
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12.3.4 Jordan et al. (A-1) state that fragile sites are nonrandom, heritable sites on 
chromosomes that can be induced to form gaps, breaks, and rearrangements under 
specific conditions. They point out that one researcher has made the assumption 
that the distribution of events, X, pooled across individuals, follows a Poisson 
distribution, with the expected number of events per site as the mean and variance. 
To test this assumption, Jordan and her colleagues collected the following data on 
three pairs of like-sexed twins. 

Observed 
Frequency 	Expected 

X 	of X 	Frequency 

0 2070 1884.14 
1 224 455.96 
2 70 55.17 
3 22 4.45 
4 3 .27 
5 2 .01 
6 0 .00 
7 0 .00 
8 1 .00 
9 1 .00 

10 2 .00 
11 1 .00 
12 0 .00 
13 0 .00 
14 0 .00 
15 3 .00 
37 1 .00 

SOURCE: Diane K. Jordan, Trudy L. Burns, James E. 
Divelbiss, Robert F. Woolson, and Shivanand R. 
Patil, "Variability in Expression of Common Fragile 
Sites: In Search of a New Criterion," Human Genet-
ics, 85 (1990), 462-466. 

Can we conclude on the basis of these data that the previously stated assumption is 
valid? Let a = .01. 

12.3.5 The following are the numbers of a particular organism found in 100 samples of 
water from a pond. 

Number of Organisms 
Per Sample Frequency 

0 15 
1 30 
2 25 
3 20 
4 5 
5 4 
6 1 
7 0 

Total 100 

Test the null hypothesis that these data were drawn from a Poisson distribution. 
Determine the p value for this test. 
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12.3.6 A research team conducted a survey in which the subjects were adult smokers. Each 
subject in a sample of 200 was asked to indicate the extent to which he/she agreed 
with the statement: "I would like to quit smoking." The results were as follows: 

Response: 	Strongly agree 	Agree 	Disagree 	Strongly disagree 
Number 

Responding: 102 	 30 60 	8 

Can one conclude on the basis of these data that, in the sampled population, 
opinions are not equally distributed over the four levels of agreement? Let the 
probability of committing a type I error be .05 and find the p value. 

12.4 
Tests of Independence 

Another, and perhaps the most frequent, use of the chi-square distribution is to 
test the null hypothesis that two criteria of classification, when applied to the same 
set of entities, are independent. We say that two criteria of classification are 
independent if the distribution of one criterion is the same no matter what the 
distribution of the other criterion. For example, if socioeconomic status and area of 
residence of the inhabitants of a certain city are independent, we would expect to 
find the same proportion of families in the low, medium, and high socioeconomic 
groups in all areas of the city. 

The Contingency Table The classification, according to two criteria, of a set 
of entities, say people, can be shown by a table in which the r rows represent the 
various levels of one criterion of classification and the c columns represent the 
various levels of the second criterion. Such a table is generally called a contingency 
table. The classification according to two criteria of a finite population of entities is 
shown in Table 12.4.1. 

We will be interested in testing the null hypothesis that in the population the 
two criteria of classification are independent. If the hypothesis is rejected, we will 
conclude that the two criteria of classification are not independent. A sample of 
size n will be drawn from the population of entities, and the frequency of 
occurrence of entities in the sample corresponding to the cells formed by the 
intersections of the rows and columns of Table 12.4.1 along with the marginal 
totals will be displayed in a table such as Table 12.4.2. 

Calculating the Expected Frequencies The expected frequencies, under 
the null hypothesis that the two criteria of classification are independent, are 
calculated for each cell. 

We learned in Chapter 3 (see Equation 3.4.4) that if two events are indepen-
dent, the probability of their joint occurrence is equal to the product of their 
individual probabilities. Under the assumption of independence, for example, we 
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TABLE 12.4.1 Two-Way Classification of a Finite Population of Entities 

Second 
Criterion of 	 First Criterion of 

Classification 	 Classification Level 

Level 	 1 	2 	3 	.. • 	c 	Total 

1 	 N11 	N12 	N13 	 NI c 	NI. 
2 	 N21 	N22 	N23 	 N2c 
3 	 N31 	N32 	N33 	 N3c 	N3.  

• • . 	• 
. 	

. 

r 	 Nri 	1 v 
AT

c2 	Nc3 	 Nnc 	N r.  

Total 	 N I 	N.2 	N3 	 N.c 	N 

TABLE 12.4.2 Two-Way Classification of a Sample of Entities 

Second 
Criterion of 	 First Criterion of 

Classification 	 Classification Level 

Level 	 1 	2 	3 	 c 	Total 

1 	 n il 	n 12 	n 13 nlc
ni. 

2 	 n21 	n22 	n23 	 n2c 	n2. 

n 31 	n 32 	n33 	 n3c 	
n3. 

r 	 nri 	n r2 	n r3 	 me 	nr.  

Total 	 n.i 	 n.c  

compute the probability that one of the n subjects represented in Table 12.4.2 will 
be counted in row 1 and column 1 of the table (that is, in cell 11) by multiplying the 
probability that the subject will be counted in row 1 by the probability that the 
subject will be counted in column 1. In the notation of the table, the desired 
calculation is 

ni')( '1  
ln)kn 

To obtain the expected frequency for cell 11 we multiply this probability by the 
total number of subjects, n. That is, the expected frequency for cell 11 is given by 

(n 

n

i )( 

n

, 
— — )(n) 

Since the n in one of the denominators cancels into numerator n, this expression 
reduces to 

(ni.)(n.,) 
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In general, then, we see that to obtain the expected frequency for a given cell, we 
multiply the total of the row in which the cell is located by the total of the column 
in which the cell is located and divide the product by the grand total. 

Observed Versus Expected Frequencies The expected frequencies and 
observed frequencies are compared. If the discrepancy is sufficiently small, the null 
hypothesis is tenable. If the discrepancy is sufficiently large, the null hypothesis is 
rejected, and we conclude that the two criteria of classification are not indepen-
dent. The decision as to whether the discrepancy between observed and expected 
frequencies is sufficiently large to cause rejection of H0  will be made on the basis of 
the size of the quantity computed when we use Equation 12.3.1, where 0, and Ez  
refer, respectively, to the observed and expected frequencies in the cells of Table 
12.4.2. It would be more logical to designate the observed and expected frequencies 
in these cells by Oil  and Eta, but to keep the notation simple and to avoid the 
introduction of another formula, we have elected to use the simpler notation. It 
will be helpful to think of the cells as being numbered from 1 to k, where 1 refers 
to cell 11 and k refers to cell rc. It can be shown that X2  as defined in this manner 
is distributed approximately as X2  with (r — 1Xc — 1) degrees of freedom when 
the null hypothesis is true. If the computed value of X2  is equal to or larger than 
the tabulated value of X2  for some a, the null hypothesis is rejected at the a level 
of significance. The hypothesis testing procedure is illustrated with the following 
example. 

Example 
12.4.1 

The purpose of a study by Vermund et al. (A-2) was to investigate the hypothesis 
that HIV-infected women who are also infected with human papillomavirus (HPV), 
detected by molecular hybridization, are more likely to have cervical cytologic 
abnormalities than are women with only one or neither virus. The data shown in 
Table 12.4.3 were reported by the investigators. We wish to know if we may 
conclude that there is a relationship between HPV status and stage of HIV 
infection. 

TABLE 12.4.3 HPV Status and Stage of HIV Infection Among 96 Women 

HIV 

HPV 
Seropositive, 
Symptomatic 

Seropositive, 
Asymptomatic Seronegative Total 

Positive 
Negative 

23 
10 

4 
14 

10 
35 

37 
59 

Total 33 18 45 96 

SouRcE: Sten H. Vermund, Karen F. Kelley, Robert S. Klein, Anat R. Feingold, Klaus Schreiber, 
Gary Munk, and Robert D. Burk, "High Risk of Human Papillomavirus Infection and Cervical 
Squamous Intraepithelial Lesions Among Women with Symptomatic Human Immunodeficiency 
Virus Infection," American Journal of Obstetrics and Gynecology, 165 (1991), 392-400. 
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Solution: 

1. Data See Table 12.4.3. 

2. Assumptions We assume that the sample available for analysis is equivalent to 
a simple random sample drawn from the population of interest. 

3. Hypotheses 

Ho: HPV status and stage of HIV infection are independent. 

HA: The two variables are not independent. 

Let a = .05. 

4. Test Statistic The test statistic is 

X2= 
i[(0i Ei)2 1 
i=i 	Ez  

5. Distribution of the Test Statistic When Ho  is true X2  is distributed approxi-
mately as x2  with (r — 1Xc — 1) = (2 — 1X3 — 1) = (1)(2) = 2 degrees of 
freedom. 

6. Decision Rule Reject H0  if the computed value of X2  is equal to or greater 
than 5.991. 

7. Calculation of Test Statistic The expected frequency for the first cell is (33 X 
37)/96 = 12.72. The other expected frequencies are calculated in a similar 
manner. Observed and expected frequencies are displayed together in Table 
12.4.4. From the observed and expected frequencies we may compute 

X 
2 = E  (0, - Ez)2  

Ez  

(23 — 12.72)2 	(4 — 6.94)2 	(35 — 27.66)2  
	 + + 	  

12.72 	 6.94 	 27.66 

= 8.30805 + 1.24548 + • • • +1.94778 = 20.60081 

TABLE 12.4.4 Observed and Expected Frequencies for Example 12.4.1 

HPV 

HIV 

Total 
Seropositive, 
Symptomatic 

Seropositive, 
Asymptomatic Seronegative 

Positive 
Negative 

23 (12.72) 
10 (20.28) 

4 (6.94) 
14 (11.06) 

10 (17.34) 
35 (27.66) 

37 
59 

Total 33 18 45 96 
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8. Statistical Decision We reject H0  since 20.60081 is > 5.991. 

9. Conclusion We conclude that 1/0  is false, and that there is a relationship 
between HPV status and stage of HIV infection. Since 20.60081 is greater than 
10.597, p < .005. 

Small Expected Frequencies The problem of small expected frequencies 
discussed in the previous section may be encountered when analyzing the data of 
contingency tables. Although there is a lack of consensus on how to handle this 
problem, many authors currently follow the rule given by Cochran (10). He 
suggests that for contingency tables with more than 1 degree of freedom a 
minimum expectation of 1 is allowable if no more than 20 percent of the cells have 
expected frequencies of less than 5. To meet this rule, adjacent rows and/or 
adjacent columns may be combined when to do so is logical in light of other 
considerations. If X2  is based on less than 30 degrees of freedom, expected 
frequencies as small as 2 can be tolerated. We did not experience the problem of 
small expected frequencies in Example 12.4.1, since they were all greater than 5. 

The 2 X 2 Contingency Table Sometimes each of two criteria of classifica-
tion may be broken down into only two categories, or levels. When data are 
cross-classified in this manner, the result is a contingency table consisting of two 
rows and two columns. Such a table is commonly referred to as a 2 X 2 table. The 
value of X2  may be computed by first calculating the expected cell frequencies in 
the manner discussed above. In the case of a 2 X 2 contingency table, however, X2  
may be calculated by the following shortcut formula: 

n(ad — bc) 2  
X 2  = 	  

(a + c)(b + d)(a + b)(c + 
(12 .4.1) 

where a, b, c, and d are the observed cell frequencies as shown in Table 12.4.5. 
When we apply the (r — 1Xc — 1) rule for finding degrees of freedom to a 2 X 2 
table, the result is I degree of freedom. Let us illustrate this with an example. 

TABLE 12.4.5 A 2 x 2 Contingency Table 

Second Criterion 
of Classification 

First Criterion of Classification 

1 2 Total 

1 a b a+b 

2 c d c+d 

Total a+c b+d n 
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Example 
12.4.2 

According to Chow et al. (A-3) Enterobacter species are a major cause of nosocomial 
gram-negative bacteremia. Of interest is the ability of the organism to develop 
resistance to the antibiotic administered. Chow and his colleagues conducted a 
study of Enterobacter bacteremia to determine the clinical setting in which the 
condition occurs, the effect of previously received antibiotics on the antibiotic 
susceptibility profile of the Enterobacter isolated, the effect of antibiotic susceptibil-
ity and other factors on mortality, the incidence and mechanisms of emergence of 
resistance to antibiotic therapy, and the efficacy of combination therapy compared 
with monotherapy on the emergence of resistance. The subjects were 129 patients 
with Enterobacter bacteremia. The Enterobacter sp. were found to be multiresistant in 
37 of the 129 initial blood isolates. Multiresistant Enterobacter was found in blood 
isolates of the 103 patients who had received an antibiotic within two weeks prior 
to the initial positive blood culture. We wish to know if we can conclude that there 
is a relationship between multiresistant Enterobacter status and status with regard 
to previous use of antibiotics. 

Solution: 

1. Data From the information given we may construct the 2 X 2 contingency 
table displayed as Table 12.4.6. 

2. Assumptions We assume that the sample is equivalent to a simple random 
sample. 

3. Hypotheses 

H0: Status with regard to multiresistant Enterobacter and status with regard to 
previous use of antibiotics are independent. 

HA: The two variables are not independent. 

Let a = .05. 

TABLE 12.4.6 Contingency Table for the Data of Example 12.4.2 

Antibiotic 
in Past 2 Multiresistant Enterobacter Isolate 
Weeks Yes No Total 

Yes 36 67 103 
No 25 26 

Total 37 92 129 

SOURCE: Reproduced with permission, from Joseph W. Chow, Michael J. 
Fine, David M. Shlaes, John P. Quinn, David C. Hooper, Michael P. 
Johnson, Rueben Ramphal, Marilyn M. Wagener, Deborah K. Miyashiro, 
and Victor L. Yu, "Enterobacter Bacteremia: Clinical Features and Emer-
gence of Antibiotic Resistance During Therapy," Annals of Internal Medicine, 
115 (1991), 585-590. 
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4. Test Statistic The test statistic is 

X2= E 
k = 1 

 

— Ei )2 1 

Ez  

 

5. Distribution of the Test Statistic When 1/0  is true X2  is distributed approxi-
mately as ,Y 2  with (2 — 1X2 — 1) = (1X1) = 1 degree of freedom. 

6. Decision Rule Reject Ho  if the computed value of X2  is equal to or greater 
than 3.841. 

7. Calculation of the Test Statistic By Equation 12.4.1 we compute 

X2  
129[(36)(25) — (67)(1)12  

- 	  
(37)(92)(103)(26) 

= 9.8193 

8. Statistical Decision Since 9.8193 > 3.841, we reject 1/0. For this test, p < .005. 

9. Conclusion The researcher may conclude that there is a relationship between 
the two variables under study. 

Small Expected Frequencies The problems of how to handle small ex-
pected frequencies and small total sample sizes may arise in the analysis of 2 X 2 
contingency tables. Cochran (10) suggests that the x 2  test should not be used if 
n < 20 or if 20 < n < 40 and any expected frequency is less than 5. When n 40 
an expected cell frequency as small as 1 can be tolerated. 

Yates' Correction The observed frequencies in a contingency table are 
discrete and thereby give rise to a discrete statistic, X2, which is approximated by 
the x 2  distribution, which is continuous. Yates (17) in 1934 proposed a procedure 
for correcting for this in the case of 2 X 2 tables. The correction, as shown in 
Equation 12.4.2, consists of subtracting half the total number of observations from 
the absolute value of the quantity ad — be before squaring. That is, 

It is generally agreed that no correction is necessary for larger contingency tables. 
Although Yates' correction for 2 X 2 tables has been used extensively in the past, 
recent investigators, for example, Grizzle (18), Lancaster (19), Pearson (20), and 
Plackett (21), have questioned its use. The work of Grizzle, in particular, has 
strengthened the case against the use of the correction on the basis that it too 
often results in an overly conservative test; that is, the use of the correction too 
often leads to nonrejection of the null hypothesis. As a result some practitioners 
are recommending against its use. This seems to be a reasonable recommendation 
to follow. 
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We may, as a matter of interest, apply the correction to our current example. 
Using Equation 12.4.2 and the data from Table 12.4.6, we may compute 

129[1(36)(25) — (67)(1)1 — .5(129)]2  
Xc2orrected (37)(92)(103)(26) 

= 8.3575 

As might be expected, with a sample this large, the difference in the two results is 
not dramatic. 

Tests of Independence-Characteristics The characteristics of a chi-square 
test of independence that distinguish it from other chi-square tests are as follows: 

1. A single sample is selected from a population of interest and the subjects or 
objects are cross-classified on the basis of the two variables of interest. 

2. The rationale for calculating expected cell frequencies is based on the probabil-
ity law, which states that if two events (here the two criteria of classification) 
are independent, the probability of their joint occurrence is equal to the 
product of their individual probabilities. 

3. The hypotheses and conclusions are stated in terms of the independence (or 
lack of independence) of two variables. 

EXERCISES 

In the exercises that follow perform the test at the indicated level of significance and 
determine the p value. 

12.4.1 The object of a research project by de Figueiredo et al. (A-4) was to identify and 
measure the differences among the following three groups of psychiatric outpa-
tients: (1) those with family problems but without mental disorders, (2) those with 
both family problems and mental disorders, and (3) those with a mental disorder but 
without family problems. The following table shows the study subjects cross-classi-
fied by group membership and source of referral. 

Source of Referral 
Type of Problem 

1 2 3 

Self 15 37 16 
Family 25 25 17 
Mental health agency 14 40 27 
Court 11 4 1 
Other health agency 9 23 14 
Other 3 8 1 

SOURCE: John M. de Figueiredo, Heidi Boerstler, and Lisa 
O'Connell, "Conditions Not Attributable to a Mental Dis-
order: An Epidemiological Study of Family Problems," 
American Journal of Psychiatry, 148 (1991), 780-783. 

Do these data provide sufficient evidence to warrant the conclusion that problem 
category and source of referral are related? Let a = .01. 
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12.4.2 The sharing of injecting equipment among drug users was investigated by Klee 
et al. (A-5). As part of their research they collected the following information 
regarding use of needle exchanges of injecting drug users who were located either 
through treatment agency files or through outreach work designed to involve those 
not receiving counselling treatment. 

Use of Needle Exchange 
Regular 	Occasional 	Never 	Not known 

Agency 56 15 20 24 
Non-agency 19 6 16 53 

SOURCE: Hilary Klee, Jean Faugier, Cath Hayes, and Julie Morris, "The Sharing of 
Injecting Equipment Among Drug Users Attending Prescribing Clinics and Those Using 
Needle-Exchanges," British Journal of Addiction, 86 (1991), 217-223. © 1993, Society for the 
Study of Addiction to Alcohol and Other Drugs. 

May we conclude from these data that use of needle exchange and agency status are 
related? Let a = .01. 

12.4.3 Concern about acquired immunodeficiency syndrome (AIDS) was the motivation for 
a survey conducted by Professor Patty J. Hale (A-6) of the University of Virginia. She 
used a mailed questionnaire to survey businesses. Among the information she 
collected were size of business and whether or not the employer had provided AIDS 
education for employees. The results were reported: 

Number of Employees 

AIDS Education Provided? 

Yes No 

0-50 2 20 
50-500 5 11 
More than 500 11 5 

SOURCE: Adapted from Patty J. Hale, "Employer Response to 
AIDS in a Low-Prevalence Area," Family & Community Health, 13 
(No. 2, 1990), 38-45, with permission of Aspen Publishers, Inc., © 
1990. 

May we conclude on the basis of these data that whether or not a business provides 
AIDS education is independent of the size of the business? Let a = .05. 

12.4.4 Noting that Chlamydia trachomatis is the most prevalent sexually transmitted pathogen 
in many obstetric populations, Alger and Lovchik (A-7) conducted a study to 
determine the comparative efficacy of clindamycin and erythromycin in eradication 
of the pathogen from the lower genital tract in pregnant women and whether 
clindamycin is better tolerated. Out of 118 women treated, there were 70 whose 
compliance was good, and 8 of them experienced side effects. Thirty-nine main-
tained moderate compliance with 4 experiencing side effects, and of the 9 whose 
compliance was poor, 4 experienced side effects. May we conclude on the basis of 
these data that level of compliance and the experiencing of side effects are 
independent? Let a = .05. 

12.4.5 A sample of 500 college students participated in a study designed to evaluate the 
level of college students' knowledge of a certain group of common diseases. The 
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following table shows the students classified by major field of study and level of 
knowledge of the group of diseases. 

Major 

Knowledge of Diseases 

Good Poor Total 

Premedical 
Other 

31 
19 

91 
359 

122 
378 

Total 50 450 500 

Do these data suggest that there is a relationship between knowledge of the group 
of diseases and major field of study of the college students from which the present 
sample was drawn? Let a = .05. 

12.4.6 The following table shows the results of a survey in which the subjects were a sample 
of 300 adults residing in a certain metropolitan area. Each subject was asked to 
indicate which of three policies they favored with respect to smoking in public 
places. 

Policy Favored 

Smoking 
Highest No Allowed in No 
Education Restrictions Designated Smoking No 
Level on Smoking Areas Only at All Opinion Total 

College 
graduate 

5 44 23 3 75 

High school 
graduate 

15 100 30 5 150 

Grade school 
graduate 

15 40 10 10 75 

Total 35 184 63 18 300 

Can one conclude from these data that, in the sampled population, there is a 
relationship between level of education and attitude toward smoking in public 
places? Let a = .05. 

12.5 
Tests of Homogeneit 

A characteristic of the examples and exercises presented in the last section is that, 
in each case, the total sample was assumed to have been drawn before the entities 
were classified according to the two criteria of classification. That is, the observed 

number of entities falling into each cell was determined after the sample was 
drawn. As a result, the row and column totals are chance quantities not under the 
control of the investigator. We think of the sample drawn under these conditions as 
a single sample drawn from a single population. On occasion, however, either row 
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or column totals may be under the control of the investigator; that is, the 
investigator may specify that independent samples be drawn from each of several 
populations. In this case one set of marginal totals is said to be fixed, while the 
other set, corresponding to the criterion of classification applied to the samples, is 
random. The former procedure, as we have seen, leads to a chi-square test of 
independence. The latter situation leads to a chi-square test of homogeneity. The two 
situations not only involve different sampling procedures; they lead to different 
questions and null hypotheses. The test of independence is concerned with the 
question: Are the two criteria of classification independent? The homogeneity test 
is concerned with the question: Are the samples drawn from populations that are 
homogeneous with respect to some criterion of classification? In the latter case the 
null hypothesis states that the samples are drawn from the same population. 
Despite these differences in concept and sampling procedure, the two tests are 
mathematically identical, as we see when we consider the following example. 

Calculating Expected Frequencies Either the row categories or the column 
categories may represent the different populations from which the samples are 
drawn. If, for example, three populations are sampled, they may be designated as 
population 1, 2, and 3, in which case these labels may serve as either row or column 
headings. If the variable of interest has three categories, say A, B, and C, these 
labels may serve as headings for rows or columns, whichever is not used for the 
populations. If we use notation similar to that adopted for Table 12.4.2, the 
contingency table for this situation, with columns used to represent the popula-
tions, is shown as Table 12.5.1. Before computing our test statistic we need 
expected frequencies for each of the cells in Table 12.5.1. If the populations are 
indeed homogeneous, or, equivalently, if the samples are all drawn from the same 
population, with respect to the categories A, B, and C, our best estimate of the 
proportion in the combined population who belong to category A is n A jn. By the 
same token, if the three populations are homogeneous, we interpret this probabil-
ity as applying to each of the populations individually. For example, under the null 
hypothesis, nA  is our best estimate of the probability that a subject picked at 
random from the combined population will belong to category A. We would expect, 
then, to find n 1(n A /n) of those in the sample from population 1 to belong to 
category A, n .2(nA./n) of those in the sample from Population 2 to belong to 
category A, and n .3(n Ain) of those in the sample from population 3 to belong to 
category A. These calculations yield the expected frequencies for the first row of 

TABLE 12.5.1 A Contingency Table for Data for a Chi-Square Test of Homogeneity 

Variable Category 

Population 

1 2 3 Total 

A 
B 
C 

nAl 
n BI 
nct 

nA2 
nB2 
n  C2 

nA3 
n B3 
nc3 

nA.  
nB.  
nc.  

Total n.1 n.2 n.3 
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TABLE 12.5.2 Frequency of Histologic Cell Type by Age Group 

Cell Type 

Large Cell 	Keratinizing 	Small Cell 
Age Group Number of 	Nonkeratinizing 	Cell 	Nonkeratinizing 
(years) 	Patients 	Cell Type 	Type 	Cell Type 

30-39 34 18 7 9 
40-49 97 56 29 12 
50-59 144 83 38 23 
60-69 105 62 25 18 

Total 380 219 99 62 
SOURCE: Shoji Kodama, Koji Kanazawa, Shigeru Honma, and Kenichi Tanaka, "Age as a Prognostic 
Factor in Patients With Squamous Cell Carcinoma of the Uterine Cervix," Cancer, 68 (1991), 2481-2485. 

Table 12.5.1. Similar reasoning and calculations yield the expected frequencies for 
the other two rows. 

We see again that the shortcut procedure of multiplying appropriate marginal 
totals and dividing by the grand total yields the expected frequencies for the cells. 

From the data in Table 12.5.1 we compute the following test statistic: 

x2 = 	[(oi Ei)2 1 

=I 	Ei 

Example 
12.5.1 

Kodama et al. (A-8) studied the relationship between age and several prognostic 
factors in squamous cell carcinoma of the cervix. Among the data collected were 
the frequencies of histologic cell types in four age groups. The results are shown in 
Table 12.5.2. We wish to know if we may conclude that the populations represented 
by the four age-group samples are not homogeneous with respect to cell type. 

Solution: 

1. Data See Table 12.5.2. 

2. Assumptions We assume that we have a simple random sample from each one 
of the four populations of interest. 

3. Hypotheses 

1/0: The four populations are homogeneous with respect to cell type. 

HA: The four populations are not homogeneous with respect to cell type. 

Let a = .05. 

4. Test Statistic The test statistic is X2  = E[(0, — Ez )2/Ei ]. 

5. Distribution of Test Statistic If Ho  is true X2  is distributed approximately as X 2  

with (4 — 1X3 — 1) = (3X2) = 6 degrees of freedom. 

6. Decision Rule Reject 1/0  if the computed value of X2  is equal to or greater 
than 12.592. 
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TABLE 12.5.3 Observed and Expected Frequencies for Example 12.5.1 

Cell Type 

Large Cell 	Keratinizing 	Small Cell 
Age Group Number of Nonkeratinizing 	Cell 	Nonkeratinizing 
(years) 	Patients 	Cell Type 	Type 	Cell Type 

30-39 34 18 (19.59) 7 (8.86) 9 (5.55) 
40-49 97 56 (55.90) 29 (25.27) 12 (15.83) 
50-59 144 83 (82.99) 38 (37.52) 23 (23.49) 
60-69 105 62 (60.51) 25 (27.36) 18 (17.13) 

Total 380 219 99 62 

7. Calculation of Test Statistic The observed and expected frequencies are shown 
in Table 12.5.3. From these data we compute the following value of the test 
statistic: 

X2 — 	  
(18 — 19.59)2 + (7 — 8.86)2 + 

	+ 	  
(18 — 17.13)2  

- - •  
19.59 	 8.86 	 17.13 

= 4.444 

8. Statistical Decision Since 4.444 is less than the critical value of 12.592, we are 
unable to reject the null hypothesis. 

9. Conclusion We conclude that the four populations may be homogeneous with 
respect to cell type. 

Since 4.444 is less than 10.645, p > .10. 

Small Expected Frequencies The rules for small expected frequencies 
given in the previous section are applicable when carrying out a test of homogene-
ity. 

When the chi-square test of homogeneity is used to test the null hypothesis 
that two populations are homogeneous, and when there are only two levels of the 
criterion of classification, the data may be displayed in a 2 X 2 contingency table. 
The analysis is identical to the analysis of 2 X 2 tables given in Section 12.4. 

In summary, the chi-square test of homogeneity has the following characteris-
tics: 

1. Two or more populations are identified in advance and an independent sample 
is drawn from each. 

2. Sample subjects or objects are placed in appropriate categories of the variable 
of interest. 

3. The calculation of expected cell frequencies is based on the rationale that if 
the populations are homogeneous as stated in the null hypothesis, the best 
estimate of the probability that a subject or object will fall into a particular 
category of the variable of interest can be obtained by pooling the sample data. 
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4. The hypotheseses and conclusions are stated in terms of homogeneity (with 
respect to the variable of interest) of populations. 

Test of Homogeneity and Ho: pi  = p2  The chi-square test of homogeneity 
for the two-sample case provides an alternative method for testing the null 
hypothesis that two population proportions are equal. In Section 7.6, it will be 
recalled, we learned to test H0: p1  =p2  against HA: p1  # p2  by means of the 
statistic 

(PI — fi2) — (p1 — P2)0  
z 

P(1 — P) 	fi(1 — fi)  

ni 	
+ 

n 2 

where fi is obtained by pooling the data of the two independent samples available 
for analysis. 

Suppose, for example, that in a test of H0: p1  = p2  against HA: p1 = p2, the 
sample data were as follows: n1  = 100, fi l  = .60, n 2  = 120, )32  = .40. When we pool 
the sample data we have 

	

.60(100) + .40(120) 	108 
fi = 	 = 	= .4909 

100 + 120 	220 

and 

.60 — .40 
z — 	  

V  ( .4909)( .5091) + (.4909)(.5091) 

100 	 120 

— 2.95469 

which is significant at the .05 level since it is greater than the critical value of 1.96. 
If we wish to test the same hypothesis using the chi-square approach, our 

contingency table would be 

Characteristic Present 
Sample Yes No Total 

1 60 40 100 
2 48 72 120 

Total 108 112 220 

By Equation 12.4.1 we compute 

220[(60)(72) — (40)(48)]2  
X2  — 	 = 8.7302 

(108)(112)(100)(120) 

which is significant at the .05 level since it is greater than the critical value of 
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Expected 

	

counts 	are 	printed 	below observed 	counts 

	

C1 	C2 	C3 	Total 
1 23 	4 	10 37 

12.72 	6.94 	17.34 

2 10 	14 	35 59 
20.28 	11.06 	27.66 

Total 33 	18 	45 96 

ChiSq = 8.311 	+ 	1.244 	+ 	3.110 	+ 

df = 2 
5.212 	+ 	0.780 	+ 	1.950 	= 20.606 

Figure 12.5.1 Printout of computer analysis of Example 12.4.1 using 
MINITAB. 

3.841. We see, therefore, that we reach the same conclusion by both methods. This 
is not surprising since, as explained in Section 12.2, X2 ) = z2. We note that 
8.7302 = (2.95469)2  and that 3.841 = (1.96)2. 

Computer Analysis The computer may be used to advantage in calculating 
X2  for tests of independence and tests of homogeneity. Figure 12.5.1 shows the 
computer printout for Example 12.5.1 when the MINITAB program for computing 
X2  from contingency tables is used. To obtain the analysis and accompanying 

TABLE OF 	HPV BY HIV 
HPV 	 HIV 
FREQUENCY 
EXPECTED SERO POS SERO POS SERO NEG 

SYMPTOMA ASYMPTOM TOTAL 
POSITIVE 23 4 10 37 

12.7 6.9 17.3 
NEGATIVE 10 14 35 59 

20.3 11.1 27.7 
TOTAL 33 18 45 96 

 

L.  

 

J 

  

STATISTICS FOR TABLE OF HPV BY HIV 
STATISTIC 	DF 	VALUE 	PROB 

CHI- SQUARE 	2 	20.606 	0.000 

Figure 12.5.2 SAS ®  printout for the chi-square analysis of the data from Example 
12.4.1 
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printout we enter the data into columns 1, 2, and 3 as follows 

MTB > read c1-c3 
DATA > 23 4 10 
DATA > 10 14 35 
DATA > end 

We then issue the command 

MTB > chisquare c1-c3 

We may use SAS to obtain an analysis and printout of contingency table data by 
using the PROC FREQ statement. Figure 12.5.2 shows a partial SAS®  printout 
reflecting the analysis of the data of Example 12.4.1. 

EXERCISES 

In the exercises that follow perform the test at the indicated level of significance and 
determine the p value. 

12.5.1 In a telephone survey conducted by Professor Bikram Garcha (A-9) respondents 
were asked to indicate their level of agreement with the statement "Cigarette 
smoking should be banned in public places." The results were as follows. 

Level of Agreement 

Strongly 	 Strongly 
Gender 	Agree 	Agree 	Neutral 	Disagree 	Disagree 

Female 	40 	 38 	16 	 37 	 5 
Male 	 16 	 25 	11 	 25 	 11 

SOURCE: Bikram Garcha, Ph.D. Used by permission. 

Can we conclude on the basis of these data that males and females differ with 
respect to their levels of agreement on the banning of cigarette smoking in public 
places? Let a = .05. 

12.5.2 Dr. Lowell C. Wise (A-10) notes the impact on an organization's operation of what 
are called employee withdrawal behaviors: absenteeism, turnover, and systematic 
reduction in participation (SRP). He is especially interested in these phenomena as 
they occur in the nursing profession. He conducted research to investigate the 
interrelationships among different forms of withdrawal and the process by which 
employees choose among them and to learn more about SRP in particular. Subjects 
were 404 nurses hired during a two-year period in five hospitals. Among the data 
collected were the following, which show the subjects classified by type of withdrawal 
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behavior and hospital: 

Withdrawal Behavior 

Turnover 	SRP 
Hospital 	Only 	Only 	Both 	Neither 	Total 

1 	 35 	 41 	24 	26 	126 
2 	 14 	 8 	10 	 5 	 37 
3 	 13 	 4 	1 	 17 	 35 
4 	 29 	 16 	19 	 19 	 83 
5 	 54 	 9 	29 	31 	123 

Total 	 145 	 78 	83 	 98 	404 

SOURCE: Lowell C. Wise, "The Erosion of Nursing Resources: Employee Withdrawal Behaviors," 
Research in Nursing & Health, 16 (1993), 67-75. Copyright © 1993. Reprinted by permission of John 

Wiley & Sons, Inc. 

We wish to know if the five hospitals are homogeneous with respect to type of 
withdrawal behavior exhibited by its nurses. Let a = .05. 

12.5.3 The objective of s study by Sutker et al. (A-11) was to describe the long-term 
psychological and psychiatric sequelae of prisoner of war (POW) confinement 
against the backdrop of psychiatric evaluations of Korean conflict repatriates more 
than 35 years in the past. Subjects were 22 POWs and 22 combat veteran survivors 
of the Korean conflict. They were compared on measures of problem solving, 
personality characteristics, mood states, and psychiatric clinical diagnoses. Nineteen 
of the POWs reported problems with depression. The number of combat veterans 
reporting problems with depression was 9. Do these data provide sufficient evidence 
for us to conclude that the two populations are not homogeneous with respect to the 
incidence of problems of depression? Let a = .05. 

12.5.4 In an air pollution study, a random sample of 200 households was selected from each 
of two communities. A respondent in each household was asked whether or not 
anyone in the household was bothered by air pollution. The responses were as 
follows. 

Any Member of Household 
Bothered by Air Pollution? 

Community Yes No Total 

I 43 157 200 
II 81 119 200 

Total 124 276 400 

Can the researchers conclude that the two communities differ with respect to the 
variable of interest? Let a = .05. 

12.5.5 In a simple random sample of 250 industrial workers with cancer, researchers found 
that 102 had worked at jobs classified as "high exposure" with respect to suspected 
cancer-causing agents. Of the remainder, 84 had worked at "moderate exposure" 
jobs, and 64 had experienced no known exposure because of their jobs. In an 
independent simple random sample of 250 industrial workers from the same area 
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who had no history of cancer, 31 worked in "high exposure" jobs, 60 worked in 
"moderate exposure" jobs, and 1590 worked in jobs involving no known exposure to 
suspected cancer-causing agents. Does it appear from these data that persons 
working in jobs that expose them to suspected cancer-causing agents have an 
increased risk of contracting cancer? Let a = .05. 

12.6 
The Fisher Exact Test 

Sometimes we have data that can be summarized in a 2 X 2 contingency table, but 
these data are derived from very small samples. The chi-square test is not an 
appropriate method òf analysis if minimum expected frequency requirements are 
not met. If, for example, n is less than 20 or if n is between 20 and 40 and one of 
the expected frequencies is less than 5, the chi-square test should be avoided. 

A test that may be used when the size requirements of the chi-square test are 
not met was proposed in the mid-1930s almost simultaneously by Fisher (22, 23), 
Irwin (24), and Yates (25). The test has come to be known as the Fisher exact test. It 
is called exact because, if desired, it permits us to calculate the exact probability of 
obtaining the observed results or results that are more extreme. 

Data Arrangement When we use the Fisher exact test, we arrange the data 
in the form of a 2 X 2 contingency table like Table 12.6.1. We arrange the 
frequencies in such a way that A > B and choose the characteristic of interest so 
that a/A > b/B. 

Some theorists believe that Fisher's exact test is appropriate only when both 
marginal totals of Table 12.6.1 are fixed by the experiment. This specific model 
does not appear to arise very frequently in practice. Many experimenters, there-
fore, use the test when both marginal totals are not fixed. 

Assumptions The following are the assumptions for the Fisher exact test. 

1. The data consist of A sample observations from population 1 and B sample 
observations from population 2. 

2. The samples are random and independent. 

3. Each observation can be categorized as one of two mutually exclusive types. 

TABLE 12.6.1 A 2 x 2 Contingency Table for the Fisher Exact Test 

Sample 
With 

Characteristic 
Without 

Characteristic Total 

2 
a 
b 

A — a 
B—b 

A 

Total a+b A+B—a—b A+B 
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Hypotheses The following are the null hypotheses that may be tested and 
their alternatives. 

1. (Two-sided) 

1/0: The proportion with the characteristic of interest is the same in both 
populations; that is, p1  = p2  

HA: The proportion with the characteristic of interest is not the same in both 
populations; p1  * p2  

2. (One-sided) 

Ho: The proportion with the characteristic of interest in population 1 is less 
than or the same as the proportion in population 2; p1  p2  

HA: The proportion with the characteristic of interest is greater in population 
1 than in population 2; p1  > p2  

Test Statistic The test statistic is b, the number in sample 2 with the 
characteristic of interest. 

Decision Rule Finney (26) has prepared critical values of b for A < 15. 
Latscha (27) has extended Finney's tables to accommodate values of A up to 20. 
Appendix Table J gives these critical values of b for A between 3 and 20, inclusive. 
Significance levels of 0.05, 0.025, 0.01, and 0.005 are included. The specific decision 
rules are as follows: 

1. Two-Sided Test Enter Table J with A, B, and a. If the observed value of b is 
equal to or less than the integer in a given column, reject 1/0  at a level of 
significance equal to twice the significance level shown at the top of that 
column. For example, suppose A = 8, B = 7, a = 7, and the observed value of 
b is I. We can reject the null hypothesis at the 2(0.05) = 0.10, the 2(0.025) = 
0.05, and the 2(0.01) = 0.02 levels of significance, but not at the 2(0.005) = 0.01 
level. 

2. One-Sided Test Enter Table J with A, B, and a. If the observed value of b is 
less than or equal to the integer in a given column, reject Ho  at the level of 
significance shown at the top of that column. For example, suppose that 
A = 16, B = 8, a = 4, and the observed value of b is 3. We can reject the null 
hypothesis at the 0.05 and 0.025 levels of significance, but not at the 0.01 or 
0.005 levels. 

Large-Sample Approximation For sufficiently large samples we can test 
the null hypothesis of the equality of two population proportions by using the 
normal approximation. Compute 

(a/A) — (b/B) 
z 

0(1 — fi)(1/A + I/B) 
(12.6.1) 
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where 

fi = (a + b)/(A + B) 	 (12.6.2) 

and compare it for significance with appropriate critical values of the standard 
normal distribution. The use of the normal approximation is generally considered 
satisfactory if a, b, A — a, and B — b are all greater than or equal to 5. Alterna-
tively, when sample sizes are sufficiently large, we may test the null hypothesis by 
means of the chi-square test. 

Further Reading The Fisher exact test has been the subject of some 
controversy among statisticians. Some feel that the assumption of fixed marginal 
totals is unrealistic in most practical applications. The controversy then centers 
around whether the test is appropriate when both marginal totals are not fixed. 
For further discussion of this and other points, see the articles by Barnard (28, 29, 
30), Fisher (31), and Pearson (32). 

Sweetland (33) compared the results of using the chi-square test with those 
obtained using the Fisher exact test for samples of size A + B = 3 to A + B = 69. 
He found close agreement when A and B were close in size and the test was 
one-sided. 

Carr (34) presents an extension of the Fisher exact test to more than two 
samples of equal size and gives an example to demonstrate the calculations. Neave 
(35) presents the Fisher exact test in a new format; the test is treated as one of 
independence rather than of homogeneity. He has prepared extensive tables for 
use with his approach. 

The sensitivity of Fisher's exact test to minor perturbations in 2 X 2 contin-
gency tables is discussed by Dupont (36). 

Example 
12.6.1 

The purpose of a study by Crozier et al. (A-12) was to document that patients with 
motor complete injury, but preserved pin appreciation, in addition to light touch, 
below the zone of injury have better prognoses with regard to ambulation than 
patients with only light touch preserved. Subjects were 27 patients with upper 

TABLE 12.6.2 Ambulatory Status at Discharge of Group 1 
and Group 2 Patients Described in Example 12.6.1 

Ambulatory Status 

Group Total Nonambulatory Ambulatory 

1 18 16 2 
2 9 1 8 

Total 27 17 10 

SOURCE: Kelley S. Crozier, Virginia Graziani, John F. Ditunno, Jr., 
and Gerald J. Herbison, "Spinal Cord Injury: Prognosis for Ambula-
tion Based on Sensory Examination in Patients Who Are Initially 
Motor Complete," Archives of Physical Medicine and Rehabilitation, 72 
(February 1991), 119-121. 
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TABLE 12.6.3 Data of Table 12.6.2 Rearranged to Conform to the Layout 
of Table 12.6.1 

Group 

Ambulatory Status 

Nonambulatory Ambulatory Total 

1 
2 

16 = a 
1 = b 

2 = A — a 
8 = B — b 

18 = A 
9 = B 

Total 	17 = a + b 	10=A+B—a—b 	27 =A+B 

motor neuron lesions admitted for treatment within 72 hours of injury. They were 
divided into two groups: Group 1 were patients who had touch sensation but no pin 
appreciation below the zone of injury. Group 2 were patients who had partial or 
complete pin appreciation and light touch sensation below the zone of injury. Table 
12.6.2 shows the ambulatory status of these patients at time of discharge. We wish 
to know if we may conclude that patients classified as group 2 have a higher 
probability of ambulation at discharge than patients classified as group 1. 

Solution: 

1. Data The data as reported are shown in Table 12.6.2. Table 12.6.3 shows the 
data rearranged to conform to the layout of Table 12.6.1. Nonambulation is 
the characteristic of interest. 

2. Assumptions We presume that the assumptions for application of the Fisher 
exact test are met. 

3. Hypotheses 

H0: The rate of ambulation at discharge in a population of patients classified as 
group 2 is the same as or less than the rate of ambulation at discharge in a 
population of patients classified as group 1. 

HA: Group 2 patients have a higher rate of ambulation at discharge than group 
1 patients. 

4. Test Statistic The test statistic is the observed value of b as shown in Table 
12.6.3. 

5. Distribution of Test Statistic We determine the significance of b by consulting 
Table J. 

6. Decision Rule Suppose we let a = .01. The decision rule, then, is to reject H0  
if the observed value of b is equal to or less than 3, the value of b in Table.).  for 
A= 18, B = 9, a = 16, and a = .01. 

7. Calculation of Test Statistic The observed value of b, as shown in Table 12.6.3 
is 1. 

8. Statistical Decision Since 1 < 3, we reject 1/0. 

9. Conclusion Since we reject Ho, we conclude that the alternative hypothesis is 
true. That is, we conclude that the probability of ambulation is higher in a 
population of group 2 patients than in a population of group 1 patients. 
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Finding the p Value We see in Table J that when A = 18, B = 9, and a = 16, 
the value of b = 2 has an exact probability of occurring by chance alone, when 1/0  
is true, of .001. Since the observed value of b = 1 is less than 2, its p value is less 
than .001. 

EXERCISES 

12.6.1 Levin et al. (A-13) studied the expression of class I histocompatibility antigens 
(HLA) in transitional cell carcinoma (TCC) of the urinary bladder by the im-
munoperoxidase technique and correlated the expression with tumor differentiation 
and survival. The investigators state that because P2-microglobulin always is ex-
pressed on the cell surface with class I antigen, it has become a reliable marker for 
the presence of HLA class I antigens. Subjects were 33 patients with invasive TCC. 
The following table shows the subjects classified by expression of /32-microglobulin 
on tumor cells in relation to tumor differentiation. 

Tumor Differentiation 

Expression of it 2-Microglobulin 

Positive Negative 

Grade 1 5 1 
Grade 2 8 5 
Grade 3-4 6 8 

SOURCE: I. Levin, T. Klein, J. Goldstein, 0. Kuperman, J. Kanetti, and 
B. Klein, "Expression of Class I Histocompatibility Antigens in Transi-
tional Cell Carcinoma of the Urinary Bladder in Relation to Survival," 
Cancer, 68 (1991), 2591-2594. 

Combine grades 1 and 2 and test for a significant difference between grade 1-2 
versus grade 3-4 with respect to the proportion of positive responses. Let a = .05 
and find the p value. 

12.6.2 In a study by Schweizer et al. (A-14) patients with a history of difficulty discontinu-
ing long-term, daily benzodiazepine therapy were randomly assigned, under double-
blind conditions, to treatment with carbamazepine or placebo. A gradual taper off 
benzodiazepine therapy was then attempted. The following table shows the subjects' 
benzodiazepine status five weeks after taper. 

Benzodiazepine Use 

Treatment Group 	Yes 	No 

Carbamazepine 
	

1 	18 
Placebo 
	

8 	13 

SOURCE: Modified from Edward Schweizer, Karl 
Rickels, Warren G. Case, and David J. Greenblatt, 
"Carbamazepine Treatment in Patients Discontinu-
ing Long-term Benzodiazepine Therapy," Archives of 
General Psychiatry, 48 (1991), 448-452. Copyright 
1991, American Medical Association. 
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May we conclude, on the basis of these data, that carbamazepine is effective in 
reducing dependence on benzodiazepine at the end of five weeks of treatment? Let 
a = .05 and find the p value. 

12.6.3 Robinson and Abraham (A-15) conducted an experiment in which 12 mice were 
subjected to cardiac puncture with resulting hemorrhage. A control group of 13 
mice were subjected to cardiac puncture without blood withdrawal. After four days 
the mice were inoculated with aeruginosa organisms. Eight hemorrhaged mice died. 
None of the control mice died. On the basis of these data may we conclude that the 
chance of death is higher among mice exposed to aeruginosa organisms following 
hemorrhage than among those that do not hemorrhage? Let a = .01 and find the p 
value. 

12.7 
Relative Risk, Odds Ratio, 
and the Mantel — Haenszel Statistic 

In Chapter 8 we learned to use analysis of variance techniques to analyze data that 
arise from designed experiments, investigations in which at least one variable is 
manipulated in some way. Designed experiments, of course, are not the only 
sources of data that are of interest to clinicians and other health sciences profes-
sionals. Another important class of scientific investigation that is widely used is the 
observational study. 

DEFINITION 

An observational study is a scientific investigation in which neither the 
subjects under study nor any of the variables of interest are manipulated 
in any way. 

An observational study, in other words, may be defined simply as an investiga-
tion that is not an experiment. The simplest form of observational study is one in 
which there are only two variables of interest. One of the variables is called the risk 
factor, or independent variable, and the other variable is referred to as the outcome, 
or dependent variable. 

DEFINITION 

The term risk factor is used to designate a variable that is thought to be 
related to some outcome variable. The risk factor may be a suspected 
cause of some specific state of the outcome variable. 

In a particular investigation, for example, the outcome variable might be 
subjects' status relative to cancer and the risk factor might be their status with 
respect to cigarette smoking. The model is further simplified if the variables are 
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categorical with only two categories per variable. For the outcome variable the 
categories might be cancer present and cancer absent. With respect to the risk 
factor subjects might be categorized as smokers and nonsmokers. 

When the variables in observational studies are categorical the data pertaining 
to them may be displayed in a contingency table, and hence the inclusion of the 
topic in the present chapter. We shall limit our discussion to the situation in which 
the outcome variable and the risk factor are both dichotomous variables. 

Types of Observational Studies There are two basic types of observational 
studies, prospective studies and retrospective studies. 

DEFINITION 

A prospective study is an observational study in which two random samples of 
subjects are selected: One sample consists of subjects possessing the risk 
factor and the other sample consists of subjects who do not possess the risk 
factor. The subjects are followed into the future (that is, they are followed 
prospectively) and a record is kept on the number of subjects in each 
sample who, at some point in time, are classifiable into each of the 
categories of the outcome variable. 

The data resulting from a prospective study involving two dichotomous vari-
ables can be displayed in a 2 X 2 contingency table that usually provides informa-
tion regarding the number of subjects with and without the risk factor and the 
number who did and did not succumb to the disease of interest as well as the 
frequencies for each combination of categories of the two variables. 

DEFINITION 

A retrospective study is the reverse of a prospective study. The samples are 
selected from those falling into the categories of the outcome variable. The 
investigator then looks back (that is, takes a retrospective look) at the 
subjects and determines which ones have (or had) and which ones do not 
have (or did not have) the risk factor. 

From the data of a restrospective study we may construct a contingency table 
with frequencies similar to those that are possible for the data of a prospective 
study. 

In general, the prospective study is more expensive to conduct than the 
retrospective study. The prospective study, however, more closely resembles an 
experiment. 

Relative Risk The data resulting from a prospective study in which the 
dependent variable and the risk factor are both dichotomous may be displayed in a 
2 X 2 contingency table such as Table 12.7.1. The risk of the development of the 
disease among the subjects with the risk factor is a /(a + b). The risk of the 



544 	 Chapter 12 • The Chi-Square Distribution and the Analysis of Frequencies 

TABLE 12.7.1 Classification of a Sample of Subjects 
with Respect to Disease Status and Risk Factor 

Risk Factor 

Disease Status 

Present Absent Total at Risk 

Present 
Absent 

a 
c 

b 
d 

a + b 
c + d 

Total a+ c b+ d n 

development of the disease among the subjects without the risk factor is c/(c + d). 
We define relative risk as follows. 

DEFINITION 

Relative risk is the ratio of the risk of developing a disease among subjects 
with the risk factor to the risk of developing the disease among subjects 
without the risk factor. 

We represent the relative risk from a prospective study symbolically as 

a/(a + b) 

c/(c + 
(12.7.1) 

where a, b, c, and d are as defined in Table 12.7.1, and RR indicates that the 
relative risk is computed from a sample to be used as an estimate of the relative 
risk, RR, for the population from which the sample was drawn. 

We may construct a confidence interval for RR by the following method 
proposed by Miettinen (37, 38) 

100(1 — a)%CI = RR
I ±(za/vi) 	

(12.7.2) 

where za  is the two-sided z value corresponding to the chosen confidence coeffi-
cient and X2  is computed by Equation 12.4.1. 

Interpretation of RR The value of RR may range anywhere between zero 
and infinity. A value of zero indicates that there is no association between the 
status of the risk factor and the status of the dependent variable. In most cases the 
two possible states of the dependent variable are disease present and disease 
absent. We interpret a RR of 1 to mean that the risk of acquiring the disease is the 
same for those subjects with the risk factor and those without the risk factor. A 
value of RR greater than 1 indicates that the risk of acquiring the disease is 
greater among subjects with the risk factor than among subjects without the risk 
factor. A RR value that is less than 1 indicates less risk of acquiring the disease 
among subjects with the risk factor than among subjects without the risk factor. 
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For example, a risk factor of 2 is taken to mean that those subjects with the risk 
factor are twice as likely to acquire the disease as compared to subjects without the 
risk factor. 

We illustrate the calculation of relative risk by means of the following exam- 
ple. 

Example 
12.7.1 

In a prospective study of postnatal depression in women, Boyce et al. (A-16) 
assessed women at four points in time, at baseline (during the second trimester of 
pregnancy), and at one, three, and six months postpartum. The subjects were 
primiparous women cohabiting in a married or de facto stable relationship. Among 
the data collected were those shown in Table 12.7.2 in which the risk factor is 
having a spouse characterized as being indifferent and lacking in warmth and 
affection. A case is a woman who became depressed according to an established 
criterion. From the sample of subjects in the study, we wish to estimate the relative 
risk of becoming a case of postnatal depression at one month postpartum when the 
risk factor is present. 

Solution: By Equation 12.7.1 we compute 

5/26 .192308 
RR -  	 - 2.2 

8/90 .088889 

These data indicate that the risk of becoming a case of postnatal depression at one 
month postpartum when the spouse is indifferent and lacking in warmth and 
affection is 2.2 times as great as it is among women whose spouses do not exhibit 
these behaviors. 

We compute the 95 percent confidence interval for RR as follows. By Equation 
12.4.1. we compute from the data in Table 12.7.2 

116[(5)(82) - (21)(8)r 
X2  - 	 - 2.1682 

(13)(103)(26)(90) 

By Equation 12.7.2, the lower and upper confidence limits are, respectively, 
22' -1.96/ 1/2.1682 = .77 and 2.21+1.96/x/2.1682 = 6.28. Since the interval includes 1, we 
conclude, at the .05 level of significance, that the population odds ratio may be 1. 
In other words, we conclude that in the population, there may not be an increased 

TABLE 12.7.2 Subjects With and Without the Risk Factor who 
Became Cases of Postnatal Depression at 1 Month Postpartum 

Risk Factor Cases Noncases Total 

Present 
Absent 

5 
8 

21 
82 

26 
90 

Total 13 103 116 

SOURCE: Philip Boyce, Ian Hickie, and Gordon Parker, "Parents, Part-
ners or Personality? Risk Factors for Post-natal Depression," Journal of 
Affective Disorders, 21 (1991), 245-255. 
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risk of becoming a case of postnatal depression at one month postpartum when the 
spouse is indifferent and lacking in warmth and affection. 

Odds Ratio When the data to be analyzed come from a retrospective study, 
relative risk is not a meaningful measure for comparing two groups. As we have 
seen, a retrospective study is based on a sample of subjects with the disease (cases) 
and a separate sample of subjects without the disease (controls or noncases). We 
then retrospectively determine the distribution of the risk factor among the cases 
and controls. Given the results of a retrospective study involving two samples of 
subjects, cases and controls, we may display the data in a 2 X 2 table such as Table 
12.7.3, in which subjects are dichotomized with respect to the presence and absence 
of the risk factor. Note that the column headings in Table 12.7.3 differ from those 
in Table 12.7.1 to emphasize the fact that the data are from a retrospective study 
and that the subjects were selected because they were either cases or controls. 
When the data from a retrospective study are displayed as in Table 12.7.3, the ratio 
a /(a + b), for example, is not an estimate of the risk of disease for subjects with 
the risk factor. The appropriate measure for comparing cases and controls in a 
retrospective study is the odds ratio. As noted in Chapter 11, in order to understand 
the concept of the odds ratio, we must understand the term odds, which is 
frequently used by those who place bets on the outcomes of sporting events or 
participate in other types of gambling activities. Using probability terminology 
Freund (39) defines odds as follows. 

DEFINITION 

The odds for success are the ratio of the probability of success to the 
probability of failure 

We use this definition of odds to define two odds that we can calculate from 
data displayed as in Table 12.7.3: 

1. The odds of being a case (having the disease) to being a control (not having the 
disease) among subjects with the risk factor is [a /(a + b)]/[b/(a + b)] = a/b. 

2. The odds of being a case (having the disease) to being a control (not having the 
disease) among subjects without the risk factor is [c/(c + d)]/[d/(c + d)] = 
c/d. 

TABLE 12.7.3 Subjects of a Retrospective Study Classified 
According to Status Relative to a Risk Factor and Whether They 
Are Cases or Controls 

Risk Factor 

Sample 

Cases Controls Total 

Present 
Absent 

a 
c 

b 
d 

a + b 
c + d 

Total a+ c b+ d n 
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We now define the odds ratio that we may compute from the data of a 
retrospective study. We use the symbol OR to indicate that the measure is 
computed from sample data and used as an estimate of the population odds ratio, 
OR. 

DEFINITION 

The estimate of the population odds ratio is 

a/b ad 
OR = — — 

c/d be 

where a, b, c, and d are as defined in Table 12.7.3. 

(12.7.3) 

We may construct a confidence interval for OR by the following method 
proposed by Miettinen (37, 38) 

--1±(z„/ {,j) 
100(1 — a )%CI = OR 	 (12.7.4) 

where za  is the two-sided z value corresponding to the chosen confidence coeffi-
cient and X2  is computed by Equation 12.4.1. 

Interpretation of the Odds Ratio In the case of a rare disease the popula-
tion odds ratio provides a good approximation to the population relative risk. 
Consequently, the sample odds ratio, being an estimate of the population odds 
ratio, provides an indirect estimate of the population relative risk in the case of a 
rare disease. 

The odds ratio can assume values between zero and 00. A value of zero 
indicates no association between the risk factor and disease status. A value less 
than 1 indicates reduced odds of the disease among subjects with the risk factor. A 
value greater than 1 indicates increased odds of having the disease among subjects 
in whom the risk factor is present. 

Example 
12.7.2 

Cohen et al. (A-17) collected data on men who were booked through the Men's 
Central Jail, the main custody facility for men in Los Angeles County. Table 12.7.4 
shows 158 subjects classified as cases or noncases of syphilis infection and according 
to number of sexual partners (the risk factor) in the preceding 90 days. We wish to 
compare the odds of syphilis infection among those with three or more sexual 
partners in the preceding 90 days with the odds of syphilis infection among those 
with no sexual partners during the preceding 90 days. 

Solution: The odds ratio is the appropriate measure for answering the question 
posed. By Equation 12.7.3 we compute 

— (41)(49) 
OR = 	 = 3.46 

(58)( 10) 



548 	Chapter 12 • The Chi-Square Distribution and the Analysis of Frequencies 

TABLE 12.7.4 Subjects Classified According to Syphilis Infection 
Status and Number of Sexual Partners in the Preceding 90 Days 

Number of Sexual 
Partners (in last 	Syphilis Infection Status 

90 days) 	 Cases 	Noncases 	Total 

>_ 3 41 58 99 
0 10 49 59 

Total 51 107 158 
SOURCE: Deborah Cohen, Richard Scribner, John Clark, and David Cory, 
"The Potential Role of Custody Facilities in Controlling Sexually Trans-
mitted Diseases," American Journal of Public Health, 82 (1992), 552-556. 

We see that cases are 3.46 times as likely as noncases to have had three or more 
sexual partners in the preceding 90 days. 

We compute the 95 percent confidence interval for OR as follows. By Equation 
12.4.1 we compute from the data in Table 12.7.4 

158[(41)(49) - (58)(10)12  
X2  = 	  = 10.1223 

(51)(107)(99)(59) 

The lower and upper confidence limits for the population OR, respectively, are 

3.461- 1.96/ V10.1223 = 1.61 and 3.461+1.96/ VI0.1223 = 7.43. We conclude with 95 per-
cent confidence that the population OR is somewhere between 1.61 and 7.43. Since 
the interval does not include 1, we conclude that, in the population, cases are more 
likely than noncases to have had three or more sexual partners in the preceding 90 
days. 

The Mantel - Haenszel Statistic Frequently when we are studying the rela-
tionship between the status of some disease and the status of some risk factor, we 
are aware of another variable that may be associated either with the disease, with 
the risk factor, or with both in such a way that the true relationship between the 
disease status and the risk factor is masked. Such a variable is called a confounding 

variable. For example, experience might indicate the possibility that the relation-
ship between some disease and a suspected risk factor differs among different 
ethnic groups. We would then treat ethnic membership as a confounding variable. 
When they can be identified, it is desirable to control for confounding variables so 
that an unambiguous measure of the relationship between disease status and risk 
factor may be calculated. A technique for accomplishing this objective is the 
Mantel-Haenszel (40) procedure, so called in recognition of the two men who 
developed it. The procedure allows us to test the null hypothesis that there is no 
association between status with respect to disease and risk factor status. Initially 
used only with data from retrospective studies, the Mantel-Haenszel procedure 
is also appropriate for use with data from prospective studies, as discussed by 
Mantel (41). 
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In the application of the Mantel-Haenszel procedure, case and control subjects 
are assigned to strata corresponding to different values of the confounding vari-
able. The data are then analyzed within individual strata as well as across all 
strata. The discussion that follows assumes that the data under analysis are from a 
retrospective or a prospective study with case and noncase subjects classified 
according to whether they have or do not have the suspected risk factor. The 
confounding variable is categorical, with the different categories defining the 
strata. If the confounding variable is continuous it must be categorized. For 
example, if the suspected confounding variable is age, we might group subjects into 
mutually exclusive age categories. The data before stratification may be displayed 
as shown in Table 12.7.3. 

Application of the Mantel-Haenszel procedure consists of the following steps. 

1. Form k strata corresponding to the k categories of the confounding variable. 
Table 12.7.5 shows the data display for the ith stratum. 

2. For each stratum compute the expected frequency e, of the upper left-hand 
cell of Table 12.7.5 as follows: 

(ai+ bi)(ai + ci) 

 

(12.7.5) ei = 	 
n i  

3. For each stratum compute 

  

  

(ai + b.)(ci + di)(a,+  ci)(bi +  di) 
v i  - 

4(n, - 1) 

4. Compute the Mantel-Haenszel test statistic, xlm, as follows: 

(12.7.6) 

k 

E (a,- ei ) 
w  
AiNni 

E V i 

i=1 

2 

(12.7.7) 

TABLE 12.7.5 Subjects in the ith Stratum of a Confounding 
Variable Classified According to Status Relative to a 
Risk Factor and Whether They Are Cases or Controls 

Risk Factor 

Sample 

Cases Controls Total 

Present 
Absent 

a, 
c z  

b i  
d, 

a, + b, 
c, + d, 

Total a, + c, 6, + d, n, 
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5. Reject the null hypothesis of no association between disease status and sus-
pected risk factor status in the population if the computed value of xr2,4H  is 
equal to or greater than the critical value of the test statistic, which is the 
tabulated chi-square value for 1 degree of freedom and the chosen level of 
significance. 

Mantel — Haenszel Estimator of the Common Odds Ratio When we have 
k strata of data, each of which may be displayed in a table like Table 12.7.5, we may 
compute the Mantel—Haenszel estimator of the common odds ratio, ORMH, as 
follows 

k 

E (ai di /ni ) 
i=1  

ORmH  — k  

E (bi ci /ni ) 
i = 1 

(12.7.8) 

When we use the Mantel—Haenszel estimator given by Equation 12.7.4, we assume 
that in the population, the odds ratio is the same for each stratum. 

We illustrate the use of the Mantel—Haenszel statistics with the following 
examples. 

Example 
12.7.3 

Platt et al. (A-18) assessed the efficacy of perioperative antibiotic prophylaxis for 
surgery in a randomized, double-blind study of patients undergoing herniorrhaphy 
or surgery involving the breast. The patients received either cefonicid (1 g) or an 
identical-appearing placebo. Among the data collected are those in Table 12.7.6, 
which shows the patients classified according to type of surgery, whether they 

TABLE 12.7.6 Breast Surgery and Herniorrhaphy Patients Classified 
by Perioperative Antibiotic Prophylaxis and Need for Postoperative 
Antibiotic Treatment for any Reason 

Cefonicid Placebo 

Breast Surgery 
Number of patients 303 303 
Number receiving postoperative 
treatment for any reason 26 43 

Herniorrhaphy 
Number of patients 301 311 
Number receiving postoperative 
treatment for any reason 14 25 

SOURCE: R. Platt, D. F. Zaleznik, C. C. Hopkins, E. P. Dellinger, A. W. 
Karchmer, C. S. Bryan, J. F. Burke, M. A. Wikler, S. K. Marino, K. F. 
Holbrook, T. D. Tosteson, and M. R. Segal, "Perioperative Antibiotic Prophy-
laxis for Herniorrhaphy and Breast Surgery," New England Journal of Medicine, 
322 (1990), 153-160. Reprinted by permission of The New England Journal of 
Medicine. 
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received cefonicid or the placebo, and whether they received postoperative antibi-
otic treatment for any reason. We wish to know if we may conclude, on the basis of 
these data, that there is an association between perioperative antibiotic prophylaxis 
and need for postoperative antibiotic treatment among patients undergoing breast 
surgery or herniorrhaphy. We wish to control for type of surgical procedure. 

Solution: 

1. Data See Table 12.7.6. 

2. Assumptions We presume that the assumptions discussed earlier for the valid 
use of the Mantel—Haenszel statistic are met. 

3. Hypotheses 

H0: There is no association between perioperative antibiotic prophylaxis and 
need for postoperative antibiotic treatment among patients undergoing breast 
surgery or herniorrhaphy 
H1 : There is a relationship between the two variables. 

4. Test Statistic 

k 

E (a,— ei ) 
2 	i=1  

XMH 

E vi  
i=i 

2 

as given in Equation 12.7.7. 

5. Distribution of Test Statistic Chi-square with 1 degree of freedom. 

6. Decision Rule Suppose we let a = .05. Reject H0  if the computed value of the 
test statistic is greater than or equal to 3.841. 

7. Calculation of Test Statistic First we form two strata as shown in Table 12.7.7. 
By Equation 12.7.5 we compute the following expected frequencies: 

e, = (43 + 260)(43 + 26)/606 = (303)(69)/606 = 34.50 

e2  = (25 + 286)(25 + 14)/612 = (311)(39)/606 = 19.82 

By Equation 12.7.6 we compute 

v, = (303)(303)(69)(537)/(6062 )(606 — I) = 15.3112 

v2  = (311)(301)(39)(573)/(6122)(612 — 1) = 9.1418 
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TABLE 12.7.7 Patients Undergoing Breast Surgery or Herniorrhaphy 
Stratified by Type of Surgery and Classified Case Status and Risk 
Factor Status 

Stratum 1 (Breast Surgery) 

Risk Factor' 	Casesb 	Noncases 	Total 

Present 	 43 	 260 	303 
Absent 	 26 	 277 	303 

Total 	 69 	 537 	606 

Stratum 2 (Herniorrhaphy) 

Risk Factor" 	Cases" 	Noncases 	Total 

Present 	 25 	 286 	311 
Absent 	 14 	 287 	301 

Total 	 39 	 573 	612 
The risk factor is not receiving perioperative antibiotic prophylaxis. 

bA case is a patient who required postoperative antibiotic treatment for any 
reason. 

Finally by Equation 12.7.7 we compute 

(43 — 34.50)2  + (25 — 19.82)2  
	  — 4.05 A MH = 15.3112 + 9.1418 

8. Statistical Decision Since 4.05 > 3.841, we reject 1/0. 

9. Conclusion We conclude that there is a relationship between perioperative 
antibiotic prophylaxis and need for postoperative antibiotic treatment in 
patients undergoing breast surgery or herniorrhaphy. 

Since 3.841 < 4.05 < 5.024, the p value for this test is .05 > p > .025. 

We now illustrate the calculation of the Mantel—Haenszel estimator of the com-
mon odds ratio. 

Example 	Let us refer to the data in Table 12.7.6 and compute the common odds ratio. 
12.7.4 

Solution: From the stratified data in Table 12.7.7 we compute the numerator of 
the ratio as follows: 

(aiddni) + (a2d2/n2) = [(43)(277)/606] + [(25)(287)/6121 

= 31.378972 

The denominator of the ratio is 

(bici /n i) + (b2c2/n 2) = [(260)(26)/606] + [(286)(14)/612] 

= 17.697599 



12.7 Relative Risk, Odds Ratio, and the Mantel —Haenszel Statistic 	 553 

Now, by Equation 12.7.7, we compute the common odds ratio: 

ORMH  = 31.378972/17.697599 = 1.77 

From these results we estimate that patients undergoing breast surgery or 
herniorrhaphy who do not receive cefonicid are 1.77 times more likely to require 
postoperative antibiotic treatment for any reason than patients who do not receive 
cefonicid. 

EXERCISES 

12.7.1 Herrera et al. (A-19) reported the results of a study involving vitamin A supplemen-
tation among children aged 9 to 72 months in the Sudan. The investigators' 
objectives were to test the efficacy in reducing childhood mortality, morbidity, and 
malnutrition of large doses of vitamin A given every 6 months and to identify 
predictors for child death, including deficient dietary intake of vitamin A. Children 
in the study received every six months either vitamin A plus vitamin E (vitamin A 
group) or vitamin E alone (placebo group). The children were followed for 18 
months. There were 120 deaths among the 14,343 children in the vitamin A group 
and 112 deaths among the 14,149 children in the placebo group. Compute the 
relative risk of death among subjects not receiving vitamin A. Does it appear from 
these data that vitamin A lowers child mortality? 

12.7.2 The objective of a prospective study by Sepkowitz et al. (A-20) was to determine risk 
factors for the development of pneumothorax in patients with the acquired immun-
odeficiency syndrome (AIDS). Of 20 patients with pneumothorax, 18 had a history of 
aerosol pentamidine use. Among 1010 patients without pneumothorax, 336 had a 
history of aerosol pentamidine use. Compute the relative risk of aerosol pentami-
dine use in the development of pneumothorax in AIDS patients. 

12.7.3 In a study of the familial occurrence of gastric cancer, Zanghieri et al. (A-21) wished 
to determine whether the occurrence of gastric cancer among relatives was related 
to the histotype. They reported the following data: 

Histologic Type 
Diffuse Intestinal Total 

Familiality +' 13 12 25 
Familiality — 35 72 107 

Total 48 84 132 

°Number of patients with (familiality +) or without (familiality —) 
occurrence of gastric neoplasms among first-degree relatives. 

SOURCE: Gianni Zanghieri, Carmela Di Gregorio, Carla Sacchetti, 
Rossella Fante, Romano Sassatelli, Giacomo Cannizzo, Alfonso Car-
riers, and Maurizio Ponz de Leon, "Familial Occurrence of Gastric 
Cancer in the 2-Year Experience of a Population-Based Registry," 
Cancer, 66 (1990), 1047-1051. 
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Compute the odds ratio that the investigators could use to answer their question. 
Use the chi-square test of independence to determine if one may conclude that 
there is an association between familiality and histologic type. Let a = .05. 

12.7.4 Childs et al. (A-22) described the prevalence of antibodies to leptospires in an 
inner-city population and examined risk factors associated with seropositivity. The 
subjects were persons visiting a sexually transmitted disease clinic. Among the data 
collected were those shown in the following table, in which the subjects are 
cross-classified according to age and status with regard to antibody titer to lep-
tospires. 

Antibody Titers to Leptospires 

Age 	> 200 	< 200 	Total 

< 19 	157 	695 	852 
19 	27 	271 	298 

Total 	184 	966 	1150 

SOURCE: James E. Childs, ScD. Used by 
permission. 

What is the estimated relative risk of antibody titers 	200 among subjects under 
19 years of age compared to those 19 or older? Compute the 95 percent confidence 
interval for the relative risk. 

12.7.5 Telzak et al. (A-23) reported the following data for patients with diabetes who were 
exposed to Salmonella enteritidis through either a low-sodium diet (high exposure) or 
a regular-sodium diet (low exposure). Cases are those who became infected with the 
organism. 

High Exposure 	 Low Exposure 

Cases 	Controls 	Cases 	Controls 
(n = 31) 	(n = 23) 	(n = 44) 	(n = 57) 

Number with diabetes 
	

6 	 2 	 11 	 5 

SOURCE: Edward E. Telzak, Michele S. Zweig Greenberg, Lawrence D. Budnick, Tejinder Singh, 
Steve Blum, "Diabetes Mellitus—A Newly Described Risk Factor for Infection from Salmo 
enteritidis," The Journal of Infectious Diseases, 164 (1991), 538-541. Published by the Universit 
Chicago. © 1991 by The University of Chicago. All rights reserved. 

Compute the Mantel—Haenszel common odds ratio with stratification by exposure 
type. Use the Mantel—Haenszel test statistic to determine if we can conclude that 
there is an association between the risk factor and infection. Let a = .05. 

12.7.6 Noting that in studies of patients with benign prostatic hyperplasia (BPH), men 
undergoing transurethral resection of the prostate (TURP) had higher long-term 
mortality than men undergoing open prostatectomy, Concato et al. (A-24) specu-
lated that increased mortality might be caused by older age and greater severity of 
comorbid disease at the time of surgery rather than by the transurethral procedure 
itself. To test their hypothesis, the investigators examined, in a retrospective study, 
the experiences and characteristics of men who underwent TURP or open prostatec-
tomy over a three-year period. Subjects were categorized into three composite 
age-comorbidity stages according to baseline characteristics that cogently affect 
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prognosis. Among the results reported were those regarding mortality and compos-
ite stage shown in the following table. 

Composite 
Stage 

Treatment Group 

TU RF' Open  
Deaths No. of Subjects Deaths No. of Subjects 

I 
II 
III 

8 
7 
7 

89 
23 
14 

9 
7 
1 

101 
22 
3 

Total 22 126 17 126 

SOURCE: Modified from John Concato, Ralph I. Horwitz, Alvan R. Feinstein, Joann G. Elmore, and 
Stephen F. Schiff, "Problems of Comorbidity in Mortality after Prostatectomy," Journal of the 
American Medical Association, 267 (1992), 1077-1082. Copyright 1992, American Medical Association. 

Use the Mantel—Haenszel procedures to compute the common odds ratio and to 
test the null hypothesis of no relationship between treatment and mortality with 
stratification by composite stage. Let a = .05. 

12.8 
Summary, 

In this chapter some uses of the versatile chi-square distribution are discussed. 
Chi-square goodness-of-fit tests applied to the normal, binomial, and Poisson 
distributions are presented. We see that the procedure consists of computing a 
statistic 

(0, - E,)2  
X2= 

	I 

that measures the discrepancy between the observed (0,) and expected (Es ) 
frequencies of occurrence of values in certain discrete categories. When the 
appropriate null hypothesis is true, this quantity is distributed approximately as 
x2. When X2  is greater than or equal to the tabulated value of X2  for some a, the 
null hypothesis is rejected at the a level of significance. 

Tests of independence and tests of homogeneity are also discussed in this 
chapter. The tests are mathematically equivalent but conceptually different. Again, 
these tests essentially test the goodness-of-fit of observed data to expectation under 
hypotheses, respectively, of independence of two criteria of classifying the data and 
the homogeneity of proportions among two or more groups. 
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In addition, we discussed and illustrated in this chapter four other techniques 
for analyzing frequency data that can be presented in the form of a 2 X 2 
contingency table: the Fisher exact test, the odds ratio, relative risk, and the 
Mantel—Haenszel procedure. 

REVIEW QUESTIONS AND EXERCISES 

1. Explain how the chi-square distribution may be derived. 

2. What are the mean and variance of the chi-square distribution? 

3. Explain how the degrees of freedom are computed for the chi-square goodness-of-fit 
tests. 

4. State Cochran's rule for small expected frequencies in goodness-of-fit tests. 

5. How does one adjust for small expected frequencies? 

6. What is a contingency table? 

7. How are the degrees of freedom computed when an X2  value is computed from a 
contingency table? 

8. Explain the rationale behind the method of computing the expected frequencies in a 
test of independence. 

9. Explain the difference between a test of independence and a test of homogeneity. 

10. Explain the rationale behind the method of computing the expected frequencies in a 
test of homogeneity. 

11. When do researchers use the Fisher exact test rather than the chi-square test? 

12. Define the following: 

a. Observational study 	f. Relative risk 
b. Risk factor 	 g. Odds 
c. Outcome 	 h. Odds ratio 
d. Retrospective study 	i. Confounding variable 
e. Prospective study 

13. Under what conditions is the Mantel—Haenszel test appropriate? 

14. Explain how researchers interpret the following measures: 

a. Relative risk 
b. Odds ratio 
c. Mantel—Haenszel common odds ratio 

15. Sinton et al. (A-25) reported the following data regarding the incidence of antisperm 
antibodies in female infertility patients and their husbands. 
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Antibody Status 
of Husband 

Antibody Status of Wife 

 

Positive 	Negative 

Positive 	 17 	 34 
Negative 	 10 	 64 

SOURCE: Eleanor B. Sinton, D. C. Riemann, and Michael E. 
Ashton, "Antisperm Antibody Detection Using Concurrent 
Cytofluorometry and Indirect Immunofluorescence Mi-
croscopy," American Journal of Clinical Pathology, 95 (1991), 
242-246. 

Can we conclude on the basis of these data that antibody status in wives is independent 
of antibody status in their husbands? Let a = .05. 

16. Goodyer and Altham (A-26) compared the number of lifetime exit events occurring over 
the lives of children between the ages of 7 and 16 years who recently experienced new 
onset episodes of anxiety and depression (cases) with the incidence among community 
controls matched by age and social class. An exit event is defined as an event that results 
in a permanent removal of an individual from a person's social field. Among 100 cases 42 
had experienced two or more exit events. The number with two or more exit events 
among the 100 controls was 25. May we conclude on the basis of these data that the two 
populations are not homogeneous with respect to exit event experience? Let a = .05. 

17. A sample of 150 chronic carriers of a certain antigen and a sample of 500 noncarriers 
revealed the following blood group distributions. 

Blood Group Carriers Noncarriers Total 

0 72 230 302 
A 54 192 246 
B 16 63 79 
AB 8 15 23 

Total 150 500 650 

Can one conclude from these data that the two populations from which the samples 
were drawn differ with respect to blood group distribution? Let a = .05. What is the p 

value for this test? 

18. The following table shows 200 males classified according to social class and headache 
status. 

Headache 
Group 

Social Class 
A B C Total 

No headache 
(in previous year) 

6 30 22 58 

Simple headache 11 35 17 63 
Unilateral headache 

(nonmigraine) 
4 19 14 37 

Migraine 5 25 12 42 

Total 26 109 65 200 
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Do these data provide sufficient evidence to indicate that headache status and social 

class are related? Let a = .05. What is the p value for this test? 

19. The following is the frequency distribution of scores made on an aptitude test by 175 
applicants to a physical therapy training facility. 

Score Number of Applicants 

10-14 3 
15-19 8 
20-24 13 
25-29 17 
30-34 19 
35-39 25 
40-44 28 
45-49 20 
50-54 18 
55-59 12 
60-64 8 
65-69 4 

Total 175 

Do these data provide sufficient evidence to indicate that the population of scores is not 
normally distributed? Let a = .05. What is the p value for this test? 

20. A local health department sponsored a venereal disease (VD) information program that 
was open to high school juniors and seniors who ranged in age from 16 through 19 years. 
The program director believed that each age level was equally interested in knowing 
more about VD. Since each age level was about equally represented in the area served, 
she felt that equal interest in VD would be reflected by equal age-level attendance at 
the program. The age breakdown of those attending was as follows: 

Age Number Attending 

16 26 
17 50 
18 44 
19 40 

Are these data incompatible with the program director's belief that students in the four 
age levels are equally interested in VD? Let a = .05. What is the p value for this test? 

21. A survey of children under 15 years of age residing in the inner city area of a large city 
were classified according to ethnic group and hemoglobin level. The results were as 
follows: 

Ethnic Hemoglobin Level (g / 100 ml) 

Group 10.0 or greater 9.0-9.9 < 9.0 Total 

A 80 100 20 200 
B 99 190 96 385 
C 70 30 10 110 

Total 249 320 126 695 
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Do these data provide sufficient evidence to indicate, at the .05 level of significance, that 
the two variables are related? What is the p value for this test? 

22. A sample of reported cases of mumps in preschool children showed the following 
distribution by age: 

Age (Years) 	Number of Cases 

	

Under 1 	 6 

	

1 	 20 

	

2 	 35 

	

3 	 41 

	

4 	 48 

Total 	 150 

Test the hypothesis that cases occur with equal frequency in the five age categories. Let 
a = .05. What is the p value for this test? 

23. Each of a sample of 250 men drawn from a population of suspected joint disease victims 
was asked which of three symptoms bother him most. The same question was asked of a 
sample of 300 suspected women joint disease victims. The results were as follows: 

Symptom by Which 
Bothered Most 
	

Men 	Women 

Morning stiffness 	111 	102 
Nocturnal pain 	 59 	73 
Joint swelling 	 80 	125 

Total 
	

250 	300 

Do these data provide sufficient evidence to indicate that the two populations are not 
homogeneous with respect to major symptoms? Let a = .05. What is the p value for this 
test? 

For each of the following situations, indicate whether a null hypothesis of homo-
geneity or a null hypothesis of independence is appropriate. 

24. A researcher wished to compare the status of three communities with respect to 
immunity against polio in preschool children. A sample of preschool children was drawn 
from each of the three communities. 

25. In a study of the relationship between smoking and respiratory illness, a random sample 
of adults were classified according to consumption of tobacco and extent of respiratory 
symptoms. 

26. A physician who wished to know more about the relationship between smoking and birth 
defects studies the health records of a sample of mothers and their children, including 
stillbirths and spontaneously aborted fetuses where possible. 

27. A health research team believes that the incidence of depression is higher among people 
with hypoglycemia than among people who do not suffer from this condition. 
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28. In a simple random sample of 200 patients undergoing therapy at a drug abuse 
treatment center, 60 percent belonged to ethnic group I. The remainder belonged to 
ethnic group II. In ethnic group I, 60 were being treated for alcohol abuse (A), 25 for 
marijuana abuse (B), and 20 for abuse of heroin, illegal methadone, or some other 
opioid (C). The remainder had abused barbiturates, cocaine, amphetamines, hallucino-
gens, or some other nonopioid besides marijuana (D). In ethnic group II the abused drug 

category and the numbers involved were as follows: 

A(28) 	B(32) 	C(13) 	D(the remainder) 

Can one conclude from these data that there is a relationship between ethnic group and 
choice of drug to abuse? Let a = .05 and find the p value. 

29. Volm and Mattern (A-27) analyzed human non-small cell lung carcinomas of previously 
untreated patients for expression of thymidylate synthase (TS) using immunohistochem-
istry. Thirteen patients were treated with combination chemotherapy. Seven of the 8 
tumors that were TS-positive were clinically progressive, whereas 4 out of 5 tumors that 
were TS-negative showed clinical remission after chemotherapy. What statistical tech-
niques studied in this chapter would be appropriate to analyze these data? What are the 
variables involved? Are the variables quantitative or qualitative? What null and alterna-
tive hypotheses are appropriate? If you think you have enough information to do so, 
carry out a complete hypothesis test. What are your conclusions? 

30. The monthly pattern of distribution of endoscopically diagnosed duodenal ulcer disease 
was evaluated for the years 1975-1989 by Braverman et al. (A-28). Statistical analysis 
revealed differences for certain months. Slightly more of the 2020 patients with chronic 
duodenal bulb deformity presented in June and November, while more of the 1035 
patients with acute duodenal ulcer presented in July, November, and December (p < 
.001). What statistical technique studied in this chapter is appropriate for analyzing 
these data? What null and alternative hypotheses are appropriate? Describe the vari-
ables as to whether they are continuous, discrete, quantitative, or qualitative. What 
conclusions may be drawn from the given information? 

31. Friedler et al. (A-29) conducted a prospective study on the incidence of intrauterine 
pathology diagnosed by hysteroscopy in 147 women who underwent dilatation and sharp 
curettage due to spontaneous first trimester abortion. Sixteen out of 98 subjects who 
had only one abortion were found to have intrauterine adhesions (IUA). The incidence of 
IUA after two abortions was 3 out of 21, and after three or more spontaneous abortions 
it was 9 out of 28. What statistical technique studied in this chapter would be 
appropriate for analyzing these data? Describe the variables involved as to whether they 
are continuous, discrete, quantitative, or qualitative. What null and alternative hypothe-
ses are appropriate? If you think you have sufficient information conduct a complete 
hypothesis test. What are your conclusions? 

32. Lehrer et al. (A-30) examined the relationship between pregnancy-induced hypertension 
and asthma. The subjects were 24,115 women without a history of chronic systemic 
hypertension who were delivered of live born and stillborn infants at a large medical 
center during a four-year period. The authors reported an upward trend in the incidence 
of asthma during pregnancy in women without, with moderate, and with severe 
pregnancy-induced hypertension (Mantel—Haenszel chi-square = 11.8, p = .001). Char-
acterize this study in terms of whether it is observational, prospective, or retrospective. 
Describe each variable involved as to whether it is continuous, discrete, quantitative, 
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qualitative, a risk factor, or a confounding variable. Explain the meaning of the reported 
statistic. What are your conclusions based on the given information? 

33. The objective of a study by Fratiglioni et al. (A-31) was to determine the risk factors for 
late-onset Alzheimer's disease using a case-control approach. Ninety-eight cases and 216 
controls were gathered from an ongoing population survey on aging and dementia in 
Stockholm. The authors reported relative risk statistics and confidence intervals for the 
following variables: at least one first-degree relative affected by dementia (3.2; 1.8-5.7), 
alcohol abuse (4.4; 1.4-13.8), manual work for men (5.3; 1.1-25.5). Characterize this 
study as to whether it is observational, prospective, or retrospective. Describe the 
variables as to whether they are continuous, discrete, quantitative, qualitative, a risk 
factor, or a confounding variable. Explain the meaning of the reported statistics. What 
are your conclusions based on the given information? 

34. Beuret et al. (A-32) conducted a study to determine the influence of 38 variables on 
outcome after cardiopulmonary resuscitation (CPR) and to assess neuropsychological 
status in long-term survivors. The charts of 181 consecutive patients resuscitated in a 
1100-bed university hospital over a two-year period were analyzed. Of the 181 resusci-
tated patients, 23 could be discharged. The authors reported odds ratios and confidence 
intervals on the following variables that significantly affected outcome: presence of shock 
or renal failure before cardiac arrest (10.6; 1.3-85.8 and 13.8; 1.7-109.2), administration 
of epinephrine (11.2; 3.2-39.2), and CPR of more than 15 minutes' duration (4.9; 
1.7-13.7). Characterize this study as to whether it is observational, prospective, or 
retrospective. Describe the variables as to whether they are continuous, discrete, 
quantitative, qualitative, a risk factor, or a confounding variable. Explain the meaning 
of the reported odds ratios. 

Exercises for Use With the Large Data Sets Available on Computer Disk from the Publisher 

1. Refer to the data on smoking, alcohol consumption, blood pressure, and respiratory 
disease among 1200 adults (SMOKING, Disk 2). The variables are as follows: 

Sex (A): 
Smoking status (B): 
Drinking level (C): 

Symptoms of respiratory disease (D): 
High blood pressure status (E): 

1 = male, 0 = female 

0 = nonsmoker, 1 = smoker 
0 = nondrinker 

1 = light to moderate drinker 
2 = heavy drinker 

1 = present, 0 = absent 

1 = present, 0 = absent 

Select a simple random sample of size 100 from this population and carry out an analysis 
to see if you can conclude that there is a relationship between smoking status and 
symptoms of respiratory disease. Let a = .05 and determine the p value for your test. 
Compare your results with those of your classmates. 

2. Refer to Exercise 1. Select a simple random sample of size 100 from the population and 
carry out a test to see if you can conclude that there is a relationship between drinking 
status and high blood pressure status in the population. Let a = .05 and determine the p 
value. Compare your results with those of your classmates. 

3. Refer to Exercise 1. Select a simple random sample of size 100 from the population and 
carry out a test to see if you can conclude that there is a relationship between sex and 
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smoking status in the population. Let a = .05 and determine the p value. Compare your 

results with those of your classmates. 

4. Refer to Exercise 1. Select a simple random sample of size 100 from the population and 

carry out a test to see if you can conclude that there is a relationship between sex and 

drinking level in the population. Let a = .05 and find the p value. Compare your results 

with those of your classmates. 
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13.1 
Introduction  

4 

Most of the statistical inference procedures we have discussed up to this point are 
classified as parametric statistics. One exception is our uses of chi-square: as a test of 

goodness-of-fit and as a test of independence. These uses of chi-square come under 
the heading of nonparametric statistics. 
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The obvious question now is: What is the difference? In answer, let us recall 

the nature of the inferential procedures that we have categorized as parametric. In 

each case, our interest was focused on estimating or testing a hypothesis about one 

or more population parameters. Furthermore, central to these procedures was a 

knowledge of the functional form of the population from which were drawn the 

samples providing the basis for the inference. 

An example of a parametric statistical test is the widely used t test. The most 

common uses of this test are for testing a hypothesis about a single population 

mean or the difference between two population means. One of the assumptions 

underlying the valid use of this test is that the sampled population or populations 

are at least approximately normally distributed. 

As we will learn, the procedures that we discuss in this chapter either are not 

concerned with population parameters or do not depend on knowledge of the 

sampled population. Strictly speaking, only those procedures that test hypotheses 

that are not statements about population parameters are classified as nonparametric, 

while those that make no assumption about the sampled population are called 

distribution free procedures. Despite this distinction, it is customary to use the terms 

nonparametric and distribution free interchangeably and to discuss the various proce-

dures of both types under the heading of nonparametric statistics. We will follow this 

convention. This point is discussed by Kendall and Sundrum (1) and Gibbons (2). 

The above discussion implies the following two advantages of nonparametric 

statistics. 

1. They allow for the testing of hypotheses that are not statements about 
population parameter values. Some of the chi-square tests of goodness-of-fit 
and the tests of independence are examples of tests possessing this advantage. 

2. Nonparametric tests may be used when the form of the sampled population is 
unknown. 

Other advantages have been listed by several writers, for example, Gibbons (2), 
Blum and Fattu (3), and Moses (4). In addition to the two already mentioned, the 
following are most frequently given. 

3. Nonparametric procedures tend to be computationally easier and consequently 
more quickly applied than parametric procedures. This can be a desirable 
feature in certain cases, but when time is not at a premium, it merits a low 
priority as a criterion for choosing a nonparametric test. 

4. Nonparametric procedures may be applied when the data being analyzed 
consist merely of rankings or classifications. That is, the data may not be based 
on a measurement scale strong enough to allow the arithmetic operations 
necessary for carrying out parametric procedures. The subject of measurement 
scales is discussed in more detail in the next section. 
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Although nonparametric statistics enjoy a number of advantages, their disad- 
vantages must also be recognized. Moses (4) has noted the following. 

1. The use of nonparametric procedures with data that can be handled with a 
parametric procedure results in a waste of data. 

2. The application of some of the nonparametric tests may be laborious for large 
samples. 

In a general introductory textbook, space limitations prevent the presentation 
of more than a sampling of nonparametric procedures. Additional procedures 
discussed at an introductory or intermediate level may be found in the book by 
Daniel (5). More mathematically rigorous books have been written by Gibbons (2), 
Hajek (6), and Walsh (7, 8). Savage (9) has prepared a bibliography of nonparamet-
ric statistics. 

13.2 
Measurement Scales 

As was pointed out in the previous section, one of the advantages of nonparametric 
statistical procedures is that they can be used with data that are based on a weak 
measurement scale. To understand fully the meaning of this statement, it is 
necessary to know and understand the meaning of measurement and the various 
measurement scales most frequently used. At this point the reader may wish to 
refer to the discussion of measurement scales in Chapter 1. 

Many authorities are of the opinion that different statistical tests require 
different measurement scales. Although this idea appears to be followed in prac-
tice, Anderson (10), Gaito (11), Lord (12), and Armstrong (13) present some 
interesting alternative points of view. The subject is also discussed by Borgatta and 
Bohrnstedt (14). 

13.3 
The Sign Test 

The familiar t test is not strictly valid for testing (1) the null hypothesis that a 
population mean is equal to some particular value, or (2) the null hypothesis that 
the mean of a population of differences between pairs of measurements is equal to 
zero unless the relevant populations are at least approximately normally dis-
tributed. Case 2 will be recognized as a situation that was analyzed by the paired 
comparisons test in Chapter 7. When the normality assumptions cannot be made 
or when the data at hand are ranks rather than measurements on an interval or 
ratio scale, the investigator may wish for an optional procedure. Although the t 
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test is known to be rather insensitive to violations of the normality assumption, 
there are times when an alternative test is desirable. 

A frequently used nonparametric test that does not depend on the assumptions 
of the t test is the sign test. This test focuses on the median rather than the mean 
as a measure of central tendency or location. The median and mean will be equal 
in symmetric distributions. The only assumption underlying the test is that the 
distribution of the variable of interest is continuous. This assumption rules out the 
use of nominal data. 

The sign test gets its name from the fact that pluses and minuses, rather than 
numerical values, provide the raw data used in the calculations. We illustrate the 
use of the sign test, first in the case of a single sample, and then by an example 
involving paired samples. 

Example 
13.3.1 

Researchers wished to know if instruction in personal care and grooming would 
improve the appearance of mentally retarded girls. In a school for the mentally 
retarded, 10 girls selected at random received special instruction in personal care 
and grooming. Two weeks after completion of the course of instruction the girls 
were interviewed by a nurse and a social worker who assigned each girl a score 
based on her general appearance. The investigators believed that the scores 
achieved the level of an ordinal scale. They felt that although a score of, say, 8 
represented a better appearance than a score of 6, they were unwilling to say that 
the difference between scores of 6 and 8 was equal to the difference between, say, 
scores of 8 and 10; or that the difference between scores of 6 and 8 represented 
twice as much improvement as the difference between scores of 5 and 6. The scores 
are shown in Table 13.3.1. We wish to know if we can conclude that the median 
score of the population from which we assume this sample to have been drawn is 
different from 5. 

Solution 

1. Data See problem statement. 

2. Assumptions We assume that the measurements are taken on a continuous 
variable. 

TABLE 13.3.1 General Appearance Scores 
of 10 Mentally Retarded Girls 

Girl Score Girl Score 

1 4 6 6 
2 5 7 10 
3 8 8 7 
4 8 9 6 
5 9 10 6 
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3. Hypotheses 

H0: The population median is 5. 

HA: The population median is not 5. 

Let a = .05. 

4. Test Statistic The test statistic for the sign test is either the observed number 
of plus signs or the observed number of minus signs. The nature of the 
alternative hypothesis determines which of these test statistics is appropriate. 
In a given test, any one of the following alternative hypotheses is possible: 

HA: P(+) > P( — ) 
	

one-sided alternative 
HA: P(+) < P(—) 
	

one-sided alternative 
HA: P(+) P(—) 
	

two-sided alternative 

If the alternative hypothesis is 

HA: P(+) > P(—) 

a sufficiently small number of minus signs causes rejection of Ho. The test 
statistic is the number of minus signs. Similarly, if the alternative hypothesis is 

HA: P(+) < P(—) 

a sufficiently small number of plus signs causes rejection of Ho. The test 
statistic is the number of plus signs. If the alternative hypothesis is 

HA: P(+) #P(—) 

either a sufficiently small number of plus signs or a sufficiently small number 
of minus signs causes rejection of the null hypothesis. We may take as the test 
statistic the less frequently occurring sign. 

5. Distribution of the Test Statistic As a first step in determining the nature of the 
test statistic, let us examine the data in Table 13.3.1 to determine which scores 
lie above and which ones lie below the hypothesized median of 5. If we assign a 
plus sign to those scores that lie above the hypothesized median and a minus 
to those that fall below, we have the results shown in Table 13.3.2. 

TABLE 13.3.2 Scores Above (+) and Below (—) the Hypothesized Median Based on 
Data of Example 13.3.1 

Girl 	 1 2 3 4 5 6 7 8 9 10 

Score relative to 	 0 	+ 	+ 	+ 	+ 	+ 	+ 	+ 	+ 
hypothesized median 
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If the null hypothesis were true, that is, if the median were, in fact, 5, we 
would expect the numbers of scores falling above and below 5 to be approximately 
equal. This line of reasoning suggests an alternative way in which we could have 
stated the null hypothesis, namely that the probability of a plus is equal to the 
probability of a minus, and these probabilities are each equal to .5. Stated 
symbolically, the hypothesis would be 

Ho: P(+) = P(—) = .5 

In other words, we would expect about the same number of plus signs as minus 
signs in Table 13.3.2 when H0  is true. A look at Table 13.3.2 reveals a preponder-
ance of pluses; specifically, we observe eight pluses, one minus, and one zero, which 
was assigned to the score that fell exactly on the median. The usual procedure for 
handling zeros is to eliminate them from the analysis and reduce n, the sample 
size, accordingly. If we follow this procedure our problem reduces to one consisting 
of nine observations of which eight are plus and one is minus. 

Since the number of pluses and minuses is not the same, we wonder if the 
distribution of signs is sufficiently disproportionate to cast doubt on our hypothesis. 
Stated another way, we wonder if this small a number of minuses could have come 
about by chance alone when the null hypothesis is true; or if the number is so small 
that something other than chance (that is, a false null hypothesis) is responsible for 
the results. 

Based on what we learned in Chapter 4, it seems reasonable to conclude that 
the observations in Table 13.3.2 constitute a set of n independent random 
variables from the Bernoulli population with parameter, p. If we let k = the test 
statistic, the sampling distribution of k is the binomial probability distribution with 
parameter p = .5 if the null hypothesis is true. 

6. Decision Rule The decision rule depends on the alternative hypothesis. 

For HA: P(+) > 13( 	reject H0  if, when H0  is true, the probability of 
observing k or fewer minus signs is less than or equal to a. 

For HA: P(+) < P( — ), reject H0  if the probability of observing, when Ho  is 
true, k or fewer plus signs is equal to or less than a. 

For HA: P(+) * P( — ), reject H0  if (given that H0  is true) the probability of 
obtaining a value of k as extreme as or more extreme than was actually 
computed is equal to or less than a/2. 

For this example the decision rule is: Reject H0  if the p value for the 
computed test statistic is less than or equal to .05. 

7. Calculation of Test Statistic We may determine the probability of observing x or 
fewer minus signs when given a sample of size n and parameter p by 
evaluating the following expression: 

X 

P(k < xln, P) =  
E n  ck p  kg  n - k 

k =0 
(13.3.1) 
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For our example we would compute 

9Co( .5)°( .5)9  ° +9C1( .5)1 (.5)9 	= .00195 + .01758 = .0195 

8. Statistical Decision In Table B we find 

P(k 	119, .5) = .0195 

With a two-sided test either a sufficiently small number of minuses or a 
sufficiently small number of pluses would cause rejection of the null hypothesis. 
Since, in our example, there are fewer minuses, we focus our attention on 
minuses rather than pluses. By setting a equal to .05, we are saying that if the 
number of minuses is so small that the probability of observing this few or 
fewer is less than .025 (half of a), we will reject the null hypothesis. The 
probability we have computed, .0195, is less than .025. We, therefore, reject the 
null hypothesis. 

9. Conclusion We conclude that the median score is not 5. The p value for this 
test is 2(.0195) = .0390. 

Sign Test-Paired Data When the data to be analyzed consist of observa-
tions in matched pairs and the assumptions underlying the t test are not met, or 
the measurement scale is weak, the sign test may be employed to test the null 
hypothesis that the median difference is 0. An alternative way of stating the null 
hypothesis is 

P(X,> Yi ) P(X, < Yi ) = .5 

One of the matched scores, say Y„ is subtracted from the other score, X,. If Yi  
is less than Xi, the sign of the difference is +, and if Y, is greater than Xi , the 
sign of the difference is — . If the median difference is 0, we would expect a pair 
picked at random to be just as likely to yield a + as a — when the subtraction is 
performed. We may state the null hypothesis, then, as 

Ho: P(+) = P(—) = .5 

In a random sample of matched pairs we would expect the number of +'s and —'s 
to be about equal. If there are more +'s or more —'s than can be accounted for by 
chance alone when the null hypothesis is true, we will entertain some doubt about 
the truth of our null hypothesis. By means of the sign test, we can decide how many 
of one sign constitutes more than can be accounted for by chance alone. 

Example 	A dental research team wished to know if teaching people how to brush their teeth 
13.3.2 	would be beneficial. Twelve pairs of patients seen in a dental clinic were obtained 

by carefully matching on such factors as age, sex, intelligence, and initial oral 
hygiene scores. One member of each pair received instruction on how to brush the 
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TABLE 13.3.3 Oral Hygiene Scores of 12 Subjects 
Receiving Oral Hygiene Instruction (Xi) and 12 
Subjects Not Receiving Instruction 09 

Score 

Pair Instructed Not Instructed 
Number (X1) (19 

1 1.5 2.0 
2 2.0 2.0 
3 3.5 4.0 
4 3.0 2.5 
5 3.5 4.0 
6 2.5 3.0 
7 2.0 3.5 
8 1.5 3.0 
9 1.5 2.5 

10 2.0 2.5 
11 3.0 2.5 
12 2.0 2.5 

teeth and on other oral hygiene matters. Six months later all 24 subjects were 
examined and assigned an oral hygiene score by a dental hygienist unaware of 
which subjects had received the instruction. A low score indicates a high level of 
oral hygiene. The results are shown in Table 13.3.3. 

Solution 

1. Data See problem statement. 

2. Assumptions We assume that the population of differences between pairs of 
scores is a continuous variable. 

3. Hypotheses If the instruction produces a beneficial effect, this fact would be 
reflected in the scores assigned to the members of each pair. If we take the 
differences X, - Y, we would expect to observe more -'s than +'s if instruc-
tion had been beneficial, since a low score indicates a higher level of oral 
hygiene. If, in fact, instruction is beneficial, the median of the hypothetical 
population of all such differences would be less than 0, that is, negative. If, on 
the other hand, instruction has no effect, the median of this population would 
be zero. The null and alternate hypotheses, then, are 

H0: the median of the differences is zero [P(+) = P(-)] 

HA: the median of the differences is negative [P(+) < P(-)] 

Let a be .05. 

4. Test Statistic The test statistic is the number of plus signs. 

5. Distribution of the Test Statistic The sampling distribution of k is the binomial 
distribution with parameters n and .5 if Ho  is true. 

6. Decision Rule Reject Ho  if P(k < 2111, .5) < .05. 
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TABLE 13.3.4 Signs of Differences (X1  — r) in Oral Hygiene Scores of 12 
Subjects Instructed (Xi) and 12 Matched Subjects Not Instructed (Y,) 

Pair 	1 2 3 4 5 6 7 8 9 10 11 12 

Sign of score 	

- 	

0 	

- 	

— 	— 	— 	— 
differences 

7. Calculation of the Test Statistic As will be seen, the procedure here is identical 
to the single sample procedure once the score differences have been obtained 
for each pair. Performing the subtractions and observing signs yields the 
results shown in Table 13.3.4. 

The nature of the hypothesis indicates a one-sided test so that all of 
a = .05 is associated with the rejection region, which consists of all values of k 
(where k is equal to the number of + signs) for which the probability of 
obtaining that many or fewer pluses due to chance alone when Ho  is true is 
equal to or less than .05. We see in Table 13.3.4 that the experiment yielded 
one zero, two pluses, and nine minuses. When we eliminate the zero, the 
effective sample size is n = 11 with two pluses and nine minuses. In other 
words, since a "small" number of plus signs will cause rejection of the null 
hypothesis, the value of our test statistic is k = 2. 

8. Statistical Decision We want to know the probability of obtaining no more than 
two pluses out of eleven tries when the null hypothesis is true. As we have seen, 
the answer is obtained by evaluating the appropriate binomial expression. In 
this example we find 

2 

P(k < 2111,.5) = E lick(.5)k(.5)"-k 

By consulting Table B, we find this probability to be .0327. Since .0327 is less 
than .05, we must reject H0. 

9. Conclusion We conclude that the median difference is negative. That is, we 
conclude that the instruction was beneficial. For this test, p = .0327. 

Sign Test With "Greater Than" Tables As has been demonstrated, the 
sign test may be used with a single sample or with two samples in which each 
member of one sample is matched with a member of the other sample to form a 
sample of matched pairs. We have also seen that the alternative hypothesis may 
lead to either a one-sided or a two-sided test. In either case we concentrate on the 
less frequently occurring sign and calculate the probability of obtaining that few or 
fewer of that sign. 

We use the least frequently occurring sign as our test statistic because the 
binomial probabilities in Table B are "less than or equal to" probabilities. By using 
the least frequently occurring sign we can obtain the probability we need directly 
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from Table B without having to do any subtracting. If the probabilities in Table B 
were "greater than or equal to" probabilities, which are often found in tables of 
the binomial distribution, we would use the more frequently occurring sign as our 
test statistic in order to take advantage of the convenience of obtaining the desired 
probability directly from the table without having to do any subtracting. In fact, we 
could, in our present examples, use the more frequently occurring sign as our test 
statistic, but since Table B contains "less than or equal to" probabilities we would 
have to perform a subtraction operation to obtain the desired probability. As an 
illustration, consider the last example. If we use as our test statistic the most 
frequently occurring sign, it is 9, the number of minuses. The desired probability, 
then, is the probability of 9 or more minuses, when n = 11, and p = .5. That is, we 
want 

P(k 	9111, .5) 

Since, however, Table B contains "less than or equal to" probabilities, we must 
obtain this probability by subtraction. That is, 

P(k 	9111, .5) = 1 — P(k 	8111, .5) 

= 1 — .9673 

= .0327 

which is the result obtained previously. 

Sample Size We saw in Chapter 5 that when the sample size is large and 
when p is close to .5, the binomial distribution may be approximated by the normal 
distribution. The rule of thumb used was that the normal approximation is 
appropriate when both np and nq are greater than 5. When p = .5, as was 
hypothesized in our two examples, a sample of size 12 would satisfy the rule of 
thumb. Following this guideline, one could use the normal approximation when the 
sign test is used to test the null hypothesis that the median or median difference is 
0 and n is equal to or greater than 12. Since the procedure involves approximating 
a continuous distribution by a discrete distribution, the continuity correction of .5 
is generally used. The test statistic then is 

(k ± .5) — .5n 
(13.3.2) z = 	 

.51/71 

 

 

which is compared with the value of z from the standard normal distribution 
corresponding to the chosen level of significance. In Equation 13.3.2, k + .5 is used 
when k < n/2 and k — .5 is used when k > n/2. 

In addition to the references already cited, the sign test is discussed in 
considerable detail by Dixon and Mood (15). 
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Computer Analysis Many statistics software packages will perform the sign 
test. For example, if we were to use MINITAB to perform the test for Example 
13.3.1 in which the data are stored in column 1, the command would be 

STEST 5 Cl 

This command results in a two-sided test. The subcommands 

ALTERNATIVE =1 	and 	ALTERNATIVE = -1 

correspond, respectively, to HA: Median greater than the hypothesized value and 
HA : Median less than the hypothesized value. 

EXERCISES 

13.3.1 A random sample of 15 student nurses was given a test to measure their level of 
authoritarianism with the following results. 

Student Number 	Authoritarianism Score 

	

1 	 75 

	

2 	 90 

	

3 	 85 

	

4 	 110 

	

5 	 115 

	

6 	 95 

	

7 	 132 

	

8 	 74 

	

9 	 82 

	

10 	 104 

	

11 	 88 

	

12 	 124 

	

13 	 110 

	

14 	 76 

	

15 	 98 

Test at the .05 level of significance, the null hypothesis that the median score for the 
population sampled is 100. Determine the p value. 

13.3.2 The aim of a study by Vaubourdolle et al. (A-1) was to investigate the influence of 
percutaneously delivered dihydrotestosterone (DHT) on the rate of disappearance of 
ethanol from the plasma in order to determine if the inhibitory effect of DHT on 
alcohol dehydrogenase activity occurs in healthy men. Subjects were ten healthy 



578 	Chapter 13 • Nonparametric and Distribution-Free Statistics 

male volunteers aged 25 to 44 years. Among the data collected were the following 

testosterone (T) concentrations (nmo1/1) before and after DHT treatment: 

Subject: 1 2 3 4 5 6 7 8 9 10 

Before: 21.5 23.0 21.0 21.8 22.8 14.7 21.0 23.4 20.0 29.5 

After: 9.4 17.2 13.0 6.4 4.8 4.5 10.7 15.6 12.5 7.7 

SOURCE: M. Vaubourdolle, J. Guechot, 0. Chazouilleres, R. E. Poupon, and J. 
Giboudeau, "Effect of Dihydrotestosterone on the Rate of Ethanol Elimination in 
Healthy Men," Alcoholism: Clinical and Experimental Research, 15 (No. 2, 1991), 
238-240, © The Research Society on Alcoholism, 1991. 

May we conclude, on the basis of these data, that DHT treatment reduces T 
concentration in healthy men? Let a = .01. 

13.3.3 A sample of 15 patients suffering from asthma participated in an experiment to 
study the effect of a new treatment on pulmonary function. Among the various 
measurements recorded were those of forced expiratory volume (liters) in 1 second 
(FEV,) before and after application of the treatment. The results were as follows. 

Subject Before After Subject Before After 

1 1.69 1.69 9 2.58 2.44 
2 2.77 2.22 10 1.84 4.17 
3 1.00 3.07 11 1.89 2.42 
4 1.66 3.35 12 1.91 2.94 
5 3.00 3.00 13 1.75 3.04 
6 .85 2.74 14 2.46 4.62 
7 1.42 3.61 15 2.35 4.42 
8 2.82 5.14 

On the basis of these data, can one conclude that the treatment is effective in 
increasing the FEVI  level? Let a = .05 and find the p value. 

13.4 
The Wilcoxon Signed-Rank Test 
for Location 

Sometimes we wish to test a null hypothesis about a population mean, but for some 
reason neither z nor t is an appropriate test statistic. If we have a small sample 
(n < 30) from a population that is known to be grossly nonnormally distributed, 
and the central limit theorem is not applicable, the z statistic is ruled out. The t 
statistic is not appropriate because the sampled population does not sufficiently 
approximate a normal distribution. When confronted with such a situation we 
usually look for an appropriate nonparametric statistical procedure. As we have 
seen, the sign test may be used when our data consist of a single sample or when 
we have paired data. If, however, the data for analysis are measured on at least an 
interval scale, the sign test may be undesirable since it would not make full use of 
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the information contained in the data. A more appropriate procedure might be the 
Wilcoxon (16) signed-rank test, which makes use of the magnitudes of the differ-
ences between measurements and a hypothesized location parameter rather than 
just the signs of the differences. 

Assumptions The Wilcoxon test for location is based on the following 
assumptions about the data. 

1. The sample is random. 

2. The variable is continuous. 

3. The population is symmetrically distributed about its mean p,. 
4. The measurement scale is at least interval. 

Hypotheses The following are the null hypotheses (along with their alterna-
tives) that may be tested about some unknown population mean Ao. 

(a) Ho: A = Ao (b) Ho: 	kto (c) Ho: 11  p. 

Hi: µ #µo 	itt < kto 	HI: > 11, 0 

When we use the Wilcoxon procedure we perform the following calculations. 

1. Subtract the hypothesized mean A()  from each observation x, to obtain 

di = xi — po  

If any x, is equal to the mean, so that di = 0, eliminate that di  from the 
calculations and reduce n accordingly. 

2. Rank the usable di  from the smallest to the largest without regard to the sign 
of dz. That is, consider only the absolute value of the d, designated by Idi I,  
when ranking them. If two or more of the Id,1 are equal, assign each tied value 
the mean of the rank positions the tied values occupy. If, for example, the 
three smallest Id,' are all equal, place them in rank positions 1, 2, and 3, but 
assign each a rank of (1 + 2 + 3)/3 = 2. 

3. Assign each rank the sign of the di  that yields that rank. 

4. Find T„, the sum of the ranks with positive signs, and T_, the sum of the 
ranks with negative signs. 

The Test Statistic The Wilcoxon test statistic is either T, or T_, depending 
on the nature of the alternative hypothesis. If the null hypothesis is true, that is, if 
the true population mean is equal to the hypothesized mean, and if the assump-
tions are met, the probability of observing a positive difference di = xi — p,0  of a 
given magnitude is equal to the probability of observing a negative difference of 
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the same magnitude. Then, in repeated sampling, when the null hypothesis is true 
and the assumptions are met, the expected value of T+  is equal to the expected 

value of T_. We do not expect T+  and T_ computed from a given sample to be 

equal. However, when H0  is true, we do not expect a large difference in their 
values. Consequently, a sufficiently small value of T, or a sufficiently small value 

of T_ will cause rejection of Ho. 
When the alternative hypothesis is two-sided (p, 	po) either a sufficiently 

small value of T+  or a sufficiently small value of T_ will cause us to reject Ho: 
po. The test statistic, then, is T, or T_, whichever is smaller. To simplify 

notation, we call the smaller of the two T. 
When 1/0: 	po  is true we expect our sample to yield a large value of T+. 

Therefore when the one-sided alternative hypothesis states that the true popula-
tion mean is less than the hypothesized mean (p < po), a sufficiently small value of 
T, will cause rejection of H0, and T, is the test statistic. 

When H0: p. < po  is true we expect our sample to yield a large value of T_. 
Therefore for the one-sided alternative HA: p, > go  a sufficiently small value of T_ 
will cause rejection of Ho  and T_ is the test statistic. 

Critical Values Critical values of the Wilcoxon test statistic are given in 
Appendix II Table K. Exact probability levels (P) are given to four decimal places 
for all possible rank totals (T) that yield a different probability level at the fourth 
decimal place from 0.0001 up through 0.5000. The rank totals (T) are tabulated for 
all sample sizes from n = 5 through n = 30. The following are the decision rules 
for the three possible alternative hypotheses: 

a. HA: p, 0 /10. Reject H0  at the a level of significance if the calculated T is 
smaller than or equal to the tabulated T for n and preselected a/2. Alterna-
tively we may enter Table K with n and our calculated value of T to see 
whether the tabulated P associated with the calculated T is less than or equal 
to our stated level of significance. If so, we may reject H0. 

b. HA:µ < po. Reject Ho  at the a level of significance if T, is less than or equal 
to the tabulated T for n and preselected a. 

C. HA:µ > Ao. Reject H0  at the a level of significance if T_ is less than or equal 
to the tabulated T for n and preselected a. 

Example 
13.4.1 

Cardiac output (liters/minute) was measured by thermodilution in a simple 
random sample of 15 postcardiac surgical patients in the left lateral position. The 
results were as follows: 

	

4.91 	4.10 	6.74 	7.27 	7.42 	7.50 	6.56 	4.64 

	

5.98 	3.14 	3.23 	5.80 	6.17 	5.39 	5.77 

We wish to know if we can conclude on the basis of these data that the population 
mean is different from 5.05. 



13.4 The Wilcoxon Signed-Rank Test for Location 	 581 

Solution: 

1. Data See statement of example. 

2. Assumptions We assume that the requirements for the application of the 
Wilcoxon signed-ranks test are met. 

3. Hypotheses 

Ho: = 5.05 

HA: * 5.05 

Let a = 0.05. 

4. Test Statistic The test statistic will be T+  or T_, whichever is smaller. We will 
call the test statistic T. 

5. Distribution of the Test Statistic Critical values of the test statistic are given in 
Table K of Appendix II. 

6. Decision Rule We will reject 1/0  if the computed value of T is less than or 
equal to 25, the critical value for n = 15, and a/2 = .0240, the closest value to 
.0250 in Table K. 

7. Calculation of Test Statistic The calculation of the test statistic is shown in 
Table 13.4.1. 

8. Statistical Decision Since 34 is greater than 25, we are unable to reject Ho. 

9. Conclusion We conclude that the population mean may be 5.05. From Table K 
we see that the p value is p = 2(.0757) = .1514 

TABLE 13.4.1 Calculation of the Test Statistic for Example 13.4.1 

Cardiac 
Output di  = xi  - 5.05 Rank of di  Signed Rank of d. 

4.91 -.14 1 -1 
4.10 -.95 7 -7 
6.74 +1.69 10 +10 
7.27 +2.22 13 +13 
7.42 +2.37 14 +14 
7.50 +2.45 15 +15 
6.56 +1.51 9 +9 
4.64 -.41 3 -3 
5.98 +.93 6 +6 
3.14 -1.91 12 -12 
3.23 -1.82 11 -I1 
5.80 +.75 5 +5 
6.17 +1.12 8 +8 
5.39 +.34 2 +2 
5.77 +.72 4 +4 

T+= 86, T_= 34, T = 34 
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Wilcoxon Matched-Pairs Signed-Ranks Test The Wilcoxon test may be 
used with paired data under circumstances in which it is not appropriate to use the 
paired-comparisons t test described in Chapter 7. In such cases obtain each of the 
n d, values, the difference between each of the n pairs of measurements. If we let 
/ID  = the mean of a population of such differences, we may follow the procedure 
described above to test any one of the following null hypotheses: Ho: µD  = 0, Ho: 
ILD 	0, and 1/0: /ID  0. 

Computer Analysis Many statistics software packages will perform the 
Wilcoxon signed-rank test. If, for example, the data of Exercise 13.4.1 are stored in 
column 1, we could use MINITAB to perform the test by means of the command 

WTEST 5.05 C1 

The subcommands 

ALTERNATIVE -1 	and 	ALTERNATIVE 1 

respectively, will perform the one-sided tests in which < and > appear in the 
alternative hypothesis. 

EXERCISES 

13.4.1 Sixteen laboratory animals were fed a special diet from birth through age 12 weeks. 
Their weight gains (in grams) were as follows: 

63 	68 	79 	65 	64 	63 	65 	64 	76 	74 	66 
66 	67 	73 	69 	76 

Can we conclude from these data that the diet results in a mean weight gain of less 
than 70 grams? Let a = .05, and find the p value. 

13.4.2 A psychologist selects a random sample of 25 handicapped students. Their manual 
dexterity scores were as follows: 

33 53 22 40 24 56 36 28 38 42 35 52 52 

36 47 41 32 20 42 34 53 37 35 47 42 

Do these data provide sufficient evidence to indicate that the mean score for the 
population is not 45? Let a = .05. Find the p value. 

13.4.3 In a study by Davis et al. (A-2) maternal language directed toward children with 
mental retardation and children matched either for language ability or chronologi-
cal age was compared in free-play and instruction situations. Results were consistent 
with the hypothesis that mothers of children with retardation match their verbal 
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behavior to their children's language ability. Among the data collected were the 
following measurements on number of utterances per minute during free play by 
mothers of children with retardation (A) and mothers of age-matched children who 
were not mentally retarded (B). 

A:  21.90 15.80 16.50 15.00 14.25 17.10 13.50 14.60 18.75 19.80 
B:  13.95 13.35 9.40 11.85 12.45 9.95 9.10 8.00 14.65 12.20 
SOURCE: Hilton Davis, Ph.D. Used with permission. 

May we conclude, on the basis of these data, that among mothers of mentally 
retarded children, the average number of utterances per minute during free play is 
higher than among mothers whose children are not mentally retarded? Let a = .01. 

13.5 
The Median Test 

A nonparametric procedure that may be used to test the null hypothesis that two 
independent samples have been drawn from populations with equal medians is the 
median test. The test, attributed mainly to Mood (17) and Westenberg (18), is also 
discussed by Brown and Mood (19) and Moses (4) as well as in several other 
references already cited. 

We illustrate the procedure by means of an example. 

Example 	Do urban and rural male junior high school students differ with respect to their 
13.5.1 	level of mental health? 

Solution 

1. Data Members of a random sample of 12 male students from a rural junior 
high school and an independent random sample of 16 male students from an 
urban junior high school were given a test to measure their level of mental 
health. The results are shown in Table 13.5.1. 

To determine if we can conclude that there is a difference we perform a 
hypothesis test that makes use of the median test. Suppose we choose a .05 
level of significance. 

2. Assumptions The assumptions underlying the test are (a) the samples are 
selected independently and at random from their respective populations, (b) 
the populations are of the same form, differing only in location, and (c) the 
variable of interest is continuous. The level of measurement must be, at least, 
ordinal. The two samples do not have to be of equal size. 

3. Hypotheses 

Ho: Mu MR 

HA: Mu  # MR 
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TABLE 13.5.1 Level of Mental Health Scores 
of Junior High Boys 

School 
Urban Rural Urban Rural 

35 29 25 50 
26 50 27 37 
27 43 45 34 
21 22 46 31 
27 42 33 
38 47 26 
23 42 46 
25 32 41 

Mu  is the median score of the sampled population of urban students and MR  is 
the median score of the sampled population of rural students. Let a = .05. 

4. Test Statistic As will be shown in the discussion that follows, the test statistic 
is X2  as computed, for example, by Equation 12.4.1 for a 2 X 2 contingency 
table. 

5. Distribution of the Test Statistic When Ho  is true and the assumptions are met, 
X2  is distributed approximately as X 2  with 1 degree of freedom. 

6. Decision Rule Reject Ho  if the computed value of X2  is 	3.841 (since 
a = .05). 

7. Calculation of Test Statistic The first step in calculating the test statistic is to 
compute the common median of the two samples combined. This is done by 
arranging the observations in ascending order and, since the total number of 
observations is even, obtaining the mean of the two middle numbers. For our 
example the median is (33 + 34)/2 = 33.5. 

We now determine for each group the number of observations falling above 
and below the common median. The resulting frequencies are arranged in a 2 X 2 
table. For the present example we obtain Table 13.5.2. 

If the two samples are, in fact, from populations with the same median, we 
would expect about one half the scores in each sample to be above the combined 
median and about one half to be below. If the conditions relative to sample size and 
expected frequencies for a 2 X 2 contingency table as discussed Chapter 12 are 
met, the chi-square test with 1 degree of freedom may be used to test the null 

TABLE 13.5.2 Level of Mental Health Scores of Junior High School Boys 

Urban Rural Total 

Number of scores above median 6 8 14 
Number of scores below median 10 4 14 

Total 16 12 28 
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hypothesis of equal population medians. For our examples we have, by Formula 
12.4.1, 

28[(6)(4) — (8)(10)]2  
X2 	 = 2.33 

(16)(12)(14)(14) 

8. Statistical Decision Since 2.33 < 3.841, the critical value of x2  with a = .05 
and 1 degree of freedom, we are unable to reject the null hypothesis on the 
basis of these data. 

9. Conclusion We conclude that the two samples may have been drawn from 
populations with equal medians. Since 2.33 < 2.706, we have p > .10. 

Handling Values Equal to the Median Sometimes one or more observed 
values will be exactly equal to the common median and, hence, will fall neither 
above nor below it. We note that if n 1  + n 2  is odd, at least one value will always be 
exactly equal to the median. This raises the question of what to do with observa-
tions of this kind. One solution is to drop them from the analysis if n1  + n 2  is large 
and there are only a few values that fall at the combined median. Or we may 
dichotomize the scores into those that exceed the median and those that do not, in 
which case the observations that equal the median will be counted in the second 
category. Alternative procedures are suggested by Senders (20) and Hays and 
Winkler (21). 

Median Test Extension The median test extends logically to the case where 
it is desired to test the null hypothesis that k 3 samples are from populations 
with equal medians. For this test a 2 X k contingency table may be constructed by 
using the frequencies that fall above and below the median computed from 
combined samples. If conditions as to sample size and expected frequencies are 
met, X2  may be computed and compared with the critical x2  with k — 1 degrees 
of freedom. 

EXERCISES 

13.5.1 Fifteen patient records from each of two hospitals were reviewed and assigned a 
score designed to measure level of care. The scores were as follows: 

Hospital A: 99, 85, 73, 98, 83, 88, 99, 80, 74, 91, 80, 94, 94, 98, 80 
Hospital B: 78, 74, 69, 79, 57, 78, 79, 68, 59, 91, 89, 55, 60, 55, 79 

Would you conclude, at the .05 level of significance, that the two population medians 
are different? Determine the p value. 
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13.5.2 The following serum albumin values were obtained from 17 normal and 13 hospital-
ized subjects. 

Serum Albumin (g / 100 ml) 

Normal Subjects Hospitalized Subjects 

2.4 3.0 1.5 3.1 
3.5 3.2 2.0 1.3 
3.1 3.5 3.4 1.5 
4.0 3.8 1.7 1.8 
4.2 3.9 2.0 2.0 
3.4 4.0 3.8 1.5 
4.5 3.5 3.5 
5.0 3.6 
2.9 

Would you conclude at the .05 level of significance that the medians of the two 
populations sampled are different? Determine the p value. 

13.6 
The Mann -Whitne Test 

The median test discussed in the preceding section does not make full use of all the 
information present in the two samples when the variable of interest is measured 
on at least an ordinal scale. By reducing an observation's information content to 
merely that of whether or not it falls above or below the common median is a waste 
of information. If, for testing the desired hypothesis, there is available a procedure 
that makes use of more of the information inherent in the data, that procedure 
should be used if possible. Such a nonparametric procedure that can often be used 
instead of the median test is the Mann-Whitney test (22). Since this test is based 
on the ranks of the observations it utilizes more information than does the median 
test. 

Assumptions The assumptions underlying the Mann-Whitney test are as 

follows: 

1. The two samples, of size n and m, respectively, available for analysis have been 
independently and randomly drawn from their respective populations. 

2. The measurement scale is at least ordinal. 

3. The variable of interest is continuous. 

4. If the populations differ at all, they differ only with respect to their medians. 

Hypotheses When these assumptions are met we may test the null hypothe-
sis that the two populations have equal medians against either of the three possible 
alternatives: (1) the populations do not have equal medians (two-sided test), (2) the 
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median of population 1 is larger than the median of population 2 (one-sided test), 
or (3) the median of population 1 is smaller than the median of population 2 
(one-sided test). If the two populations are symmetric, so that within each popula-
tion the mean and median are the same, the conclusions we reach regarding the 
two population medians will also apply to the two population means. The following 
example illustrates the use of the Mann—Whitney test. 

Example 
13.6.1 

A researcher designed an experiment to assess the effects of prolonged inhalation 
of cadmium oxide. Fifteen laboratory animals served as experimental subjects, 
while 10 similar animals served as controls. The variable of interest was hemoglobin 
level following the experiment. The results are shown in Table 13.6.1. We wish to 
know if we can conclude that prolonged inhalation of cadmium oxide reduces 
hemoglobin level. 

Solution 

1. Data See Table 13.6.1. 

2. Assumptions We presume that the assumptions of the Mann—Whitney test are 
met. 

3. Hypotheses The null and alternative hypotheses are as follows: 

H0: Mx  My 

HA: Mx  < My 

where Mx  is the median of a population of animals exposed to cadmium oxide 

TABLE 13.6.1 Hemoglobin Determinations 

(Grams) for 25 Laboratory Animals 

Exposed Animals 	Unexposed Animals 
(X ) 	 (Y )  

14.4 
14.2 
13.8 
16.5 
14.1 
16.6 
15.9 
15.6 
14.1 
15.3 
15.7 
16.7 
13.7 
15.3 
14.0 

17.4 
16.2 
17.1 
17.5 
15.0 
16.0 
16.9 
15.0 
16.3 
16.8 
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TABLE 13.6.2 Original Data and Ranks, 
Example 13.6.1 

X Rank Y Rank 

13.7 
13.8 
14.0 
14.1 
14.1 
14.2 
14.4 

1 
2 
3 
4.5 
4.5 
6 
7 

15.0 8.5 
15.0 8.5 

15.3 10.5 
15.3 10.5 
15.6 12 
15.7 13 
15.9 14 

16.0 15 
16.2 16 
16.3 17 

16.5 18 
16.6 19 
16.7 20 

16.8 21 
16.9 22 
17.1 23 
17.4 24 
17.5 25 

Total 145 

and My  is the median of a population of animals not exposed to the substance. 
Suppose we let a = .05. 

4. Test Statistic To compute the test statistic we combine the two samples and 
rank all observations from smallest to largest while keeping track of the 
sample to which each observation belongs. Tied observations are assigned a 
rank equal to the mean of the rank positions for which they are tied. The 
results of this step are shown in Table 13.6.2. 

The test statistic is 

n(n + 1) 
T=S 	 

2 
(13.6.1) 

where n is the number of sample X observations and S is the sum of the ranks 
assigned to the sample observations from the population of X values. The 
choice of which sample's values we label X is arbitrary. 

5. Distribution of Test Statistic Critical values from the distribution of the test 
statistic are given in Table L for various levels of a. 
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6. Decision Rule If the median of the X population is, in fact, smaller than the 
median of the Y population, as specified in the alternative hypothesis, we 
would expect (for equal sample sizes) the sum of the ranks assigned to the 
observations from the X population to be smaller than the sum of the ranks 
assigned to the observations from the Y population. The test statistic is based 
on this rationale in such a way that a sufficiently small value of T will cause 
rejection of H0: Mx  My. 

In general, for one-sided tests of the type illustrated here the decision rule 
is: 

Reject Ho: Mx  My  if the computed T is less than w a, where w a  is the critical 
value of T obtained by entering Appendix II Table L with n, the number of X 
observations; m, the number of Y observations; and a, the chosen level of significance. 

If we use the Mann—Whitney procedure to test 

H0: Mx  My  

against 

HA: Mx  > My 

sufficiently large values of T will cause rejection so that the decision rule is: 

Reject Ho: Mx  < M1  if computed T is greater than w i _a, where WI  _a  = nm — 

Wa• 

For the two-sided test situation with 

Ho: Mx = My 

HA: Mx  *My 

Computed values of T that are either sufficiently large or sufficiently small will 
cause rejection of 1/0: the decision rule for this case, then, is: 

Reject Ho: Mx  = My if the computed value of T is either less than w /2  or greater 
than w i _ (a /2), where w /2  is the critical value of T for n, m, and a/2 given in 
Appendix II Table L, and w1-(a/2) = nm wa/2. 

For this example the decision rule is: 

Reject Ho  if the computed value of T is smaller than 45, the critical value of the test 
statistic for n = 15, m = 10, and a = .05 found in Table L. 
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7. Calculation of Test Statistic For our present example we have, as shown in 
Table 13.6.2, S = 145, so that 

15(15 + 1) 
T = 145 	

2 	
= 25 

8. Statistical Decision When we enter Table L with n = 15, m = 10, and a = .05, 
we find the critical value of wa  to be 45. Since 25 < 45, we reject Ho. 

9. Conclusion We conclude that Mx  is smaller than My. This leads to the 
conclusion that prolonged inhalation of cadmium oxide does reduce the 
hemoglobin level. 

Since 22 < 25 < 30, we have for this test .005 > p > .001. 

Large Sample Approximation When either n or m is greater than 20 we 
cannot use Appendix Table L to obtain critical values for the Mann—Whitney test. 
When this is the case we may compute 

z 

 

T — mn/2 

 

(13.6.2) 

   

Vnm(n + m + 1)/12 

 

and compare the result, for significance, with critical values of the standard normal 
distribution. 

If a large proportion of the observations are tied, a correction factor proposed 
by Noether (23) may be used. 

Many statistics software packages will perform the Mann—Whitney test. With 
the data of two samples stored in columns 1 and 2, for example, MINITAB will 
perform a two-sided test in response to the command 

MANN- WHITNEY C1 C2 

The subcommands 

ALTERNATIVE -1 	and 	ALTERNATIVE 1 

will perform, respectively, one-sided tests with < and > in the alternative. 

EXERCISES 

13.6.1 The purpose of a study by Demotes-Mainard et al. (A-3) was to compare the 
pharmacokinetics of both total and unbound cefpiramide (a cephalosporin) in 
healthy volunteers and patients with alcoholic cirrhosis. Among the data collected 
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were the following total plasma clearance (ml/min) values following a single 1 gram 
intravenous injection of cefpiramide. 

Volunteers: 	21.7, 29.3, 25.3, 22.8, 21.3, 31.2, 29.2, 28.7, 17.2, 25.7, 32.3 

Patients with alcoholic cirrhosis: 	18.1, 12.3, 8.8, 10.3, 8.5, 29.3, 8.1, 6.9, 7.9, 14.6, 11.1 

SOURCE: Fabienne Demotes-Mainard, Ph.D. Used with permission. 

May we conclude, on the basis of these data, that patients with alcoholic cirrhosis 
and patients without the disease differ with regard to the variable of interest? Let 
a = .01. 

13.6.2 Lebranchu et al. (A-4) conducted a study in which the subjects were nine patients 
with common variable immunodeficiency (CVI) and 12 normal controls. Among the 
data collected were the following on number of CD4 + T cells per mm3  of 
peripheral blood. 

CVI patients: 623, 437, 370, 300, 330, 527, 290, 730, 1000 

Controls: 	710,1260,717,590,930,995, 630,977,530, 710, 1275,825 

SOURCE: Dr. Yvon Lebranchu. Used with permission. 

May we conclude, on the basis of these data, that CVI patients have a reduced level 
of CD4 + cells? Let a =- .01. 

13.6.3 The purpose of a study by Liu et al. (A-5) was to characterize the mediator, cellular, 
and permeability changes occurring immediately and 19 hours following broncho-
scopic segmental challenge of the peripheral airways with ragweed antigen in 
allergic, mildly asthmatic subjects. In addition to the subjects with asthma, the 
study included normal subjects who had no asthmatic symptoms. Among the data 
collected were the following measurements on percent of fluid recovered from 
antigen-challenged sites following bronchoalveolar lavage (BAL). 

Normal subjects: 	70, 55, 63, 68, 73, 77, 67 

Asthmatic subjects: 64, 25, 70, 35, 43, 49, 62, 56, 43, 66 

SOURCE: Mark C. Liu, M.D. Used with permission. 

May we conclude, on the basis of these data, that under the conditions described, we 
can expect to recover less fluid from asthmatic subjects? Let a = .05. 

13.7 
The Kolmogorov — Smirnov 
Goodness-of-Fit Test 

When one wishes to know how well the distribution of sample data conforms to 
some theoretical distribution, a test known as the Kolmogorov—Smirnov goodness-
of-fit test provides an alternative to the chi-square goodness-of-fit test discussed in 
Chapter 12. The test gets its name from A. Kolmogorov and N. V. Smirnov, two 
Russian mathematicians who introduced two closely related tests in the 1930s. 
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Kolmogorov's work (24) is concerned with the one-sample case as discussed 
here. Smirnov's work (25) deals with the case involving two samples in which 
interest centers on testing the hypothesis that the distributions of the two parent 
populations are identical. The test for the first situation is frequently referred to as 
the Kolmogorov—Smirnov one-sample test. The test for the two-sample case, 
commonly referred to as the Kolmogorov—Smirnov two-sample test, will not be 
discussed here. Those interested in this topic may refer to Daniel (5). 

The Test Statistic In using the Kolmogorov—Smirnov goodness-of-fit test a 
comparison is made between some theoretical cumulative distribution function, 
FT(x), and a sample cumulative distribution function, Fs(x). The sample is a 
random sample from a population with unknown cumulative distribution function 
F(x). It will be recalled (Section 4.2) that a cumulative distribution function gives 
the probability that X is equal to or less than a particular value, x. That is, by 
means of the sample cumulative distribution function, Fs(x), we may estimate 
P(X < x). If there is close agreement between the theoretical and sample cumula-
tive distributions, the hypothesis that the sample was drawn from the population 
with the specified cumulative distribution function, FT(x), is supported. If, how-
ever, there is a discrepancy between the theoretical and observed cumulative 
distribution functions too great to be attributed to chance alone, when 1/0  is true, 
the hypothesis is rejected. 

The difference between the theoretical cumulative distribution function, FT(x), 
and the sample cumulative distribution function, Fs(x), is measured by the statistic 
D, which is the greatest vertical distance between Fs(x) and FT(x). When a 
two-sided test is appropriate, that is, when the hypotheses are 

Ho: F(x) = FT(x) 	for all x from —00 to + co 

HA: F(x) * FT(x) 	for at least one x 

the test statistic is 

D = suplFs(x) — Ft(x)In 
	

(13.7.1) 

which is read, "D equals the supremum, (greatest) over all x, of the absolute value 
of the difference Fs(x) minus FT(x)." 

The null hypothesis is rejected at the a level of significance if the computed 
value of D exceeds the value shown in Table M for 1 — a (two-sided) and the 
sample size n. Tests in which the alternative is one sided are possible. Numerical 
examples are given by Goodman (26). 

Assumptions The assumptions underlying the Kolmogorov—Smirnov test 
include the following: 

1. The sample is a random sample. 

2. The hypothesized distribution FT(x) is continuous. 
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Noether (23) has shown that when values of D are based on a discrete 
theoretical distribution, the test is conservative. When the test is used with discrete 
data, then, the investigator should bear in mind that the true probability of 
commuting a type I error is at most equal to a, the stated level of significance. The 
test is also conservative if one or more parameters have to be estimated from 
sample data. 

Example 
13.7.1 

Fasting, blood glucose determinations made on 36 nonobese, apparently healthy, 
adult males are shown in Table 13.7.1. We wish to know if we may conclude that 
these data are not from a normally distributed population with a mean of 80 and a 
standard deviation of 6. 

Solution 

1. Data See Table 13.7.1. 

2. Assumptions The sample available is a simple random sample from a continu-
ous population distribution. 

3. Hypotheses The appropriate hypotheses are 

	

F(x) = FT(x) 	for all x from —00 to +00 

	

HA: F(x) # FT(x) 	for at least one x 

Let a = .05. 

4. Test Statistic See Equation 13.7.1. 

5. Distribution of Test Statistic Critical values of the test statistic for selected 
values of a are given in Table M. 

6. Decision Rule Reject 1/0  if the computed value of D exceeds .221, the critical 
value of D for n = 36 and a = .05. 

7. Calculation of Test Statistic Our first step is to compute values of Fs(x) as 
shown in Table 13.7.2. 

Each value of Fs(x) is obtained by dividing the corresponding cumulative 
frequency by the sample size. For example, the first value of Fs(x) = 2/36 = 
.0556. 

TABLE 13.7.1 Fasting Blood Glucose 
Values (mg / 100 ml) for 36 Nonobese, 
Apparently Healthy, Adult Males 

75 92 80 80 84 72 
84 77 81 77 75 81 
80 92 72 77 78 76 
77 86 77 92 80 78 
68 78 92 68 80 81 
87 76 80 87 77 86 
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TABLE 13.7.2 Values of Fs(x) for Example 13.7.1 

x Frequency 
Cumulative 
Frequency Fs (x) 

68 2 2 .0556 
72 2 4 .1111 
75 2 6 .1667 
76 2 8 .2222 
77 6 14 .3889 
78 3 17 .4722 
80 6 23 .6389 
81 3 26 .7222 
84 2 28 .7778 
86 2 30 .8333 
87 2 32 .8889 
92 4 36 1.0000 

36 

We obtain values of FT(x) by first converting each observed value of x to a 
value of the standard normal variable, z. From Table D we then find the 
area between -00 and z. From these areas we are able to compute values of 
FT(x). The procedure, which is similar to that used to obtain expected 
relative frequencies in the chi-square goodness-of-fit test, is summarized in 
Table 13.7.3. 

The test statistic D may be computed algebraically, or it may be deter-
mined graphically by actually measuring the largest vertical distance between 
the curves of Fs(x) and FT(x) on a graph. The graphs of the two distributions 
are shown in Figure 13.7.1. 

Examination of the graphs of Fs(x) and FT(x) reveals that D = .16 = 
(.72 - .56). Now let us compute the value of D algebraically. The possible 

TABLE 13.7.3 Steps in Calculation of 
FT(x) for Example 13.7.1 

x z = (x - 80) / 6 	FT (x) 

68 - 2.00 .0228 
72 -1.33 .0918 
75 - .83 .2033 
76 - .67 .2514 
77 - .50 .3085 
78 - .33 .3707 
80 .00 .5000 
81 .17 .5675 
84 .67 .7486 
86 1.00 .8413 
87 1.17 .8790 
92 2.00 .9772 
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x 

Figure 13.7.1 F5(x) and FT(x) for Example 13.7.1. 

values of IFS(x) - FT(x)I are shown in Table 13.7.4. This table shows that the 
exact value of D is .1547. 

8. Statistical Decision Reference to Table M reveals that a computed D of .1547 is 
not significant at any reasonable level. Therefore, we are not willing to reject 
Ho. 

9. Conclusion The sample may have come from the specified distribution. Since 
we have a two-sided test, and since .1547 < .174, we have p > .20. 

A Precaution The reader should be aware that in determining the value of 
D it is not always sufficient to compute and choose from the possible values of IFS(x) - FT(x)I. 
The largest vertical distance between Fs(x) and FT(x) may not occur at an observed value, x, 
but at some other value of X. Such a situation is illustrated in Figure 13.7.2. We see 

TABLE 13.7.4 Calculation of IFs(x) -FT(x)I for 
Example 13.7.1 

x Fs(x) FT (x) IFs (x) - FT (x)I 

68 .0556 .0228 .0328 
72 .1111 .0918 .0193 
75 .1667 .2033 .0366 
76 .2222 .2514 .0292 
77 .3889 .3085 .0804 
78 .4722 .3707 .1015 
80 .6389 .5000 .1389 
81 .7222 .5675 .1547 
84 .7778 .7486 .0292 
86 .8333 .8413 .0080 
87 .8889 .8790 .0099 
92 1.0000 .9772 .0228 
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that if only values of 1Fs(x) — FT(x)1 at the left end-points of the horizontal bars 
are considered we would incorrectly compute D as 1.2 — .41 = .2. One can see by 
examining the graph, however, that the largest vertical distance between Fs(x) 
and FT(x) occurs at the right end-point of the horizontal bar originating at the 
point corresponding to x = .4, and the correct value of D is I.5 — .21 = .3. 

One can determine the correct value of D algebraically by computing, in 
addition to the differences 1Fs(x) — FT(x)1, the differences IFs(xi _ l) — FT(x,)1 for 
all values of i = 1,2, ..., r + 1, where r = the number of different values of x and 
Fs(x0) = 0. The correct value of the test statistic will then be 

D = maximum (maximum[lFs(;) — FT(x,)1,1Fs(x z _ 1) — FT (x,)1]) (13.7.2) 
1<i<r 

Advantages and Disadvantages The advantages and disadvantages of the 
Kolmogorov—Smirnov goodness-of-fit test in comparison with the chi-square test 
have been discussed by Goodman (26), Massey (27), Birnbaum (28), and Slakter 
(29). The following are some important points of comparison. 

Figure 13.7.2 Graph of fictitious data showing correct 
calculation of D. 
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1. The Kolmogorov—Smirnov test does not require that the observations be 
grouped as is the case with the chi-square test. The consequence of this 
difference is that the Kolmogorov—Smirnov test makes use of all the informa-
tion present in a set of data. 

2. The Kolmogorov—Smirnov test can be used with any size sample. It will be 
recalled that certain minimum sample sizes are required for the use of the 
chi-square test. 

3. As has been noted the Kolmogorov—Smirnov test is not applicable when 
parameters have to be estimated from the sample. The chi-square test may be 
used in these situations by reducing the degrees of freedom by 1 for each 
parameter estimated. 

4. The problem of the assumption of a continuous theoretical distribution has 
already been mentioned. 

EXERCISES 

13.7.1 The weights at autopsy of the brains of 25 adults suffering from a certain disease 
were as follows. 

Weight of Brain (Grams) 

859 1073 1041 1166 1117 
962 1051 1064 1141 1202 
973 1001 1016 1168 1255 
904 1012 1002 1146 1233 
920 1039 1086 1140 1348 

Can one conclude from these data that the sampled population is not normally 
distributed with a mean of 1050 and a standard deviation of 50? Determine the p 
value for this test. 

13.7.2 IQs of a sample of 30 adolescents arrested for drug abuse in a certain metropolitan 
jurisdiction were as follows. 

IQ 

95 100 91 106 109 110 
98 104 97 100 107 119 
92 106 103 106 105 112 

101 91 105 102 101 110 
101 95 102 104 107 118 

Do these data provide sufficient evidence that the sampled population of IQ scores is 
not normally distributed with a mean of 105 and a standard deviation of 10? 
Determine the p value. 
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13.7.3 For a sample of apparently normal subjects who served as controls in an experiment, 
the following systolic blood pressure readings were recorded at the beginning of the 

experiment. 

162 177 151 167 

130 154 179 146 

147 157 141 157 

153 157 134 143 

141 137 151 161 

Can one conclude on the basis of these data that the population of blood pressures 
from which the sample was drawn is not normally distributed with µ = 150 and 
cr = 12? Determine the p value. 

13.8 
The Kruskal —Wallis One-Way Analysis 
of Variance by Ranks 

In Chapter 8 we discuss how one-way analysis of variance may be used to test the 
null hypothesis that several population means are equal. When the assumptions 
underlying this technique are not met, that is, when the populations from which 
the samples are drawn are not normally distributed with equal variances, or when 
the data for analysis consist only of ranks, a nonparametric alternative to the 
one-way analysis of variance may be used to test the hypothesis of equal location 
parameters. As was pointed out in Section 13.5, the median test may be extended 
to accommodate the situation involving more than two samples. A deficiency of this 
test, however, is the fact that it uses only a small amount of the information 
available. The test uses only information as to whether or not the observations are 
above or below a single number, the median of the combined samples. The test 
does not directly use measurements of known quantity. Several nonparametric 
analogs to analysis of variance are available that use more information by taking 
into account the magnitude of each observation relative to the magnitude of every 
other observation. Perhaps the best known of these procedures is the Kruskal-
Wallis one-way analysis of variance by ranks (30). 

The Kruskal — Wallis Procedure The application of the test involves the 
following steps. 

1. The n„ n2, 	, nk  observations from the k samples are combined into a single 
series of size n and arranged in order of magnitude from smallest to largest. 
The observations are then replaced by ranks from 1, which is assigned to the 
smallest observation, to n, which is assigned to the largest observation. When 
two or more observations have the same value, each observation is given the 
mean of the ranks for which it is tied. 
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2. The ranks assigned to observations in each of the k groups are added 
separately to give k rank sums. 

3. The test statistic 

12 	k  R2 
H = 

	

	E 	- 3(n + 1) 
n(n + 1) J=1  n 

is computed. 
In Equation 13.8.1 

k = the number of samples 

n = the number of observations in the jth sample 

n = the number of observations in all samples combined 

Rj  = the sum of the ranks in the jth sample 

(13.8.1) 

4. When there are three samples and five or fewer observations in each sample, 
the significance of the computed H is determined by consulting Appendix II 
Table N. When there are more than five observations in one or more of the 
samples, H is compared with tabulated values of x 2  with k — 1 degrees of 
freedom. The adequacy of the chi-square approximation for small samples is 
discussed by Gabriel and Lachenbruch (31). 

Example 
13.8.1 

The effects of two drugs on reaction time to a certain stimulus were studied in 
three samples of experimental animals. Sample III served as a control while the 
animals in sample I were treated with drug A and those in sample II were treated 
with drug B prior to the application of the stimulus. Table 13.8.1 shows the 
reaction times in seconds of the 13 animals. 

Can we conclude that the three populations represented by the three samples 
differ with respect to reaction time? We can so conclude if we can reject the null 
hypothesis that the three populations do not differ in their reaction times. 

TABLE 13.8.1 Reaction Time 
in Seconds of 13 
Experimental Animals 

Sample 

17 8 2 
20 7 5 
40 9 4 
31 8 3 
35 
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Solution 

1. Data See Table 13.8.1. 

2. Assumptions The samples are independent random samples from their respec-
tive populations. The measurement scale employed is at least ordinal. The 
distributions of the values in the sampled populations are identical except for 
the possibility that one or more of the populations are composed of values that 
tend to be larger than those of the other populations. 

3. Hypotheses 

Ho: The population centers are all equal. 

HA: At least one of the populations tends to exhibit larger values than at least 
one of the other populations. 

Let a = .01. 

4. Test Statistic See Equation 13.8.1. 

5. Distribution of Test Statistic Critical values of H for various sample sizes and a 
levels are given in Table N. 

6. Decision Rule The null hypothesis will be rejected if the computed value of H 
is so large that the probability of obtaining a value that large or larger when 
H0  is true is equal to or less than the chosen significance level, a. 

7. Calculation of Test Statistic When the three samples are combined into a single 
series and ranked, the table of ranks shown in Table 13.8.2 may be constructed. 

The null hypothesis implies that the observations in the three samples 
constitute a single sample of size 13 from a single population. If this is true, we 
would expect the ranks to be well distributed among the three groups. 
Consequently, we would expect the total sum of ranks to be divided among the 
three groups in proportion to group size. Departures from these conditions are 
reflected in the magnitude of the test statistic H. 

From the data in Table 13.8.2 and Equation 13.8.1 we obtain 

12 	(55)2 	(26)2 	(10)2  

13(13 + 1) 	5 	4 	4 

= 10.68 

TABLE 13.8.2 The Data of Table 
13.8.1 Replaced by Ranks 

Sample 

I II III 

9 6.5 1 
10 5 4 
13 8 3 
11 6.5 2 
12 

R1  = 55 	R2 = 26 	R3 = 10 

H= 3(13 + 1) 



n 3 
- n 

E T 
1 (13.8.2) 
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8. Statistical Decision Table N shows that when the n j's are 5, 4, and 4, the 
probability of obtaining a value of H> 10.68 is less than .009. The null 
hypothesis can be rejected at the .01 level of significance. 

9. Conclusion We conclude that there is a difference in the average reaction time 
among the three populations. For this test, p < .009. 

Ties It will be noted that the two tied values in sample II were each assigned 
the rank of 6.5. We may adjust the value of H for this tie by dividing it by 

where T = t 3  - t. The letter t is used to designate the number of tied observations 
in a group of tied values. In our example there is only one group of tied values but, 
in general, there may be several groups of tied values resulting in several values of 
T. Since there were only two tied observations in our group of ties, we have 
T = 23  - 2 = 6 and XT = 6, so that Expression 13.8.2 is 

6 
1   = .9973 

133  - 13 

and 

H 	10.68 

	

E T 	.9973 	
10.71 

 
1 	

n
3 	

- n 

which, of course, is also significant at the .01 level. 
As is the case here, the effect of the adjustment for ties is usually negligible. 

Note also that the effect of the adjustment is to increase H, so that if the 
unadjusted H is significant at the chosen level, there is no need to apply the 
adjustment. 

More Than Three Samples/Large Samples Now let us illustrate the 
procedure when there are more than three samples and at least one of the no's is 
greater than 5. 

Example 
13.8.2 

Table 13.8.3 shows the net book value of equipment capital per bed for a sample 
of hospitals from each of five types of hospitals. We wish to determine, by means 
of the Kruskal-Wallis test, if we can conclude that the average net book value of 
equipment capital per bed differs among the five types of hospitals. The ranks of 
the 41 values, along with the sum of ranks for each sample, are shown in the table. 



LEVEL NOBS RERUN AVE. RINK 
1 5 11.000 11.0 
2 4 6.500 6.5 
3 4 2.500 2.5 
OVERALL 13 7.0 
H = 10.68 
Il(ADJ. FOR TIES) = 10.71 
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TABLE 13.8.3 Net Book Value of Equipment Per Bed by Hospital Type 

Type Hospital 
A 

$1735(11) 	$5260(35) 	$2790(20) 	$3475(26) 	$6090(40) 
1520(2) 	4455(28) 	2400(12) 	3115(22) 	6000(38) 
1476(1) 	4480(29) 	2655(16) 	3050(21) 	5894(37) 
1688(7) 	4325(27) 	2500(13) 	3125(23) 	5705(36) 
1702(10) 	5075(32) 	2755(19) 	3275(24) 	6050(39) 
2667(17) 	5225(34) 	2592(14) 	3300(25) 	6150(41) 
1575(4) 	4613(30) 	2601(15) 	2730(18) 	5110(33) 
1602(5) 	4887(31) 	1648(6) 
1530(3) 	 1700(9) 
1698(8) 

R1  = 68 	R 2  = 246 	R3  = 124 	R 4  = 159 	R5  = 264 

Solution: From the sums of the ranks we compute 

H — 	 + 	+ 	+ 	 + 	 
12 	[  (68)2 	(246)2 	(124)2 	(159)2 	(264)

2 
 

41(41 + 1) 	10 	8 	9 	7 	7 

— 3(41 + 1) 

= 36.39 

Reference to Table F with k — 1 = 4 degrees of freedom indicates that the 
probability of obtaining a value of H as large or larger than 36.39, due to chance 
alone, when there is no difference among the populations, is less than .005. We 
conclude, then, that there is a difference among the five populations with respect 
to the average value of the variable of interest. 

Computer Analysis The MINITAB software package computes the 
Kruskal—Wallis test statistic and provides additional information. The MINITAB 
printout for the reaction time data in Table 13.8.1 is shown as Figure 13.8.1. 

Figure 13.8.1 MINITAB Computer Printout, Kruskal —Wallis test of reaction time 
data in Table 13.8.1. 
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We enter the reaction time data of Table 13.8.1 into column 1 and the group 
codes into column 2 as follows: 

MTB > READ 	REACTION 	TIME 	INTO 	C1, 	CODE 	FOR GROUP 	INTO C2 
DATA > 17 1 

DATA > 20 1 

DATA > 40 1 

DATA > 31 1 

DATA > 35 1 

DATA > 8 2 

DATA > 7 2 

DATA > 9 2 

DATA > 8 2 

DATA > 2 3 

DATA > 5 3 

DATA > 4 3 

DATA > 3 3 

DATA > END 

The following command produces the analysis and the accompanying printout. 

KRUSKAL WALLIS FOR DATA IN C1 SUBSCRIPTS IN C2 

EXERCISES 

For the following exercises, perform the test at the indicated level of significance and 
determine the p value. 

13.8.1 In a study of complaints of fatigue among men with brain injury (BI), Walker et al. 
(A-6) obtained Zung depression scores from three samples of subjects: brain injured 
with complaint of fatigue, brain injured without complaint of fatigue, and age-
matched normal controls. The results were as follows: 

BI, fatigue: 46,61,51,36,51,45,54,51,69,54,51,38,64 
BI, no fatigue: 39, 44, 58, 29, 40, 48, 65, 41, 46 

Controls: 36,34,41,29,31,26,33 

SOURCE: Gary C. Walker, M. D. Used with permission. 

May we conclude, on the basis of these data, that the populations represented by 
these samples differ with respect to Zung depression scores? Let a = .01. 

13.8.2 The following are outpatient, charges (—$100) made to patients for a certain 
surgical procedure by samples of hospitals located in three different areas of the 
country. 
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Area 

$80.75 $58.63 $84.21 
78.15 72.70 101.76 
85.40 64.20 107.74 
71.94 62.50 115.30 
82.05 63.24 126.15 

Can we conclude at the .05 level of significance that the three areas differ with 
respect to the charges? 

13.8.3 Du Toit et al. (A-7) postulated that low-dose heparin (10 III/kg/hi) administered 
as a continuous IV infusion may prevent or ameliorate the induction of thrombin-
induced disseminated intravascular coagulation in baboons under general anesthe-
sia. Animals in group A received thrombin only, those in group B were pretreated 
with heparin before thrombin administration, and those in group C received heparin 
two hours after disseminated intravascular coagulation was induced with thrombin. 
Five hours after the animals were anesthetized the following measurements for 
activated partial thromboplastin time (aPTT) were obtained. 

Group A: 115, 181, 181, 128, 107, 84, 76, 118, 96, 110, 110 

Group B: 99, 83, 92, 64, 130, 66, 89, 54, 80, 76 
Group C: 92, 75, 74, 74, 94, 79, 89, 73, 61, 62, 84, 60, 62, 67, 67 

SOURCE: Dr. Hendrik J. Du Toit. Used with permission. 

Test for a significant difference among the three groups. Let a = .05. 

13.8.4 The effects of unilateral left hemisphere (LH) and right hemisphere (RH) lesions on 
the accuracy of choice and speed of response in a four-choice reaction time task 
were examined by Tartaglione et al. (A-8). The subjects consisted of 30 controls 
(group 1), 30 LH brain-damaged patients (group 2), and 30 RH brain-damaged 
patients (group 3). The following table shows the number of errors made by the 
subjects during one phase of the experiment. 

Group 
Number of 

Errors Group 
Number of 

Errors 

1 5 2 3 
1 2 2 4 
1 2 2 4 
1 5 2 5 
1 0 2 41 
1 6 2 17 
1 1 2 33 
1 0 2 20 
1 0 2 48 
1 1 2 7 
1 10 2 7 
1 5 2 11 
1 4 2 17 
1 3 2 15 
1 5 2 22 
1 1 2 6 
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Group 
Number of 

Errors Group 
Number of 

Errors 

1 2 3 0 
1 2 3 0 
1 2 3 0 
1 1 3 0 
1 5 3 0 
1 1 3 0 
1 1 3 0 
1 4 3 0 
1 1 3 0 
1 6 3 0 
1 3 3 1 
1 2 3 1 
1 2 3 1 
1 6 3 2 
2 0 3 2 
2 0 3 4 
2 0 3 3 
2 0 3 3 
2 0 3 0 
2 1 3 4 
2 1 3 4 
2 8 3 4 
2 1 3 5 
2 1 3 5 
2 49 3 6 
2 2 3 7 
2 3 3 7 
2 3 3 23 

3 10 
3 8 

SOURCE: Antonio Tartaglione, M. D. Used with permission. 

May we conclude, on the basis of these data, that the three populations represented 
by these samples differ with respect to number of errors? Let a = .05. 

13.8.5 Warde et al. (A-9) studied the incidence of respiratory complications and hypoxic 
episodes during inhalation induction with isoflurane in healthy unpremedicated 
children undergoing elective surgery under general anesthesia. The children were 
divided at random into three groups differing with respect to the manner in which 
isoflurane was administered. The times required for induction of anesthesia were as 
follows. 

Group A Group B Group C 

8.0 11.75 6.5 
7.75 7.25 7.75 
8.25 9.25 7.25 
5.75 8.75 4.75 
9.0 11.0 7.5 

11.0 12.0 5.5 
13.0 12.0 6.5 
8.75 8.75 6.75 
6.75 6.75 7.5 
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Table (continued) 

Group A Group B 	Group C 

8.5 
11.5 
7.75 

16.75 
8.75 
6.75 
8.25 

10.75 
10.0 
8.25 
8.25 
7.75 

13.75 
7.25 

10.5 
8.0 

11.0 
9.5 
7.75 

10.25 
12.0 
8.25 
8.0 

15.0 
7.0 

14.25 
9.75 

15.25 

7.75 
8.75 
8.75 

10.0 
7.5 
5.0 
6.25 
6.25 
9.0 
9.5 
6.75 
5.5 
4.0 
9.5 
7.25 
5.25 
6.25 
6.5 
9.75 
6.5 

SOURCE: Dr. Declan J. Warde. Used with 
permission. 

May we conclude, on the basis of these data, that the three populations represented 
by these samples differ with respect to induction time? Let a = .01. 

13.8.6 A study aimed at exploring the platelet imipramine binding characteristics in manic 
patients and to compare the results with equivalent data for healthy controls and 
depressed patients was conducted by Ellis et al. (A-10). Among the data collected 
were the following maximal imipramine binding (Bmax)  values for three diagnostic 
groups and a healthy control group. 

Diagnosis B. (fmol / mg pr.) 

Mania 439, 481, 617, 680, 1038, 883, 600, 562, 303, 492, 1075, 947, 
726, 652, 988, 568 

Healthy 
Control 

509, 494, 
247, 395, 

952, 
860, 

697, 
751, 

329, 329, 518, 328, 516, 664, 450, 
896, 470, 643, 505, 455, 471, 500, 

794, 774, 
504, 780, 

864, 467, 766, 518, 642, 845, 639, 640, 670, 437, 806, 725, 526, 
1123 

Unipolar 1074, 372, 473, 797, 385, 769, 797, 485, 334, 670, 510, 299, 
Depression 333, 303, 768, 392, 475, 319, 301, 556, 300, 339, 488, 1114, 

761, 571, 306, 80, 607, 1017, 286, 511, 147, 476, 416, 528, 419, 
328, 1220, 438, 238, 867, 1657, 790, 479, 179, 530, 446, 328, 
348, 773, 697, 520, 341, 604, 420, 397 

Bipolar 654, 548, 426, 136, 718, 1010 
Depression 

SOURCE: Dr. P. M. Ellis. Used with permission. 

May we conclude, on the basis of these data, that the five populations represented 
by these samples differ with respect to B. values? Let a = .05. 
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13.8.7 The following table shows the pesticide residue levels (ppb) in blood samples from 
four populations of human subjects. Use the Kruskal—Wallis test to test at the .05 
level of significance the null hypothesis that there is no difference among the 
populations with respect to average level of pesticide residue. 

Population 

A 

10 4 15 7 
37 35 5 11 
12 32 10 10 
31 19 12 8 
11 33 6 2 
9 18 6 5 

44 11 9 4 
12 7 11 5 
15 32 9 2 
42 17 14 6 
23 8 15 3 

13.8.8 Hepatic y-glutamyl transpeptidase (GGTP) activity was measured in 22 patients 
undergoing percutaneous liver biopsy. The results were as follows: 

Subject Diagnosis 
Hepatic GGTP 
(p. / G Protein) 

1 Normal liver 27.7 
2 Primary biliary cirrhosis 45.9 
3 Alcoholic liver disease 85.3 
4 Primary biliary cirrhosis 39.0 
5 Normal liver 25.8 
6 Persistent hepatitis 39.6 
7 Chronic active hepatitis 41.8 
8 Alcoholic liver disease 64.1 
9 Persistent hepatitis 41.1 

10 Persistent hepatitis 35.3 
11 Alcoholic liver disease 71.5 
12 Primary biliary cirrhosis 40.9 
13 Normal liver 38.1 
14 Primary biliary cirrhosis 40.4 
15 Primary biliary cirrhosis 34.0 
16 Alcoholic liver disease 74.4 
17 Alcoholic liver disease 78.2 
18 Persistent hepatitis 32.6 
19 Chronic active hepatitis 46.3 
20 Normal liver 39.6 
21 Chronic active hepatitis 52.7 
22 Chronic active hepatitis 57.2 

Can we conclude from these sample data that the average population GGTP level 
differs among the five diagnostic groups? Let a = .05 and find the p value. 
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13.9 
The Friedman Two-Way Analysis 
of Variance by Ranks 

Just as we may on occasion have need of a nonparametric analog to the parametric 
one-way analysis of variance, we may also find it necessary to analyze the data in a 
two-way classification by nonparametric methods analogous to the two-way analysis 
of variance. Such a need may arise because the assumptions necessary for paramet-
ric analysis of variance are not met, because the measurement scale employed is 
weak, or because results are needed in a hurry. A test frequently employed under 
these circumstances is the Friedman two-way analysis of variance by ranks (32, 33). 
This test is appropriate whenever the data are measured on, at least, an ordinal 
scale and can be meaningfully arranged in a two-way classification as is given for 
the randomized block experiment discussed in Chapter 8. The following example 
illustrates this procedure. 

Example 
13.9.1 

A physical therapist conducted a study to compare three models of low-volt 
electrical stimulators. Nine other physical therapists were asked to rank the 
stimulators in order of preference. A rank of 1 indicates first preference. The 
results are shown in Table 13.9.1. We wish to know if we can conclude that the 
models are not preferred equally. 

Solution: 

1. Data See Table 13.9.1. 

2. Assumptions The observations appearing in a given block are independent of 
the observations appearing in each of the other blocks, and within each block 
measurement on at least an ordinal scale is achieved. 

TABLE 13.9.1 Physical Therapists' 
Rankings of Three Models of 
Low-Volt Electrical Stimulators 

Therapist 

Model 

A 

1 2 3 1 
2 2 3 1 
3 2 3 1 
4 1 3 2 
5 3 2 1 
6 1 2 3 
7 2 3 1 
8 1 3 2 
9 1 3 2 

Rj  15 25 14 
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3. Hypotheses In general, the hypotheses are 

Ho: The treatments all have identical effects. 

HA: At least one treatment tends to yield larger 
observations than at least one of the other treatments. 

For our present example we state the hypotheses as follows: 

Ho: The three models are equally preferred. 

HA: The three models are not equally preferred. 

Let a = .05. 

4. Test Statistic By means of the Friedman test we will be able to determine if it 
is reasonable to assume that the columns of ranks have been drawn from the 
same population. If the null hypothesis is true we would expect the observed 
distribution of ranks within any column to be the result of chance factors and, 
hence, we would expect the numbers 1, 2, and 3 to occur with approximately 
the same frequency in each column. If, on the other hand, the null hypothesis 
is false (that is, the models are not equally preferred), we would expect a 
preponderance of relatively high (or low) ranks in at least one column. This 
condition would be reflected in the sums of the ranks. The Friedman test will 
tell us whether or not the observed sums of ranks are so discrepant that it is 
not likely they are a result of chance when 1/0  is true. 

Since the data already consist of ranking within blocks (rows), our first step 
is to sum the ranks within each column (treatment). These sums are the Rd's 
shown in Table 13.9.1. A test statistic, denoted by Friedman as x,.2  is computed 
as follows: 

12 
X? = 	 E (Rj )

2 
- 3n(k + 1) 

nk(n + 1) 
(13.9.1) 

where n = the number of rows (blocks) and k = the number of columns 
(treatments). 

5. Distribution of Test Statistic Critical values for various values of n and k are 
given in Appendix II Table 0. 

6. Decision Rule Reject 1/0  if the probability of obtaining (when 1/0  is true) a 
value of x,.2  as large as or larger than actually computed is less than or equal 
to a. 

7. Calculation of Test Statistic Using the data in Table 13.9.1 and Equation 13.9.1, 
we compute 

12 	r  
2 

9(3)(3 + 1) - 	 [(15)2  + (25)2  + (14)1 - 3(9)(3 + 1) 

= 8.222 
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8. Statistical Decision When we consult Appendix II Table Oa, we find that the 

probability of obtaining a value of X,.2  as large as 8.222 due to chance alone, 
when the null hypothesis is true, is .016. We are able, therefore, to reject the 

null hypothesis. 

9. Conclusion We conclude that the three models of low-volt electrical stimulator 
are not equally preferred. For this test, p = .016. 

Ties When the original data consist of measurements on an interval or a 
ratio scale instead of ranks, the measurements are assigned ranks based on their 
relative magnitudes within blocks. If ties occur each value is assigned the mean of 
the ranks for which it is tied. 

Large Samples When the values of k and or n exceed those given in Table 
0, the critical value of x  is obtained by consulting the X2  table (Table F) with the 
chosen a and k — 1 degrees of freedom. 

Example 
13.9.2 

Table 13.9.2 shows the responses, in percent decrease in salivary flow, of 16 
experimental animals following different dose levels of atropine. The ranks (in 
parentheses) and the sum of the ranks are also given in the table. We wish to see if 
we may conclude that the different dose levels produce different responses. That is, 
we wish to test the null hypothesis of no difference in response among the four 
dose levels. 

TABLE 13.9.2 Percent Decrease in Salivary Flow of Experimental Animals 
Following Different Dose Levels of Atropine 

Animal 
Number 

Dose Level 

A B C D 

1 29(10) 48(2) 75(3) 100(4) 
2 72(2) 30(1) 100(3.5) 100(3.5) 
3 70( 1) 100(4) 86(2) 96(3) 
4 54(2) 35(1) 90(3) 99(4) 
5 5(1) 43(3) 32(2) 81(4) 
6 17(1) 40(2) 76(3) 81(4) 
7 74(1) 100(3) 100(3) 100(3) 
8 6(1) 34(2) 60(3) 81(4) 
9 16(1) 39(2) 73(3) 79(4) 

10 52(2) 34(1) 88(3) 96(4) 
11 8(1) 42(3) 31(2) 79(4) 
12 29(1) 47(2) 72(3) 99(4) 
13 71(1) 100(3.5) 97(2) 100(3.5) 
14 7(1) 33(2) 58(3) 79(4) 
15 68(1) 99(4) 84(2) 93(3) 
16 70(2) 30(1) 99(3.5) 99(3.5) 

20 36.5 44 59.5 
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Solution: From the data we compute 

12 
X,

2 	  
— 

16(4)(4 + 1) [(20)
2  + (36.5)2  + (44)2  + (59.5)2] — 3(16)(4 + 1) 

= 30.32 

Reference to Table F indicates that with k — 1 = 3 degrees of freedom the 
probability of getting a value of x,? as large as 30.32 due to chance alone is, when 
H0  is true, less than .005. We reject the null hypothesis and conclude that the 
different dose levels do produce different responses. 

Many statistics software packages, including MINITAB, will perform the Fried-
man test. To use MINITAB we form three columns of data. For example, suppose 
that column 1 contains numbers that indicate the treatment to which the observa-
tions belong, column 2 contains numbers indicating the blocks to which the 
observations belong, and column 3 contains the observations. The command, then, 
is 

FRIEDMAN C3 Cl C2 

EXERCISES 

For the following exercises perform the test at the indicated level of significance and 
determine the p value. 

13.9.1 The following table shows the scores made by nine randomly selected student nurses 
on final examinations in three subject areas. 

Student 
Number 

Subject Area 

Fundamentals Physiology Anatomy 

1 98 95 77 
2 95 71 79 
3 76 80 91 
4 95 81 84 
5 83 77 80 
6 99 70 93 
7 82 80 87 
8 75 72 81 
9 88 81 83 

Test the null hypothesis that student nurses constituting the population from which 
the above sample was drawn perform equally well in all three subject areas against 
the alternative hypothesis that they perform better in, at least, one area. Let 
a = .05. 
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13.9.2 Fifteen randomly selected physical therapy students were given the following in-
structions: "Assume that you will marry a person with one of the following 
handicaps (the handicaps were listed and designated by the letters A to J). Rank 
these handicaps from 1 to 10 according to your first, second, third (and so on) choice 
of a handicap for your marriage partner." The results are shown in the following 
table. 

Student 
Number 

Handicap 
A B C D E F G H I J 

1 1 3 5 9 8 2 4 6 7 10 
2 1 4 5 7 8 2 3 6 9 10 
3 2 3 7 8 9 1 4 6 5 10 
4 1 4 7 8 9 2 3 6 5 10 
5 1 4 7 8 10 2 3 6 5 9 
6 2 3 7 9 8 1 4 5 6 10 
7 2 4 6 9 8 1 3 7 5 10 
8 1 5 7 9 10 2 3 4 6 8 
9 1 4 5 7 8 2 3 6 9 10 

10 2 3 6 8 9 1 4 7 5 10 
11 2 4 5 8 9 1 3 7 6 10 
12 2 3 6 8 10 1 4 5 7 9 
13 3 2 6 9 8 1 4 7 5 10 
14 2 5 7 8 9 1 3 4 6 10 
15 2 3 6 7 8 1 5 4 9 10 

Test the null hypothesis of no preference for handicaps against the alternative that 
some handicaps are preferred over others. Let a = .05. 

13.9.3 Ten subjects with exercise-induced asthma participated in an experiment to com-
pare the protective effect of a drug administered in four dose levels. Saline was used 
as a control. The variable of interest was change in FEVI  after administration of the 
drug or saline. The results were as follows: 

Dose Level of Drug (mg / 
Subject Saline 2 10 20 40 

1 -.68 -.32 -.14 -.21 -.32 
2 -1.55 -.56 -.31 -.21 -.16 
3 -1.41 -.28 -.11 -.08 -.83 
4 -.76 -.56 -.24 -.41 -.08 
5 -.48 -.25 -.17 -.04 -.18 
6 -3.12 -1.99 -1.22 -.55 -.75 
7 -1.16 -.88 -.87 -.54 -.84 
8 - 1.15 -.31 -.18 -.07 -.09 
9 -.78 -.24 -.39 -.11 -.51 

10 -2.12 -.35 -.28 +.11 -.41 

Can one conclude on the basis of these data that different dose levels have different 
effects? Let a = .05 and find the p value. 
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1 3.1 0 
The Spearman Rank Correlation 
Coefficient 

Several nonparametric measures of correlation are available to the researcher. 
Refer to Kendall (34), Kruskal (35), and Hotelling and Pabst (36) for detailed 
discussions of the various methods. 

A frequently used procedure that is attractive because of the simplicity of the 
calculations involved is due to Spearman (37). The measure of correlation com-
puted by this method is called the Spearman rank correlation coefficient and is 
designated by rs. This procedure makes use of the two sets of ranks that may be 
assigned to the sample values of X and Y, the independent and continuous 
variables of a bivariate distribution. 

Hypotheses The usually tested hypotheses and their alternatives are as 
follows: 

a. Ho: X and Y are mutually independent. 
HA: X and Y are not mutually independent. 

b. H0: X and Y are mutually independent. 
HA: There is a tendency for large values of X and large values of Y to be 

paired together. 

c. Ho: X and Y are mutually independent. 
HA: There is a tendency for large values of X to be paired with small values 

of Y. 

The hypotheses specified in (a) lead to a two-sided test and are used when it is 
desired to detect any departure from independence. The one-sided tests indicated 
by (b) and (c) are used, respectively, when investigators wish to know if they can 
conclude that the variables are directly or inversely correlated. 

The Procedure The hypothesis-testing procedure involves the following steps. 

1. Rank the values of X from 1 to n (numbers of pairs of values of X and Y in 
the sample). Rank the values of Y from 1 to n. 

2. Compute di  for each pair of observations by subtracting the rank of 17, from 
the rank of X,. 

3. Square each d, and compute E4, the sum of the squared values. 

4. Compute 
6 E d? 

rs  = 1 
n(n 2  — 1) 

(13.10.1) 

5. If n is between 4 and 30 compare the computed value of rs  with the critical 
values, rs*, of Table P, Appendix II. For the two-sided test, Ho  is rejected at the 
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a significance level if r5  is greater than r7 or less than —r,* where r7 is at the 
intersection of the column headed a/2 and the row corresponding to n. For 
the one-sided test with HA  specifying direct correlation, H0  is rejected at the a 
significance level if rs  is greater than rs* for a and n. The null hypothesis is 
rejected at the a significance level in the other one-sided test if 7; is less than 
—r* for a and n. 

6. If n is greater than 30, one may compute 

z = yin — 1 	 (13.10.2) 

and use Table D to obtain critical values. 

7. Tied observations present a problem. Glasser and Winter (38) point out that 
the use of Table P is strictly valid only when the data do not contain any ties 
(unless some random procedure for breaking ties is employed). In practice, 
however, the table is frequently used after some other method for handling 
ties has been employed. If the number of ties is large, the following correction 
for ties may be employed. 

t
3 
 - t 

T = 	 
12 

(13.10.3) 

where t = the number of observations that are tied for some particular rank. 
When this correction factor is used rs  is computed from 

Ex2 El2 

rs  	
21/Ex2 Ey2  

instead of from Equation 13.10.1. 
In Equation 13.10.4 

 

(13.10.4) 

 

ha x 2 ha X = 
n3  — n 

ETx  
12 

Tx  = the sum of the values of T for the 
various tied ranks in X, and 

T.Y = the sum of the values of T for the 
various tied ranks in Y 

Most authorities agree that unless the number of ties is excessive the correc-
tion makes very little difference in the value of r,. When the number of ties is 
small, we can follow the usual procedure of assigning the tied observations the 
mean of the ranks for which they are tied and proceed with steps 2 to 6. 
Edgington (39) discusses the problem of ties in some detail. 

Ey2 n 3 n 

12 	E T; 
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Example 
13.10.1 

In a study of the relationship between age and the EEG, data were collected on 20 
subjects between the ages of 20 and 60 years. Table 13.10.1 shows the age and a 
particular EEG output value for each of the 20 subjects. The investigator wishes to 
know if it can be concluded that this particular EEG output is inversely correlated 
with age. 

Solution 

1. Data See Table 13.10.1. 

2. Assumptions We presume that the sample available for analysis is a simple 
random sample and that both X and Y are measured on at least the ordinal 
scale. 

3. Hypotheses 

1/0: This EEG output and age are mutually independent. 

HA: There is a tendency for this EEG output to decrease with age. 

Suppose we let a = .05. 

4. Test Statistic See Equation 13.10.1. 

5. Distribution of Test Statistic Critical values of the test statistic are given in 
Table P. 

6. Decision Rule For the present test we will reject 1/0  if the computed value of rs  

is less than —.3789. 

TABLE 13.10.1 Age and EEG Output Value 
for 20 Subjects 

Subject 
Number Age ( X ) 

EEG Output 
Value ( Y ) 

1 20 98 
2 21 75 
3 22 95 
4 24 100 
5 27 99 
6 30 65 
7 31 64 
8 33 70 
9 35 85 

10 38 74 
11 40 68 
12 42 66 
13 44 71 
14 46 62 
15 48 69 
16 51 54 
17 53 63 
18 55 52 
19 58 67 
20 60 55 
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TABLE 13.10.2 Ranks for Data of Example 13.10.1 

Subject 
Number Rank(X) Rank(Y) di  d? 

1 1 18 —17 289 
2 2 15 —13 169 
3 3 17 —14 196 
4 4 20 —16 256 
5 5 19 —14 196 
6 6 7 —1 1 
7 7 6 1 1 
8 8 12 —4 16 
9 9 16 —7 49 

10 10 14 —4 16 
11 11 10 1 1 
12 12 8 4 16 
13 13 13 0 0 
14 14 4 10 100 
15 15 11 4 16 
16 16 2 14 196 
17 17 5 12 144 
18 18 1 17 289 
19 19 9 10 100 
20 20 3 17 289 

Ed? = 2340 

7. Calculation of Test Statistic When the X and Y values are ranked we have the 
results shown in Table 13.10.2. The di, 	and Ed? are shown in the same 
table. 

Substitution of the data from Table 13.10.2 into Equation 13.10.1 gives 

6(2340) 
r — 1   — 	.76 $ 

20[(20)2  — 1.1 

8. Statistical Decision Since our computed rs  = —.76 is less than the critical rs* 
we reject the null hypothesis, 

9. Conclusion We conclude that the two variables are inversely related. Since 
—.76 < —0.6586, we have for this test p < .001. 

Let us now illustrate the procedure for a sample with n > 30 and some tied 
observations. 

Example 
13.10.2 

In Table 13.10.3 are shown the ages and concentrations (ppm) of a certain mineral 
in the tissue of 35 subjects on whom autopsies were performed as part of a large 
research project. 

The ranks, d, d? and Ed? are shown in Table 13.10.4. Let us test, at the .05 
level of significance, the null hypothesis that X and Y are mutually independent 
against the two-sided alternative that they are not mutually independent. 
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TABLE 13.10.3 Age and Mineral Concentration (PPM) in Tissue of 35 Subjects 

Subject 
Number 

Age 
(X) 

Mineral 
Concentration 

(Y) 
Subject 
Number 

Age 
(X) 

Mineral 
Concentration 

(Y ) 
1 82 169.62 19 50 4.48 
2 85 48.94 20 71 46.93 
3 83 41.16 21 54 30.91 
4 64 63.95 22 62 34.27 
5 82 21.09 23 47 41.44 
6 53 5.40 24 66 109.88 
7 26 6.33 25 34 2.78 
8 47 4.26 26 46 4.17 
9 37 3.62 27 27 6.57 

10 49 4.82 28 54 61.73 
11 65 108.22 29 72 47.59 
12 40 10.20 30 41 10.46 
13 32 2.69 31 35 3.06 
14 50 6.16 32 75 49.57 
15 62 23.87 33 50 5.55 
16 33 2.70 34 76 50.23 
17 36 3.15 35 28 6.81 
18 53 60.59 

TABLE 13.10.4 Ranks for Data of Example 13.10.2 

Subject Rank 
Number (X) 

Rank 
(Y) d .  

Subject 
Number 

Rank Rank 
(X) 	(Y) d. elf 

1 32.5 35 - 2.5 6.25 19 17 9 8 64.00 
2 35 27 8 64.00 20 28 25 3 9.00 
3 34 23 11 121.00 21 21.5 21 .5 .25 
4 25 32 - 7 49.00 22 23.5 22 1.5 2.25 
5 32.5 19 13.5 182.25 23 13.5 24 -10.5 110.25 
6 19.5 11 8.5 72.25 24 27 34 - 7 49.00 
7 1 14 -13 169.00 25 6 3 3 9.00 
8 13.5 8 5.5 30.25 26 12 7 5 25.00 
9 9 6 3 9.00 27 2 15 -13 169.00 

10 15 10 5 25.00 28 21.5 31 - 9.5 90.25 
11 26 33 - 7 49.00 29 29 26 3 9.00 
12 10 17 - 7 49.00 30 11 18 - 7 49.00 
13 4 1 3 9.00 31 7 4 3 9.00 
14 17 13 4 16.00 32 30 28 2 4.00 
15 23.5 20 3.5 12.25 33 17 12 5 25.00 
16 5 2 3 9.00 34 31 29 2 4.00 
17 8 5 3 9.00 35 3 16 -13 169.00 
18 19.5 30 - 10.5 110.25 

Ed? = 1788.5 
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Solution: From the data in Table 13.10.4 we compute 

6(1788.5) 
r, = 1   — .75 

35[352  — 1] 

To test the significance of rs  we compute 

z = .751/35 — 1 = 4.37 

Since 4.37 is greater than z = 3.89, p < 2(.0001) = .0002, and we reject H0  
and conclude that the two variables under study are not mutually independent. 

For comparative purposes let us correct for ties using Equation 13.10.3 and 
then compute rs  by Equation 13.10.4. 

In the rankings of X we had six groups of ties that were broken by assigning 
the values 13.5, 17, 19.5, 21.5, 23.5, and 32.5. In five of the groups two observations 
tied, and in one group three observations tied. We, therefore, compute five values 
of 

and one value of 

Tx 
23  — 2 

= 

6 

12 

24 
— 
12 

 = 2 

12 

33  — 3 
— 

12 

From these computations, we have ET, = 5(.5) + 2 = 4.5, so that 

353  — 35 E x2 = 	
12 	

4.5 = 3565.5 

Since no ties occurred in the Y rankings, we have ET), =- 0 and 

353  — 35 Ly2 = 	
12 	

0 = 3570.0 

From Table 13.10.4 we have Ed? = 1788.5. From these data we may now compute 
by Equation 13.10.4 

3565.5 + 3570.0 — 1788.5 
rs  — 	  — .75 

21/(3565.5)(3570) 

We see that in this case the correction for ties does not make any difference in the 
value of rs. 

EXERCISES 

For the following exercises perform the test at the indicated level of significance and 
determine the p value. 
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13.10.1 The following table shows 15 randomly selected geographic areas ranked by 
population density and age-adjusted death rate. Can we conclude at the .05 level of 
significance that population density and age-adjusted death rate are not mutually 
independent? 

Area 

Rank By 

Population 
Density (X) 

Age-Adjusted 
Death Rate (Y) 

1 8 10 
2 2 14 
3 12 4 
4 4 15 
5 9 11 
6 3 1 
7 10 12 
8 5 7 
9 6 8 

10 14 5 
11 7 6 
12 1 2 
13 13 9 
14 15 3 
15 11 13 

13.10.2 The following table shows 10 communities ranked by DMF teeth per 100 children 
and fluoride concentration in ppm in the public water supply. 

Community 

Rank By 

DMF Teeth 
Per 100 

Children (X ) 

Fluoride 
Concentration 

) 

1 8 1 
2 9 3 
3 7 4 
4 3 9 
5 2 8 
6 4 7 
7 1 10 
8 5 6 
9 6 5 

10 10 2 

Do these data provide sufficient evidence to indicate that the number of DMF 
teeth per 100 children tends to decrease as fluoride concentration increases? Let 
a = .05. 

13.10.3 The purpose of a study by McAtee and Mack (A-11) was to investigate possible 
relations between performance on the atypical approach parameters of the Design 
Copying (DC) subtest of the Sensory Integration and Praxis Tests (SIFT) and 
scores on the Southern California Sensory Integration Tests (SCSIT). The subjects 
were children seen in a private occupational therapy clinic. The following are the 
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scores of 24 children for the SIPT-DC parameter of Boundary and the Imitation of 
Postures (IP) subtest of the SCSIT. 

Boundary IP Boundary IP 

3 -1.9 1 - 1.1 
3 .8 5 -.6 
8 -.5 2 -.3 
2 -.9 2 .9 
7 .1 6 - 1.3 
2 .3 2 .8 
3 -.7 2 -.7 
2 .3 2 .3 
3 -1.7 0 1.3 
4 - 1.6 1 .5 
5 -1.6 3 .2 
0 .8 2 .2 

SOURCE: Shay McAtee, M. A., OTR. Used with permission. 
May we conclude, on the basis of these data, that scores on the two variables are 
correlated? Let a = .01. 

13.10.4 Barbera et al. (A-12) conducted a study to investigate whether or not the patho-
logic features in the lungs of patients with chronic obstructive pulmonary disease 
(COPD) are related to the gas exchange response during exercise. Subjects were 
patients undergoing surgical resection of a lobe or lung because of a localized lung 
neoplasm. Among the data collected were Pa02  measurements during exercise (E) 
and at rest (R) and emphysema scores (ES). The results for these variables were as 
follows: 

Patient 
No. 

Pa02  

 

R 	E 	 ES 

1 87 95 12.5 
2 84 93 25.0 
3 82 78 11.3 
4 69 79 30.0 
5 85 77 7.5 
6 74 89 5.0 
7 90 87 3.8 
8 97 110 .0 
9 67 61 70.0 

10 78 69 18.8 
11 101 113 5.0 
12 79 82 32.5 
13 84 93 .0 
14 70 85 7.5 
15 86 91 5.0 
16 66 79 10.0 
17 69 87 27.5 
Mean ± SEM 81 ±3 86 ± 3 16.0 ± 4.4 

SOURCE: Joan A. Barbera, Josep Roca, Josep Ramirez, Peter D. Wagner, 
Pietat Ussetti, and Robert Rodriguez-Roisin, "Gas Exchange During 
Exercise in Mild Chronic Obstructive Pulmonary Disease: Correlation 
With Lung Structure," American Review of Respiratory Disease, 144 (1991), 
520-525. 
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Compute r, for Pa02  during exercise and ES and test for significance at the .01 
level. 

13.10.5 Refer to Exercise 13.10.4. Compute r, for Pa02  at rest and ES and test for 
significance at the .01 level. 

13.10.6 As part of a study by Miller and Tricker (A-13) 76 prominent health and fitness 
professionals rated 17 health promotion target markets on the basis of importance 
in the past 10 years and the next 10 years. Their mean ratings scored on a 
Likert-like scale (5 = extremely important, 4 = very important, 3 = important, 
2 = somewhat important, 1 = unimportant) were as follows: 

Market 

Next 10 Years Past 10 Years 

Mean 
Rating 

Mean 
Rating 

Women 4.36 3.23 
Elderly 4.25 2.61 
Employees/large business 4.22 3.66 
Children 4.17 2.63 
Retirees 4.15 2.08 
Blue-collar workers 4.03 2.15 
Drug/alcohol abusers 4.03 2.95 
Employees/small business 3.90 2.11 
Heart/lung disease patients 3.83 3.41 
General public 3.81 2.84 
Obese/eating disorder 3.80 2.97 
Disadvantaged minorities 3.56 2.00 
Leisure/recreation seekers 3.52 2.95 
At-home market 3.51 2.12 
Injured (back/limbs) 3.42 2.51 
Athletes 3.13 3.30 
Mentally ill 2.83 1.88 

SOURCE: Cheryl Miller and Ray Tricker, "Past and Future Priorities in Health 
Promotion in the United States: A survey of Experts," American Journal of Health 
Promotion, 5 (1991), 360-367. Used by permission. 

Compute r, for the two sets of ratings and test for significance. Let a = .05. 

13.10.7 Seventeen patients with a history of congestive heart failure participated in a study 
to assess the effects of exercise on various bodily functions. During a period of 
exercise the following data were collected on the percent change in plasma 
norepinephrine (Y) and the percent change in oxygen consumption (X). 

Subject X 

1 500 525 
2 475 130 
3 390 325 
4 325 190 
5 325 90 
6 205 295 
7 200 180 
8 75 74 
9 230 420 
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Table (continued) 

Subject X 

10 50 60 
11 175 105 
12 130 148 
13 76 75 
14 200 250 
15 174 102 
16 201 151 
17 125 130 

On the basis of these data can one conclude that there is an association between 
the two variables? Let a = .05. 

13.11 
Nonparametric Re ression AnaIsis.  

When the assumptions underlying simple linear regression analysis as discussed in 
Chapter 9 are not met, we may employ nonparametric procedures. In this section 
we present estimators of the slope and intercept that are easy-to-calculate alterna-
tives to the least-squares estimators described in Chapter 9. 

Theil's Slope Estimator Theil (40) proposes a method for obtaining a point 
estimate of the slope coefficient /3. We assume that the data conform to the classic 
regression model 

yi  = a + 13x, + e„ 	i = 1, 	, n 

where the x, are known constants, a and /3 are unknown parameters, and yi  is an 
observed value of the continuous random variable Y at xi. For each value of x, we 
assume a subpopulation of Y values, and the ez  are mutually independent. The xi  
are all distinct (no ties), and we take x1  < x2  < • • < xn . 

The data consist of n pairs of sample observations, (x i,y1), (x2, vo) • • , (X  n ,  n),  

where the i th pair represents measurements taken on the ith unit of association. 
To obtain Theil's estimator of /3, we first form all possible sample slopes 

S = (yj  — yi)/(xj  — xi ), where i <j. There will be N =„C2  values of Si;. The 
estimator of /3, which we designate by 0, is the median of Si;  values. That is, 

= median {Su} 	 ( 13 .11 .1) 

The following example illustrates the calculation of 0. 

Example 
	

In Table 13.11.1 are the plasma testosterone (ng/ml) levels (Y) and seminal citric 
13.11.1 	acid (mg/ml) levels in a sample of eight adult males. We wish to compute the 

estimate of the population regression slope coefficient by Theil's method. 
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TABLE 13.11.1 Plasma Testosterone and Seminal Citric Acid Levels 
in Adult Males 

Testosterone: 230 175 315 290 275 150 360 425 
Citric acid: 	421 	278 	618 	482 	465 	105 	550 	750 

Solution: The N = 8C2 = 28 ordered values of Su  are shown in Table 13.11.2. 
If we let i = 1 and j = 2, the indicators of the first and second values of Y and 

X in Table 13.11.1, we may compute S1 2 as follows: 

S12 = ( 1 75 - 230)/(278 - 421) = - .3846 

When all the slopes are computed in a similar manner and ordered as in Table 
13.11.2, - .3846 winds up as the tenth value in the ordered array. 

The median of the Su  values is .4878. Consequently, our estimate of the 
population slope coefficient is # = .4878. 

An Estimator of the Intercept Coefficient Dietz (41) recommends two 
intercept estimators. The first, designated a,,m, is the median of the n terms 
Yz  - #x, in which # is the Theil estimator. It is recommended when the researcher 
is not willing to assume that the error terms are symmetric about 0. If the 
researcher is willing to assume a symmetric distribution of error terms, Dietz 
recommends the estimator 622, m, which is the median of the n(n + 1)/2 pairwise 
averages of the y, - #x, terms. We illustrate the calculation of each in the 
following example. 

TABLE 13.11.2 Ordered Values 
of Su  for Example 13.11.1 

- .6618 .5037 
.1445 .5263 
.1838 .5297 
.2532 .5348 
.2614 .5637 
.3216 .5927 
.325 .6801 
.3472 .8333 
.3714 .8824 
.3846 .9836 
.4118 1.0000 
.4264 1.0078 
.4315 1.0227 
.4719 1.0294 
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Example 	Refer to Example 13.11.1. Let us compute d i , M  and 62, AI from the data on 
13.11.2 	testosterone and citric acid levels. 

Solution: The ordered y, - .4878x, terms are: 13.5396, 24.6362, 39.3916, 48.1730, 
54.8804, 59.1500, 91.7100, and 98.7810. The median, 51.5267, is the estimator a l, M. 

The 8(8 + 1)/2 = 36 ordered pairwise averages of the yi  - .4878x, are 

13.5396 
19.0879 
24.6362 
26.4656 
30.8563 
32.0139 
34.21 
36.3448 
36.4046 
39.3916 
39.7583 
41.8931 
43.7823 
47.136 
48.173 

49.2708 
51.5267 
52.6248 
53.6615 
54.8804 
56.1603 
57.0152 
58.1731 
59.15 
61.7086 
65.5508 
69.0863 
69.9415 
73.2952 
73.477 

75.43 
76.8307 
78.9655 
91.71 
95.2455 
98.781 

The median of these averages, 53.1432, is the estimator d2, M. The estimating 
equation, then, is y, = 53.1432 + .4878x, if we are willing to assume that the 
distribution of error terms is symmetric about 0. If we are not willing to make the 
assumption of symmetry, the estimating equation is yi  = 51.5267 + .4878x j. 

For a more extensive discussion of nonparametric regression analysis, see the 
book on nonparametric statistics by Daniel (5). 

EXERCISES 

13.11.1 The following are the heart rates (HR: beats/minute) and oxygen consumption 
values (V02 ,, cal/kg/24 h) for nine infants with chronic congestive heart failure: 

HR(X): 163 164 156 151 152 167 165 153 155 
V02(Y): 53.9 57.4 41.0 40.0 42.0 64.4 59.1 49.9 43.2 

Compute 0, d,, m, , and 
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13.11.2 The following are the body weights (grams) and total surface area (cm2) of nine 
laboratory animals: 

Body weight (X): 660.2 706.0 924.0 936.0 992.1 888.9 999.4 890.3 841.2 
Surface area (Y): 781.7 888.7 1038.1 1040.0 1120.0 1071.5 1134.5 965.3 925.0 

Compute the slope estimator and two intercept estimators. 

13.12 
sivizaTjiiu 

This chapter is concerned with nonparametric statistical tests. These tests may be 
used either when the assumptions underlying the parametric tests are not realized 
or when the data to be analyzed are measured on a scale too weak for the 
arithmetic procedures necessary for the parametric tests. 

Nine nonparametric tests are described and illustrated. Except for the 
Kolmogorov—Smirvon goodness-of-fit test, each test provides a nonparametric 
alternative to a well-known parametric test. There are a number of other nonpara-
metric tests available, many of which are described and illustrated in the refer-
ences cited at the end of this chapter. 

REVIEW QUESTIONS AND EXERCISES 

1. Define nonparametric statistics. 

2. What is meant by the term distribution-free statistical tests? 

3. What are some of the advantages of using nonparametric statistical tests? 

4. What are some of the disadvantages of the nonparametric tests? 

5. Describe a situation in your particular area of interest where each of the following tests 
could be used. Use real or realistic data and test an appropriate hypothesis using each 
test. 

a. The sign test 
b. The median test 
c. The Wilcoxon Test 
d. The Mann—Whitney test 
e. The Kolmogorov—Smirnov goodness-of-fit test 
f. The Kruskal—Wallis one-way analysis of variance by ranks 
g. The Friedman two-way analysis of variance by ranks 
h. The Spearman rank correlation coefficient 
i. Nonparametric regression analysis 
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6. The following are the ranks of the ages (X) of 20 surgical patients and the dose (Y) of 
an analgesic agent required to block one spinal segment. 

Rank of 
Age in 

Years (X ) 

Rank of Dose 
Requirement 

(Y) 

Rank of 
Age in 

Years (X ) 

Rank of Dose 
Requirement 

( Y ) 

1 11 13 
2 7 12 5 
3 2 13 11 
4 4 14 16 
5 6 15 20 
6 8 16 18 
7 3 17 19 
8 15 18 17 
9 9 19 10 

10 12 20 14 

Compute rs  and test (two-sided) for significance. Let a = .05. Determine the p value for 
this test. 

7. The following pulmonary function data were collected on children with muscular 
dystrophy before and after a period of respiratory therapy. Scores are expressed as 
percent of predicted normal values for height, weight, and body surface measurement. 

Forced Vital Capacity (liters) 

Before: 74 65 84 89 84 65 78 86 83 82 
After: 79 78 100 92 104 70 81 84 85 90 

Use the sign test to determine whether one should conclude that the therapy is 
effective. Let a = .05. What is the p value? 

8. Three methods of reducing skin bacterial load by bathing were compared. Bacteria 
counts were made on the right foot of subjects before and after treatment. The variable 
of interest was percent reduction of bacteria. Twenty-seven nursing student volunteers 
participated in the experiment. The three methods of bathing the foot were whirlpool 
agitation, spraying, and soaking. The results were as follows: 

Whirlpool Spraying Soaking 

91 80 18 16 6 10 
87 92 22 15 6 12 
88 81 20 26 8 5 
84 93 29 19 9 9 
86 25 13 

Can one conclude on the basis of these data that the three methods are not equally 

effective? Let a = .05. What is the p value for this test? 

9. Ten subjects with bronchial asthma participated in an experiment to evaluate the 
relative effectiveness of three drugs. The following table shows the change in FENT, 
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(forced expired volume in 1 second) values (expressed as liters) two hours after drug 
administration: 

Subject 

Drug 

A 

1 .00 .13 .26 
2 .04 .17 .23 
3 .02 .20 .21 
4 .02 .27 .19 
5 .04 .11 .36 
6 .03 .18 .25 
7 .05 .21 .32 
8 .02 .23 .38 
9 .00 .24 .30 

10 .12 .08 .30 

Are these data sufficient to indicate a difference in drug effectiveness? Let a = .05. 
What is the p value for this test? 

10. Sera from two groups of subjects following streptococcal infection were assayed for 
neutralizing antibodies to streptolysin 0 (ASO). The results were as follows: 

ASO (Measured in Todd units) 

Group A Group B 

324 558 
275 108 
349 291 
604 863 
566 303 
810 640 
340 358 
295 503 
357 646 
580 689 
344 250 
655 540 
380 630 
503 190 
314 

Do these data provide sufficient evidence to indicate a difference in population medians? 
Let a = .05. What is the p-value for this test? Use both the median test and the 
Mann-Whitney test and compare the results. 

11. The following are the PaCO2  (mm Hg) values in 16 patients with bronchopulmonary 
disease: 

39, 40, 45, 48, 49, 56, 60, 75, 42, 48, 32, 37, 32, 33, 33, 36 

Use the Kolomogorov-Smirnov test to the test the null hypothesis that PaCO2  values in 
the sampled population are normally distributed with µ = 44 and if = 12. 
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12. The following table shows the caloric intake (cal/day/kg) and oxygen consumption, 
VO 2  (ml/min/kg) in 10 infants: 

Caloric 
Intake (X) V02(Y) 

50 7.0 
70 8.0 
90 10.5 

120 11.0 
40 9.0 

100 10.8 
150 12.0 
110 10.0 

75 9.5 
160 11.9 

Test the null hypothesis that the two variables are mutually independent against the 
alternative that they are directly related. Let a = .05. What is the p value for this test? 

13. The following are the estriol levels (mg/24 hour urine specimens) of 16 pregnant 
women and the birth weights (grams X 100) of their babies. 

Estroil 
Levels 

Birth 
Weight 

15 31 
17 31 
17 32 
18 31 
20 32 
22 31 
25 32 
16 33 
17 34 
17 29 
17 28 
15 28 
10 26 
26 33 
28 35 
25 39 

Test the null hypothesis that the two variables are mutually independent against the 
alternative that they are directly related. Let the probability of committing a type I 
error be .05. What is the p value? 

14. The following are the college grade point averages of 12 students receiving a B.S. degree 
in nursing and their scores on the state certification examination: 

GPA: 2.5 2.2 3.0 2.8 2.8 2.5 2.3 3.1 3.7 2.9 2.7 2.4 

EXAM SCORE: 84 85 91 83 87 89 86 95 93 79 90 85 

Can we conclude at the .05 level of significance that the two variables are not mutually 
independent? What is the p value for the test? 
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14.1 
Introduction 

The private physician arrives at a diagnosis and treatment plan for an individual 

patient by means of a case history, a physical examination, and various laboratory 

tests. The community may be thought of as a living complex organism for which 

the public health team is the physician. To carry out this role satisfactorily the 

public health team must also make use of appropriate tools and techniques for 

evaluating the health status of the community. Traditionally these tools and 

techniques have consisted of the community's vital statistics, which include the 

counts of births, deaths, illnesses, and the various rates and ratios that may be 

computed from them. 

In succeeding sections we give some of the more useful and widely used rates 

and ratios. Before proceeding, however, let us distinguish between the terms rate 

and ratio by defining each as follows. 

1. Rate Although there are some exceptions, the term rate usually is reserved to 

refer to those calculations that imply the probability of the occurrence of some 
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event. A rate is expressed in the form 

( a +a 	b)k 

	
(14.1.1) 

where 

a = the frequency with which an event has occurred during some specified 

period of time 

a + b = the number of persons exposed to the risk of the event during the 

same period of time 

k = some number such as 10, 100, 1000, 10,000, or 100,000 

As indicated by Expression 14.1.1 the numerator of a rate is a component part of 

the denominator. The purpose of the multiplier, k, called the base, is to avoid 

results involving the very small numbers that may arise in the calculation of rates 

and to facilitate comprehension of the rate. The value chosen for k will depend on 

the magnitudes of the numerator and denominator. 

2. Ratio A ratio is a fraction of the form 

)k 
	

(14.1.2) 

where k is some base as already defined and both c and d refer to the 

frequency of occurrence of some event or item. In the case of a ratio, as 

opposed to a rate, the numerator is not a component part of the denominator. 

We can speak, for example, of the person—doctor ratio or the person—hospital-

bed ratio of a certain geographic area. The values of k most frequently used in 

ratios are 1 and 100. 

14.2 
Death Rates and Ratios 

The rates and ratios discussed in this section are concerned with the occurrence of 
death. Death rates express the relative frequency of the occurrence of death within 
some specified interval of time in a specific population. The denominator of a death 
rate is referred to as the population at risk. The numerator represents only those 
deaths that occurred in the population specified by the denominator. 

1. Annual Crude Death Rate The annual crude death rate is defined as 

total number of deaths during year (January 1 to December 31) 

total population as of July 1 
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where the value of k is usually chosen as 1000. This is the most widely used 
rate for measuring the overall health of a community. To compare the crude 
death rates of two communities is hazardous, unless it is known that the 
communities are comparable with respect to the many characteristics, other 
than health conditions, that influence the death rate. Variables that enter into 
the picture include age, race, sex, and socioeconomic status. When two popula-
tions must be compared on the basis of death rates, adjustments may be made 
to reconcile the population differences with respect to these variables. The 
same precautions should be exercised when comparing the annual death rates 
for the same community for two different years. 

2. Annual Specific Death Rates It is usually more meaningful and enlightening to 
observe the death rates of small, well-defined subgroups of the total popula-
tion. Rates of this type are called specc death rates and are defined as 

total number of deaths in a specific subgroup during a year 

total population in the specific subgroup as of July 1 

where k is usually equal to 1000. Subgroups for which specific death rates may 
be computed include those groups that may be distinguished on the basis of 
sex, race, and age. Specific rates may be computed for two or more characteris-
tics simultaneously. For example, we may compute the death rate for white 
males, thus obtaining a race—sex specific rate. Cause-specific death rates may 
also be computed by including in the numerator only those deaths due to a 
particular cause of death, say cancer, heart disease, or accidents. Because of 
the small fraction that results, the base, k, for a cause-specific rate is usually 
100,000 or 1,000,000. 

3. Adjusted or Standardized Death Rates As we have already pointed out, the use-
fulness of the crude death rate is restricted by the fact that it does not reflect 
the composition of the population with respect to certain characteristics by 
which it is influenced. We have seen that by means of specific death rates 
various segments of the population may be investigated individually. If, how-
ever, we attempt to obtain an overall impression of the health of a population 
by looking at individual specific death rates, we are soon overwhelmed by their 
great number. 

What is wanted is a single figure that measures the forces of mortality in a 
population while holding constant one or more of the compositional factors such as 
age, race, or sex. Such a figure, called an adjusted death rate, is available. It is most 
commonly obtained by what is known as the direct method of adjustment. The 
method consists essentially of applying to a standard population specific rates 
observed in the population of interest. From the resulting expected numbers we 
may compute an overall rate that tells us what the rate for the population of 
interest would be if that population had the same composition as the standard 
population. This method is not restricted to the computation of adjusted death 
rates only, but it may be used to obtain other adjusted rates, for example, an 
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adjusted birth rate. If two or more populations are adjusted in this manner, they 
are then directly comparable on the basis of the adjustment factors. Opinions differ 
as to what population should be used as the standard. The population of the 
United States as of the last decennial census is frequently used. For adjustment 
calculations a population of 1,000,000, reflecting the composition of the standard 
population and called the standard million, is usually used. In the following example 
we illustrate the direct method of adjustment to obtain an age-adjusted death rate. 

Example 
14.2.1 

The 1970 crude death rate for Georgia was 9.1 deaths per 1000 population. Let us 
obtain an age-adjusted death rate for Georgia by using the 1970 United States 
census as the standard population. In other words, we want a death rate that could 
have been expected in Georgia if the age composition of the Georgia population 
had been the same as that of the United States in 1970. 

Solution: The data necessary for the calculations are shown in Table 14.2.1. 
The procedure for calculating an age-adjusted death rate by the direct method 

consists of the following steps. 

1. The population of interest is listed (column 2) according to age group (col-
umn 1). 

2. The deaths in the population of interest are listed (column 3) by age group. 

3. The age-specific death rates (column 4) for each age group are calculated by 
dividing column 3 by column 2 and multiplying by 100,000. 

4. The standard population (column 5) is listed by age group. 

TABLE 14.2.1 Calculation of age-adjusted death rate for Georgia, 1970, by direct method 

1 	 2 	 3 	 4 	 5 	 6 
Standard 

Population Number of 
Based on 	Expected 

Age-specific 	U.S. 	Deaths in 
Death Rates 	Population 	Standard 

Age (years) Population" Deaths" 	(per 100,000 	19706 	Population 

0 to 	4 424,600 2,483 584.8 84,416 494 
5 to 14 955,000 449 47.0 200,508 94 

15 to 24 863,000 1,369 158.6 174,406 277 
25 to 34 608,100 1,360 223.6 122,569 274 
35 to 44 518,400 2,296 442.9 113,614 503 
45 to 54 486,400 4,632 952.3 114,265 1.088 
55 to 64 384,400 7,792 2,027.1 91,480 1,854 
65 to 74 235,900 9,363 3,969.1 61,195 2,429 
75 and over 132,900 12,042 9,060.9 37,547 3,402 

Total 4,608,700 41,786' 1,000,000 10,415 
'Georgia Vital and Morbidity Statistics 1970, Georgia Department of Public Health, Atlanta, Georgia. 

61970 Census of Population, PC(1)-B1, Table 49. 

`Excludes 44 deaths at unknown age. 
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5. The expected number of deaths in the standard population for each group 
(column 6) is computed by multiplying column 4 by column 5 and dividing by 
100,000. The entries in column 6 are the deaths that would be expected in the 
standard population if the persons in this population had been exposed to the 
same risk of death experienced by the population being adjusted. 

6. The entries in column 6 are summed to obtain the total number of expected 
deaths in the standard population. 

7. The age-adjusted death rate is computed in the same manner as a crude death 
rate. That is, the age-adjusted death rate is equal to 

total number of expected deaths 
1000 

total standard population 

In the present example we have an age-adjusted death rate of 

10,415 
1,000,000 1000 = 10.4 

We see, then, that by adjusting the 1970 population of Georgia to the age 
distribution of the standard population, we obtain an adjusted death rate that is 
1.3 per 1000 greater than the crude death rate (10.4 — 9.1). This increase in the 
death rate following adjustment reflects the fact that in 1970 the population of 
Georgia was slightly younger than the population of the United States as a whole. 
For example, only 8 percent of the Georgia population was 65 years of age or older 
whereas 10 percent of the United States population was in that age group. 

4. Maternal Mortality Rate This rate is defined as 

deaths from all puerperal causes during a year 

total live births during the year 

where k is taken as 1000 or 100,000. The preferred denominator for this rate is 
the number of women who were pregnant during the year. This denominator, 
however, is impossible to determine. 

A death from a puerperal cause is a death that can be ascribed to some 
phase of childbearing. Because of the decline in the maternal mortality rate in 
the United States, it is more convenient to use k = 100,000. In some countries, 
however, k = 1000 results in a more convenient rate. The decline in the 
maternal mortality rate in this country also has had the effect of reducing its 
usefulness as a discriminator among communities with varying qualities of 
medical care and health facilities. 

Some limitations of the maternal mortality rate include the following. 
a. Fetal deaths are not included in the denominator. This results in an inflated 

rate, since a mother can die from a puerperal cause without producing a 
live birth. 
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b. A maternal death can be counted only once, although twins or larger 
multiple births may have occurred. Such cases cause the denominator to be 
too large and, hence, there is a too small rate. 

c. Under-registration of live births, which result in a too small denominator, 
causes the rate to be too large. 

d. A maternal death may occur in a year later than the year in which the birth 
occurred. Although there are exceptions, in most cases the transfer of 
maternal deaths will balance out in a given year. 

5. Infant Mortality Rate This rate is defined as 

number of deaths under 1 year of age during a year 

total number of live births during the year 

where k is generally taken as 1000. Use and interpretation of this rate must be 
made in light of its limitations, which are similar to those that characterize the 
maternal mortality rate. Many of the infants who die in a given calendar year 
were born during the previous year; and, similarly, many children born in a 
given calendar year will die the during the following year. In populations with a 
stable birthrate this does not pose a serious problem. In periods of rapid 
change, however, some adjustment should be made. One way to make an 
adjustment is to allocate the infant deaths to the calendar year in which the 
infants were born before computing the rate. 

6. Neonatal Mortality Rate In an effort to better understand the nature of infant 
deaths, rates for ages less than a year are frequently computed. Of these, the 
one most frequently computed is the neonatal mortality rate, which is defined as 

number of deaths under 28 days of age during a year 

total number of live births during the year 

where k = 1000. 

7. Fetal Death Rate This rate is defined as 

total number of fetal deaths during a year k 

total deliveries during the year 

where k is usually taken to be 1000. A fetal death is defined as a product of 
conception that shows no sign of life after complete birth. There are several 
problems associated with the use and interpretation of this rate. There is 
variation among reporting areas with respect to the duration of gestation. 
Some areas report all fetal deaths regardless of length of gestation while 
others have a minimum gestation period that must be reached before report-
ing is required. Another objection to the fetal death rate is that it does not 
take into account the extent to which a community is trying to reproduce. The 
ratio to be considered next has been proposed to overcome this objection. 
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8. Fetal Death Ratio This ratio is defined as 

total number of fetal deaths during a year 

total number of live births during the year 

where k is taken as 100 or 1000. 
Some authorities have suggested that the number of fetal deaths as well as 

live births be included in the denominator in an attempt to include all 
pregnancies in the computation of the ratio. The objection to this suggestion 
rests on the incompleteness of fetal death reporting. 

9. Perinatal Mortality Rate Since fetal deaths occurring late in pregnancy and 
neonatal deaths frequently have the same underlying causes, it has been 
suggested that the two be combined to obtain what is known as the perinatal 
mortality rate. This rate is computed as 

(number of fetal deaths of 28 weeks or more 

+ (infant deaths under 7 days) 

(number of fetal deaths of 28 weeks or more 

+ (number of live births) 

where k = 1000. 

10. Cause-of-Death Ratio This ratio is defined as 

number of deaths due to a specific disease during a year k 

total number of deaths due to all causes during the year 

where k = 100. This index is used to measure the relative importance of a 
given cause of death. It should be used with caution in comparing one 
community with another. A higher cause-of-death ratio in one community than 
that in another may be because the first community has a low mortality from 
other causes. 

11. Proportional Mortality Ratio This index has been suggested as a single measure 
for comparing the overall health conditions of different communities. It is 
defined as 

number of deaths of persons 50 years of age and older k 

total number of deaths 

where k = 100. The specified class is usually an age group such as 50 years and 
over, or a cause of death category, such as accidents. The proportional 
mortality ratio exhibits certain defects as noted by Linder and Grove (1). 
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EXERCISES 

14.2.1 The following annual data were reported for a certain geographic area: 

Total 

Number 

White Nonwhite 

Estimated population as of July 1 597,500 361,700 235,800 
Total live births 12,437 6,400 6,037 

Immature births 1,243 440 803 
Fetal deaths: 592 365 227 

Total 
Under 20 weeks gestation 355 269 86 
20 to 27 weeks gestation 103 42 61 
28 weeks and more 123 49 74 
Unknown length of gestation 11 5 6 

Deaths 6,219 3,636 2,583 
Total all ages 
Under 1 year 267 97 170 
Under 28 days 210 79 131 
Deaths from immaturity 16 12 4 
Maternal deaths 2 — 2 

Cause of death 
Malignant neoplasms 948 626 322 
Ischaemic heart disease 1,697 1,138 559 

SOURCE: Georgia Vital and Morbidity Statistics 1970, Georgia Department of Public Health, 

Atlanta, p. 47. 

From these data compute the following rates and ratios: (a) crude death rate, 
(b) race-specific death rates for white and nonwhite, (c) maternal mortality rate, 
(d) infant mortality rate, (e) neonatal mortality rate, (f) fetal death ratio, (g) cause 
of death ratios for malignant neoplasms and ischaemic heart disease. 

14.2.2 The following table shows the deaths and estimated population by age for the state 
of Georgia for 1971. Use these data to compute the age-adjusted death rate for 
Georgia, 1971. Use the same standard population that was used in Example 14.2.1. 

Age (years) Estimated Population Deaths 

0 to 4 423,700 2,311 
5 to 14 947,900 480 

15 to 24 891,300 1,390 
25 to 34 623,700 1,307 
35 to 44 520,000 2,137 
45 to 54 494,200 4,640 
55 to 64 388,600 7,429 
65 to 74 243,000 9,389 
75 and over 136,000 12,411 

Total 4,668,400 41,494°  

°Excludes 42 deaths at unknown age. 

SOURCE: Statistics Sections, Office of Evaluation and Research, 
Georgia Department of Human Resources, Atlanta. 
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14.3 
Measures of Fertili 

The term fertility as used by American demographers refers to the actual bearing 
of children as opposed to the capacity to bear children, for which phenomenon the 
term fecundity is used. A knowledge of the "rate" of childbearing in a community is 
important to the health worker in planning services and facilities for mothers, 
infants, and children. The following are the six basic measures of fertility. 

1. Crude Birth Rate This rate is the most widely used of the fertility measures. It 
is obtained from 

total number of live births during a year 

total population as of July 1 

where k = 1000. For an illustration of the computation of this and the other 
five rates, see Table 14.3.1. 

2. General Fertility Rate This rate is defined as 

number of live births during a year 

total number of women of childbearing age 

where k = 1000 and the childbearing age is usually defined as ages 15 through 
44 or ages 15 through 49. The attractive feature of this rate, when compared 
to the crude birth rate, is the fact that the denominator approximates the 
number of persons actually exposed to the risk of bearing a child. 

3. Age-Specific Fertility Rate Since the rate of childbearing is not uniform 
throughout the childbearing ages, a rate that permits the analysis of fertility 
rates for shorter maternal age intervals is desirable. The rate used is the 
age-specific fertility rate, which is defined as 

number of births to women of a certain age in a year 
k 

total number of women of the specified age 

where k = 1000. Age-specific rates may be computed for single years of age, or 
any age interval. Rates for five-year age groups are the ones most frequently 
computed. Specific fertility rates may be computed also for other population 
subgroups such as those defined by race, socioeconomic status, and various 
demographic characteristics. 



642 

TABLE 14.3.1 

Chapter 14 • Vital Statistics 

Illustration of procedures for computing six basic measures of fertility, for Georgia, 1970 

1 2 3 4 5 6 7 
Standard 

Number of Age- Population 
Births to Specfic Based 

Age of Number of Women of Birthrate on U.S. Cumulative 
Woman Women in Specified per 1000 Population Expected Fertility 
(years) Population' Age" Women 1970' Births Rate 

15 to 19 220,100 21,790 99.0 193.762 19,182 495.0 
20 to 24 209,500 37,051 176.9 173,583 30,707 1,379.5 
25 to 29 170,100 22,135 130.1 140,764 18,313 2,030.0 
30 to 34 139,100 9,246 66.5 119,804 7,967 2,362.5 
35 to 39 135,400 3,739 27.6 116,925 3,227 2,500.5 
40 to 49 261,700 1,044 4.0 255,162 1,021 2,540.5 

Total 1,135,900 95,005 1,000,000 80,417 

Computation of six basic rates: 
(1) Crude birth rate = total births divided by total population 

= (95,584/4,608,700)(1000) = 21. 
(2) General fertility rate = (95,584/1,135,900)(1000) = 84.1. 
(3) Age-specific fertility rates = entries in column 3 divided by entries in column 2 multiplied by 1000 

for each age group. Results appear in column 4. 
(4) Total fertility rate = the sum of each age-specific rate multiplied by the age interval width = 

(99.0)(5) + (176.9)(5) + (130.1)(5) + (66.5)(5) + (27.6)(5) + (4.0)(10) = 2,540.5. 
(5) Cumulative fertility rate = age-specific birth rate multiplied by age interval width cumulated by 

age. See column 7. 
(6) Standardized general fertility rate = (80,417/1,000,000)(1000) = 80.4. 

'Statistics Section, Office of Evaluation and Research, Georgia Department of Human Resources, Atlanta. 

"Georgia Vital and Morbidity Statistics 1970, Georgia Department of Public Health, Atlanta. 

`1970 Census of Population, PC(1)-B1. 

4. Total Fertility Rate If the age-specific fertility rates for all ages are added and 
multiplied by the interval into which the ages were grouped, the result is called 
the total fertility rate. The resulting figure is an estimate of the number of 
children a cohort of 1000 women would have if, during their reproductive 
years, they reproduced at the rates represented by the age-specific fertility 
rates from which the total fertility rate is computed. 

5. Cumulative Fertility Rate The cumulative fertility rate is computed in the same 
manner as the total fertility rate except that the adding process can terminate 
at the end of any desired age group. The numbers in column 7 of Table 14.3.1 
are the cumulative fertility rates through the ages indicated in column I. The 
final entry in the cumulative fertility rate column is the total fertility rate. 

6. Standardized Fertility Rate Just as the crude death rate may be standardized or 
adjusted, so may we standardize the general fertility rate. The procedure is 
identical to that discussed in Section 14.2 for adjusting the crude death rate. 
The necessary computations for computing the age-standardized fertility rate 
are shown in Table 14.3.1. 
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EXERCISES 

14.3.1 The data in the following table are for the state of Georgia for 1971. 

Number 
Number of 	of Births 

Age of 	 Women in 	to Women of 
Woman (years) 	Population 	Specified Age 

15 to 19 	 225,200 	 21,834 
20 to 24 	 217,600 	 35,997 
25 to 29 	 173,400 	 21,670 
30 to 34 	 143,300 	 8,935 
35 to 39 	 134,100 	 3,464 
40 to 49 	 267,800 	 925' 

'May include some births to women over 49 years of age. 

SOURCE: Statistics Section, Office of Evaluation and Research, Georgia 
Department of Human Resources, Atlanta. 

From the above data compute the following rates: 

a. Age-specific fertility rates for each age group. 
b. Total fertility rate. 
c. Cumulative fertility rate through each age group. 
d. General fertility rate standardized by age. 

Use the standard population shown in Table 14.3.1 

14.3.2 There were a total of 95,546 live births in Georgia in 1971. The estimated total 
population as of July 1, 1971, was 4,668,400, and the number of women between the 
ages of 15 and 49 was 1,161,400. Use these data to compute: 

a. The crude birth rate. 
b. The general fertility rate. 

14.4 
Measures of Morbidi 

Nino 

Another area that concerns the health worker who is analyzing the health of a 
community is morbidity. The word morbidity refers to the community's status with 
respect to disease. Data for the study of the morbidity of a community are not, as a 
rule, as readily available and complete as are the data on births and deaths because 
of incompleteness of reporting and differences among states with regard to laws 
requiring the reporting of diseases. The two rates most frequently used in the 
study of diseases in a community are the incidence rate and the prevalence rate. 

1. Incidence Rate This rate is defined as 

total number of new cases of a specific disease during a year 

total population as of July 1 
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where the value of k depends on the magnitude of the numerator. A base of 
1000 is used when convenient, but 100 can be used for the more common 
diseases, and 10,000 or 100,000 can be used for those less common or rare. This 
rate, which measures the degree to which new cases are occurring in the 
community, is useful in helping determine the need for initiation of preventive 
measures. It is a meaningful measure for both chronic and acute diseases. 

2. Prevalence Rate Although it is referred to as a rate, the prevalence rate is really a 
ratio, since it is computed from 

total number of cases, new or old, existing at a point in time k 

total population at that point in time 

where the value of k is selected by the same criteria as for the incidence rate. 
This rate is especially useful in the study of chronic diseases, but it may also be 
computed for acute diseases. 

3. Case-Fatality Ratio This ratio is useful in determining how well the treatment 
program for a certain disease is succeeding. It is defined as 

total number of deaths due to a disease 
	  k 
total number of cases due to the disease 

where k = 100. The period of time covered is arbitrary, depending on the 
nature of the disease, and it may cover several years for an endemic disease. 
Note that this ratio can be interpreted as the probability of dying following 
contraction of the disease in question and, as such, reveals the seriousness of 
the disease. 

4. Immaturity Ratio This ratio is defined as 

number of live births under 2500 grams during a year k 

total number of live births during the year 

where k = 100. 

5. Secondary Attack Rate This rate measures the occurrence of a contagious 
disease among susceptible persons who have been exposed to a primary case 
and is defined as 

number of additional cases among contacts of a 
primary case within the maximum incubation period 
	  k 

total number of susceptible contacts 

where k = 100. This rate is used to measure the spread of infection and is 
usually applied to closed groups such as a household or classroom where it can 
be reasonably assumed that all members were, indeed, contacts. 
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14.5 
Summary 

This chapter is concerned with the computation and interpretation of various rates 
and ratios that are useful in studying the health of a community. More specifically, 
we discuss the more important rates and ratios relating to births, deaths, and 
morbidity. Individuals who wish to continue their reading in this area should 
consult the references. 
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Some Basic 
MINITAB 
Data Handling 
Commands 

NOTATION 

Commands are left justified, subcommands are indented. 

K 
	

denotes a constant such as 8.3 or K14 
C 
	

denotes a column, such as C12 or 'Height' 
E 
	

denotes either a constant or column 
M 
	

denotes a matrix, such as M5 
[] 
	

encloses an optional argument 

SYMBOLS 

* Missing Value Symbol. An * can be used as data in 
REA, SET and INSERT, in data files and in the Data 
Editor. Enclose the * in single quotes in session com-
mands and subcommands. 

# Comment Symbol. The symbol # anywhere on a line 
tells Minitab to ignore the rest of the line. 

& Continuation Symbol. To continue a command onto 
another line, end the first line with the symbol &. You 
can use + + as a synonym for &. 

GENERAL INFORMATION 
HELP 	explains Minitab commands, can be a 

command or a subcommand 
INFO 
	

[C ...C] gives the status of worksheet 
STOP 
	

ends the current session 

INPUT & OUTPUT OF DATA 

READ 
	

data [from 'filename] 	into C ...0 
SET 
	

data [from 'filename] 	into C 
INSERT 
	

data [from 'filename') 	[between 
rows K and K] of C ...0 

READ, SET and INSERT have the subcommands: 
FORMAT 
	

(Fortran format) 
NOBS 
	

=K 
END 
	

of data (optional) 
NAME 
	

for C is 'name', for C is 'name' ... for 
C is 'name' 

PRINT 
	

the data in E...E 
WRITE 
	

[to 'filename'] the data in C ...0 
PRINT and WRITE have the subcommand: 

FORMAT 
	

(Fortran format) 
SAVE 
	

[in 'filename] a copy of the worksheet 
PORTABLE 
LOTUS 	save in Lotus format 

RETRIEVE 
	

the Minitab saved worksheet [in 
`filename] 

PORTABLE 
LOTUS 
	

retrieve Lotus file 

EDITING & MANIPULATING DATA 
LET C(K) = K # changes the number in row K of C 
DELETE 	rows K...K of C ...0 
ERASE 	all data in E... E 
INSERT 	(see Section 2) 
COPY 	C ...0 into C ...0 
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Simple Arithmetic Operations 
ADD 
SUBTRACT 
MULTIPLY 
DIVIDE 
RAISE 

E to E... 
E from 
E by E... 
E by 
E to the power 

Columnwise Functions 
ABSOLUTE value 
SQRT 
LOGE 
LOGTEN 
EXPONENTIATE 
ANTILOG 
ROUND to integer 
SIN 
COS 
TAN 
ASIN 
ACOS 
ATAN 
SIGNS 
PARSUMS 
PARPRODUCTS 
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COPY 	C into K...K 
USE 	 rows K K 
USE 	 rows where C = K...K 
OMIT 	rows K...K 
OMIT 	rows where C = K...K 

COPY 	K...K into C 
CODE 	(K...K) to K... (K...K) to K for 

C ...C, put in C...0 
STACK 	(E...E)... on (E... E), put in (C ...C) 

SUBSCRIPTS 	into C 
UNSTACK 	(C ...C) into (E...E)...(E...E) 

SUBSCRIPTS 	are in C 
CONVERT 	using table in C C, the data in C, and 

put in C 
CONCATENATE C ...0 put in C 

ARITHMETIC 
LET = expression 

Expressions may use 
Arithmetic operators + — * / **(exponentiation) 

Comparison operators = —= () <= >= 
Logical operators & I '- 

and any of the following: ABSOLUTE, SQRT, 
LOGTEN, LOGE, EXPO, ANTILOG, ROUND, SIN, COS, 
TAN, ASIN, ACOS, ATAN, SIGNS, NSCORE, PARSUMS, 
PARPRODUCTS, COUNT, N, NMISS, SUM, MEAN, 
STDEV, MEDIAN, MIN, MAX, SSQ, SORT, RANK, LAG, 
EQ, NE, LT, GT, LE, GE, AND, OR, NOT. 

EXAMPLES: LET C2 = SQRT(CI — MIN(C1)) 
LET C3(5) = 4.5 

Normal Scores 

NSCORES 
	

of C, put in C 

Columnwise Statistics 

COUNT the number of values in 
	

C [put in K] 
N (number of nonmissing values) in 

	
C [put in K] 

NMISS (number of missing values) in 
	

C [put in K] 
SUM 	 of the values in 

	
C [put in K] 

MEAN 	of the values in 
	

C [put in K] 
STDEV 	of the values in 

	
C [put in K] 

MEDIAN 	of the values in 
	

C [put in K] 
MINIMUM 	of the values in 

	
C [put in K] 

MAXIMUM 	of the values in 
	

C [put in K] 
SSQ (uncorrected sum of sq.) for 

	
C [put in K] 

Rowwise Statistics 

RCOUNT 
	

of E...E put in C 

RN 
	

of E...E put in C 
RNMISS 
	

of E...E put in C 
RSUM 
	

of E...E put in C 
RMEAN 
	

of E...E put in C 
RSTDEV 
	

of E...E put in C 
RMEDIAN 
	

of E...E put in C 
RMINIMUM 
	

of E...E put in C 
RMAXIMUM 
	

of E...E put in C 
RSSQ 
	

of E...E put in C 

Indicator Variables 

INDICATOR 	variables for subscripts in C, put in 
C...0 

BASIC STATISTICS 

to E, put in E 
E, put in E 

by E, put in E 
E, put in E 
E, put in E 

of E, put in E 
of E, put in E 
of E, put in E 
of E, put in E 

E, put in E 
of E, put in E 

E, put in E 
of E, put in E 
of E, put in E 
of E, put in E 
of E, put in E 
of E, put in E 
of E, put in E 
of E, put in E 
of C, put in C 
of C, put in C 

DESCRIBE 
	

C...0 
BY 
	

C 
ZINTERVAL 
	

[K% confidence] assuming sigma = K 
for C...0 

ZTEST 
	

[of mu = K] assuming sigma = K for 
C...0 

ALTERNATIVE 	= K 
"'INTERVAL 	[K% confidence] for data in C ...0 
TTEST 	[of mu = K] on data in C ...0 

ALTERNATIVE 	= K 
TWOSAMPLE 	test and c.i. [K% confidence] samples 

in C C 
ALTERNATIVE 	= K 
POOLED 	 procedure 

TWOT 	 test and c.i. [K% confidence] data in C, 
groups in C 

ALTERNATIVE 	= K 
POOLED 	 procedure 

CORRELATION between C ...0 [put in M] 
COVARIANCE between C C [put in M] 
CENTER 
	

the data in C ...0 put in C ...0 
LOCATION 
	

[subtracting K... K] 
SCALE 
	

[dividing by K... K] 
MINMAX 
	

[with K as min and K as max] 



ADDITIVE 
MEANS 

ANOVA 
RANDOM 
EMS 
FITS 
RESIDUALS 
MEANS 
TEST 
RESTRICT 

model 
for the factors C [C] 

model 
factorlist 

put in C C 
put in C ...0 
for termlist 
for termlist/errorterm 
use restricted model 
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REGRESSION 

REGRESS 
	

on K predictors C C [put st. resids 
in C [fits in C]] 

NOCONSTANT 
	

in equation 
WEIGHTS 
	

are in C 
MSE 
	

put in K 
COEFFICIENTS 
	

put in C 
XPXINV 
	

put in M 
RMATRIX 
	

put in M 
HI 
	

put in C (leverage) 
RESIDUALS 
	

put in C (observed-fit) 
TRESIDUALS 
	

put in C (deleted studentized) 
COOKD 
	

put in C (Cook's distance) 
DFITS 
	

put in C 
PREDICT 
	

for E ...E 
VIF 
	

(variance inflation factors) 
DW 
	

(Durbin-Watson statistic) 
PURE 
	

(pure error lack-of-fit test) 
XLOF 
	

(experimental lack-of-fit test) 
TOLERANCE 
	

K [K] 
STEPWISE 
	

regression of C on the predictors 
C...0 

FENTER 
	

= K (default is four) 
FREMOVE 
	

= K (default is four) 
FORCE 
	

C...0 
ENTER 
	

C...0 
REMOVE 
	

C...0 
BEST 
	

K alternative predictors (de- 
fault is zero) 

STEPS 
	

= K (default depends on out- 
put width) 

BREG 
	

C on predictors C ...0 
INCLUDE 
	

predictors C ...0 
BEST 
	

K models 
NVARS 	 K [K] 
NOCONSTANT 	in equation 

NOCONSTANT in REGRESS, STEPWISE and BREG 
commands that follow 

CONSTANT 	fit a constant in REGRESS, 
STEPWISE and BREG 

BRIEF 

ANALYSIS OF VARIANCE 
AOVONEWAY 
	

aov for samples in C ...0 
ONEWAY 
	aov, data in C, levels in C [put resides 

in C [fits in C]] 
TUKEY 
	

[family error rate K] 
FISHER 
	

[individual error rate K] 
DUNNETT 
	

[family error rate K] for control 
group K 

MCB 
	

[family error rate K] best is K 
TWOWAY 
	

aov, data in C, levels in C C [put resids 
in C [fits in C]] 

NONPARAMETRICS 

RUNS 	 test [above and below K] for C 

STEST 	 sign test [median = K] for C C 
ALTERNATIVE 	= K 

SINTERVAL 	sign c.i. [K% confidence] for C ...0 
WTEST 	Wilcoxon one-sample rank test 

[median = K] for C ...0 
ALTERNATIVE 	= K 

WINTERVAL 	Wilcoxon c.i. [K% confidence] 
for C...0 

MANN-WHITNEY test and c.i. [K% confidence] on C C 
ALTERNATIVE 	= K 

KRUSKAL-WALLIS test for data in C, subscripts in C 
MOOD 	median test, data in C, subscripts in C 

[put res. in C [fits in C]] 
FRIEDMAN 	data in C, treatment in C, blocks in C 

[put res. in C [fits in C]] 
WALSH 
	

averages for C, put in C [indices 
into C C] 

WDIFF 
	

for C and C, 	put in C [indices 
into C C] 

WSLOPE 
	

y in C, x in C, put in C [indices 
into C 

EXPLORATORY DATA ANALYSIS 

STEM-AND-LEAF display of C C 
TRIM 	 outliers 
INCREMENT 	= K 
BY 

BOXPLOT 	for C 
GBOXPLOT 	for C (high resolution version) 

BOXPLOT and GBOXPLOT have the subcommands: 
INCREMENT 	=K 
START 
	

at K [end at K] 
BY 
	

C 
LINES 	 =K 
NOTCH 
	

[K% confidence] sign c.i. 
LEVELS 
	

K...K 
FILE 
	

`filename' to store GBOX- 
PLOT output 





Statistical Tables 

LIST OF TABLES 

A Random Digits 

B Cumulative Binomial Probability Distribution 

C Cumulative Poisson Distribution 

D Normal Curve Areas 

E Percentiles of the t Distribution 

F Percentiles of the Chi-Square Distribution 

G Percentiles of the F Distribution 

H Percentage Points of the Studentized Range 

I Transformation of r to z 

J Significance Tests in a 2 x 2 Contingency Table 

K Probability Levels for the Wilcoxon Signed Rank Test 

L Quantiles of the Mann — Whitney Test Statistic 

M Quantiles of the Kolmogorov Test Statistic 

N Critical Values of the Kruskal —Wallis Test Statistic 

O Exact Distribution of x?, for Tables with from 2 to 9 Sets of Three Ranks 

P Critical Values of the Spearman Test Statistic 
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TABLE A Random Digits 

00000 00001 11111 11112 22222 22223 33333 33334 44444 44445 
12345 67890 12345 67890 12345 67890 12345 67890 12345 67890 

01 85967 73152 14511 85285 36009 95892 36962 67835 63314 50162 
02 07483 51453 11649 86348 76431 81594 95848 36738 25014 15460 
03 96283 01898 61414 83525 04231 13604 75339 11730 85423 60698 
04 49174 12074 98551 37895 93547 24769 09404 76548 05393 96770 
05 97366 39941 21225 93629 19574 71565 33413 56087 40875 13351 

06 90474 41469 16812 81542 81652 45554 27931 93994 22375 00953 
07 28599 64109 09497 76235 41383 31555 12639 00619 22909 29563 
08 25254 16210 89717 65997 82667 74624 36348 44018 64732 93589 
09 28785 02760 24359 99410 77319 73408 58993 61098 04393 48245 
10 84725 86576 86944 93296 10081 82454 76810 52975 10324 15457 

11 41059 66456 47679 66810 15941 84602 14493 65515 19251 41642 
12 67434 41045 82830 47617 36932 46728 71183 36345 41404 81110 
13 72766 68816 37643 19959 57550 49620 98480 25640 67257 18671 
14 92079 46784 66125 94932 64451 29275 57669 66658 30818 58353 
15 29187 40350 62533 73603 34075 16451 42885 03448 37390 96328 

16 74220 17612 65522 80607 19184 64164 66962 82310 18163 63495 
17 03786 02407 06098 92917 40434 60602 82175 04470 78754 90775 
18 75085 55558 15520 27038 25471 76107 90832 10819 56797 33751 
19 09161 33015 19155 11715 00551 24909 31894 37774 37953 78837 
20 75707 48992 64998 87080 39333 00767 45637 12538 67439 94914 

21 21333 48660 31288 00086 79889 75532 28704 62844 92337 99695 
22 65626 50061 42539 14812 48895 11196 34335 60492 70650 51108 
23 84380 07389 87891 76255 89604 41372 10837 66992 93183 56920 
24 46479 32072 80083 63868 70930 89654 05359 47196 12452 38234 
25 59847 97197 55147 76639 76971 55928 36441 95141 42333 67483 

26 31416 11231 27904 57383 31852 69137 96667 14315 01007 31929 
27 82066 83436 67914 21465 99605 83114 97885 74440 99622 87912 
28 01850 42782 39202 18582 46214 99228 79541 78298 75404 63648 
29 32315 89276 89582 87138 16165 15984 21466 63830 30475 74729 
30 59388 42703 55198 80380 67067 97155 34160 85019 03527. 78140 

31 58089 27632 50987 91373 07736 20436 96130 73483 85332 24384 
32 61705 57285 30392 23660 75841 21931 04295 00875 09114 32101 
33 18914 98982 60199 99275 41967 35208 30357 76772 92656 62318 
34 11965 94089 34803 48941 69709 16784 44642 89761 66864 62803 
35 85251 48111 80936 81781 93248 67877 16498 31924 51315 79921 

36 66121 96986 84844 93873 46352 92183 51152 85878 30490 15974 
37 53972 96642 24199 58080 35450 03482 66953 49521 63719 57615 
38 14509 16594 78883 43222 23093 58645 60257 89250 63266 90858 
39 37700 07688 65533 72126 23611 93993 01848 03910 38552 17472 
40 85466 59392 72722 15473 73295 49759 56157 60477 83284 56367 

41 52969 55863 42312 67842 05673 91878 82738 36563 79540 61935 
42 42744 68315 17514 02878 97291 74851 42725 57894 81434 62041 
43 26140 13336 67726 61876 29971 99294 96664 52817 90039 53211 
44 95589 56319 14563 24071 06916 59555 18195 32280 79357 04224 
45 39113 13217 59999 49952 83021 47709 53105 19295 88318 41626 

46 41392 17622 18994 98283 07249 52289 24209 91139 30715 06604 
47 54684 53645 79246 70183 87731 19185 08541 33519 07223 97413 
48 89442 61001 36658 57444 95388 36682 38052 46719 09428 94012 
49 36751 16778 54888 15357 68003 43564 90976 58904 40512 07725 
50 98159 02564 21416 74944 53049 88749 02865 25772 89853 88714 
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TABLE B Cumulative Binomial Probability Distribution 
x 

P(x 	= E n pxgn-
x x=o x 

0 1 2 3 4 5 
P (x < (315,.40) = .9130 

n = 5 

x 
.01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

0 .9510 .9039 .8587 .8154 .7738 .7339 .6957 .6591 .6240 .5905 
1 .9990 .9962 .9915 .9852 .9774 .9681 .9575 .9456 .9326 .9185 
2 1.0000 .9999 .9997 .9994 .9988 .9980 .9969 .9955 .9937 .9914 
3 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9998 .9997 .9995 
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

x 
.11 .12 .13 .14 .15 .16 .17 .18 .19 .20 

0 .5584 .5277 .4984 .4704 .4437 .4182 .3939 .3707 .3487 .3277 
1 .9035 .8875 .8708 .8533 .8352 .8165 .7973 .7776 .7576 .7373 
2 .9888 .9857 .9821 .9780 .9734 .9682 .9625 .9563 .9495 .9421 
3 .9993 .9991 .9987 .9983 .9978 .9971 .9964 .9955 .9945 .9933 
4 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9999 .9998 .9998 .9997 

5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30 

0 .3077 .2887 .2707 .2536 .2373 .2219 .2073 .1935 .1804 .1681 
1 .7167 .6959 .6749 .6539 .6328 .6117 .5907 .5697 .5489 .5282 
2 .9341 .9256 .9164 .9067 .8965 .8857 .8743 .8624 .8499 .8369 
3 .9919 .9903 .9886 .9866 .9844 .9819 .9792 .9762 .9728 .9692 
4 .9996 .9995 .9994 .9992 .9990 .9988 .9986 .9983 .9979 .9976 

5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

x 
.31 .32 .33 .34 .35 .36 .37 .38 .39 .40 

0 .1564 .1454 .1350 .1252 .1160 .1074 .0992 .0916 .0845 .0778 
1 .5077 .4875 .4675 .4478 .4284 .4094 .3907 .3724 .3545 .3370 
2 .8234 .8095 .7950 .7801 .7648 .7491 .7330 .7165 .6997 .6826 
3 .9653 .9610 .9564 .9514 .9460 .9402 .9340 .9274 .9204 .9130 
4 .9971 .9966 .9961 .9955 .9947 .9940 .9931 .9921 .9910 .9898 

5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 5 (continued) 

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50 

0 .0715 .0656 .0602 .0551 .0503 .0459 .0418 .0380 .0345 .0312 
1 .3199 .3033 .2871 .2714 .2562 .2415 .2272 .2135 .2002 .1875 
2 .6651 .6475 .6295 .6114 .5931 .5747 .5561 .5375 .5187 .5000 
3 .9051 .8967 .8879 .8786 .8688 .8585 .8478 .8365 .8247 .8125 
4 .9884 .9869 .9853 .9835 .9815 .9794 .9771 .9745 .9718 .9688 

5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

n = 6 

x  P .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

0 .9415 .8858 .8330 .7828 .7351 .6899 .6470 .6064 .5679 .5314 
1 .9985 .9943 .9875 .9784 .9672 .9541 .9392 .9227 .9048 .8857 
2 1.0000 .9998 .9995 .9988 .9978 .9962 .9942 .9915 .9882 .9841 
3 1.0000 1.0000 1.0000 1.0000 .9999 .9998 .9997 .9995 .9992 .9987 
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 

5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

x P .11 .12 .13 .14 .15 .16 .17 .18 .19 .20 

0 .4970 .4644 .4336 .4046 .3771 .3513 .3269 .3040 .2824 .2621 
1 .8655 .8444 .8224 .7997 .7765 .7528 .7287 .7044 .6799 .6554 
2 .9794 .9739 .9676 .9605 .9527 .9440 .9345 .9241 .9130 .9011 
3 .9982 .9975 .9966 .9955 .9941 .9925 .9906 .9884 .9859 .9830 
4 .9999 .9999 .9998 .9997 .9996 .9995 .9993 .9990 .9987 .9984 

5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

x  P .21 .22 .23 .24 .25 .26 .27 .28 .29 .30 

0 .2431 .2252 .2084 .1927 .1780 .1642 .1513 .1393 .1281 .1176 
1 .6308 .6063 .5820 .5578 .5339 .5104 .4872 .4644 .4420 .4202 
2 .8885 .8750 .8609 .8461 .8306 .8144 .7977 .7804 .7626 .7443 
3 .9798 .9761 .9720 .9674 .9624 .9569 .9508 .9443 .9372 .9295 
4 .9980 .9975 .9969 .9962 .9954 .9944 .9933 .9921 .9907 .9891 

5 .9999 .9999 .9999 .9998 .9998 .9997 .9996 .9995 .9994 .9993 
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

.,\9  .31 .32 .33 .34 .35 .36 .37 .38 .39 .40 

0 .1079 .0989 .0905 .0827 .0754 .0687 .0625 .0568 .0515 .0467 
1 .3988 .3780 .3578 .3381 .3191 .3006 .2828 .2657 .2492 .2333 
2 .7256 .7064 .6870 .6672 .6471 .6268 .6063 .5857 .5650 .5443 
3 .9213 .9125 .9031 .8931 .8826 .8714 .8596 .8473 .8343 .8208 
4 .9873 .9852 .9830 .9805 .9777 .9746 .9712 .9675 .9635 .9590 

5 .9991 .9989 .9987 .9985 .9982 .9978 .9974 .9970 .9965 .9959 
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 6 (continued) 

x .41 .42 .43 .44 .45 .46 .47 .48 .49 .50 

0 .0422 .0381 .0343 .0308 .0277 .0248 .0222 .0198 .0176 .0156 
1 .2181 .2035 .1895 .1762 .1636 .1515 .1401 .1293 .1190 .1094 
2 .5236 .5029 .4823 .4618 .4415 .4214 .4015 .3820 .3627 .3437 
3 .8067 .7920 .7768 .7610 .7447 .7280 .7107 .6930 .6748 .6562 
4 .9542 .9490 .9434 .9373 .9308 .9238 .9163 .9083 .8997 .8906 

5 .9952 .9945 .9937 .9927 .9917 .9905 .9892 .9878 .9862 .9844 
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

n = 7 

x X' .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

0 .9321 .8681 .8080 .7514 .6983 .6485 .6017 .5578 .5168 .4783 
1 .9980 .9921 .9829 .9706 .9556 .9382 .9187 .8974 .8745 .8503 
2 1.0000 .9997 .9991 .9980 .9962 .9937 .9903 .9860 .9807 .9743 
3 1.0000 1.0000 1.0000 .9999 .9998 .9996 .9993 .9988 .9982 .9973 
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9998 

5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

x 
.11 .12 .13 .14 .15 .16 .17 .18 .19 .20 

0 .4423 .4087 .3773 .3479 .3206 .2951 .2714 .2493 .2288 .2097 
1 .8250 .7988 .7719 .7444 .7166 .6885 .6604 .6323 .6044 .5767 
2 .9669 .9584 .9487 .9380 .9262 .9134 .8995 .8846 .8687 .8520 
3 .9961 .9946 .9928 .9906 .9879 .9847 .9811 .9769 .9721 .9667 
4 .9997 .9996 .9994 .9991 .9988 .9983 .9978 .9971 .9963 .9953 

5 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9998 .9997 .9996 
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

x .21 .22 .23 .24 .25 .26 .27 .28 .29 .30 

0 .1920 .1757 .1605 .1465 .1335 .1215 .1105 .1003 .0910 .0824 
1 .5494 .5225 .4960 .4702 .4449 .4204 .3965 .3734 .3510 .3294 
2 .8343 .8159 .7967 .7769 .7564 .7354 .7139 .6919 .6696 .6471 
3 .9606 .9539 .9464 .9383 .9294 .9198 .9095 .8984 .8866 .8740 
4 .9942 .9928 .9912 .9893 .9871 .9847 .9819 .9787 .9752 .9712 

5 .9995 .9994 .9992 .9989 .9987 .9983 .9979 .9974 .9969 .9962 
6 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9999 .9998 .9998 
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 7 (continued) 

x\)  .31 .32 .33 .34 .35 .36 .37 .38 .39 .40 

0 .0745 .0672 .0606 .0546 .0490 .0440 .0394 .0352 .0314 .0280 
.3086 .2887 .2696 .2513 .2338 .2172 .2013 .1863 .1721 .1586 

2 .6243 .6013 .5783 .5553 .5323 .5094 .4866 .4641 .4419 .4199 
3 .8606 .8466 .8318 .8163 .8002 .7833 .7659 .7479 .7293 .7102 
4 .9668 .9620 .9566 .9508 .9444 .9375 .9299 .9218 .9131 .9037 

5 .9954 .9945 .9935 .9923 .9910 .9895 .9877 .9858 .9836 .9812 
6 .9997 .9997 .9996 .9995 .9994 .9992 .9991 .9989 .9986 .9984 
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50 

0 .0249 .0221 .0195 .0173 .0152 .0134 .0117 .0103 .0090 .0078 
1 .1459 .1340 .1228 .1123 .1024 .0932 .0847 .0767 .0693 .0625 
2 .3983 .3771 .3564 .3362 .3164 .2973 .2787 .2607 .2433 .2266 
3 .6906 .6706 .6502 .6294 .6083 .5869 .5654 .5437 .5219 .5000 
4 .8937 .8831 .8718 .8598 .8471 .8337 .8197 .8049 .7895 .7734 

5 .9784 .9754 .9721 .9684 .9643 .9598 .9549 .9496 .9438 .9375 
6 .9981 .9977 .9973 .9968 .9963 .9956 .9949 .9941 .9932 .9922 
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

n = 8 

x 
P .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

0 .9227 .8508 .7837 .7214 .6634 .6096 .5596 .5132 .4703 .4305 
1 .9973 .9897 .9777 .9619 .9428 .9208 .8965 .8702 .8423 .8131 
2 .9999 .9996 .9987 .9969 .9942 .9904 .9853 .9789 .9711 .9619 
3 1.0000 1.0000 .9999 .9998 .9996 .9993 .9987 .9978 .9966 .9950 
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9997 .9996 

5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

x  .11 .12 .13 .14 .15 .16 .17 .18 .19 .20 

0 .3937 .3596 .3282 .2992 .2725 .2479 .2252 .2044 .1853 .1678 
1 .7829 .7520 .7206 .6889 .6572 .6256 .5943 .5634 .5330 .5033 
2 .9513 .9392 .9257 .9109 .8948 .8774 .8588 .8392 .8185 .7969 
3 .9929 .9903 .9871 .9832 .9786 .9733 .9672 .9603 .9524 .9437 
4 .9993 .9990 .9985 .9979 .9971 .9962 .9950 .9935 .9917 .9896 

5 1.0000 .9999 .9999 .9998 .9998 .9997 .9995 .9993 .9991 .9988 
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 8 (continued) 

xX .21 .22 .23 .24 .25 .26 .27 .28 .29 .30 

0 .1517 .1370 .1236 .1113 .1001 .0899 .0806 .0722 .0646 .0576 
1 .4743 .4462 .4189 .3925 .3671 .3427 .3193 .2969 .2756 .2553 
2 .7745 .7514 .7276 .7033 .6785 .6535 .6282 .6027 .5772 .5518 
3 .9341 .9235 .9120 .8996 .8862 .8719 .8567 .8406 .8237 .8059 
4 .9871 .9842 .9809 .9770 .9727 .9678 .9623 .9562 .9495 .9420 

5 .9984 .9979 .9973 .9966 .9958 .9948 .9936 .9922 .9906 .9887 
6 .9999 .9998 .9998 .9997 .9996 .9995 .9994 .9992 .9990 .9987 
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

P x .31 .32 .33 .34 .35 .36 .37 .38 .39 .40 

0 .0514 .0457 .0406 .0360 .0319 .0281 .0248 .0218 .0192 .0168 
1 .2360 .2178 .2006 .1844 .1691 .1548 .1414 .1289 .1172 .1064 
2 .5264 .5013 .4764 .4519 .4278 .4042 .3811 .3585 .3366 .3154 
3 .7874 .7681 .7481 .7276 .7064 .6847 .6626 .6401 .6172 .5941 
4 .9339 .9250 .9154 .9051 .8939 .8820 .8693 .8557 .8414 .8263 

5 .9866 .9841 .9813 .9782 .9747 .9707 .9664 .9615 .9561 .9502 
6 .9984 .9980 .9976 .9970 .9964 .9957 .9949 .9939 .9928 .9915 
7 .9999 .9999 .9999 .9998 .9998 .9997 .9996 .9996 .9995 .9993 
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

x P .41 .42 .43 .44 .45 .46 .47 .48 .49 .50 

0 .0147 .0128 .0111 .0097 .0084 .0072 .0062 .0053 .0046 .0039 
1 .0963 .0870 .0784 .0705 .0632 .0565 .0504 .0448 .0398 .0352 
2 .2948 .2750 .2560 .2376 .2201 .2034 .1875 .1724 .1581 .1445 
3 .5708 .5473 .5238 .5004 .4770 .4537 .4306 .4078 .3854 .3633 
4 .8105 .7938 .7765 .7584 .7396 .7202 .7001 .6795 .6584 .6367 

5 .9437 .9366 .9289 .9206 .9115 .9018 .8914 .8802 .8682 .8555 
6 .9900 .9883 .9864 .9843 .9819 .9792 .9761 .9728 .9690 .9648 
7 .9992 .9990 .9988 .9986 .9983 .9980 .9976 .9972 .9967 .9961 
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

n = 9 

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

0 .9135 .8337 .7602 .6925 .6302 .5730 .5204 .4722 .4279 .3874 
.9966 .9869 .9718 .9522 .9288 .9022 .8729 .8417 .8088 .7748 

2 .9999 .9994 .9980 .9955 .9916 .9862 .9791 .9702 .9595 .9470 
3 1.0000 1.0000 .9999 .9997 .9994 .9987 .9977 .9963 .9943 .9917 
4 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9998 .9997 .9995 .9991 

5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 9 (continued) 

x .11 .12 .13 .14 .15 .16 .17 .18 .19 .20 

0 .3504 .3165 .2855 .2573 .2316 .2082 .1869 .1676 .1501 .1342 
1 .7401 .7049 .6696 .6343 .5995 .5652 .5315 .4988 .4670 .4362 
2 .9327 .9167 .8991 .8798 .8591 .8371 .8139 .7895 .7643 .7382 
3 .9883 .9842 .9791 .9731 .9661 .9580 .9488 .9385 .9270 .9144 
4 .9986 .9979 .9970 .9959 .9944 .9925 .9902 .9875 .9842 .9804 

5 .9999 .9998 .9997 .9996 .9994 .9991 .9987 .9983 .9977 .9969 
6 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9998 .9998 .9997 
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

x \P .21 .22 .23 .24 .25 .26 .27 .28 .29 .30 

0 .1199 .1069 .0952 .0846 .0751 .0665 .0589 .0520 .0458 .0404 
1 .4066 .3782 .3509 .3250 .3003 .2770 .2548 .2340 .2144 .1960 
2 .7115 .6842 .6566 .6287 .6007 .5727 .5448 .5171 .4898 .4628 
3 .9006 .8856 .8696 .8525 .8343 .8151 .7950 .7740 .7522 .7297 
4 .9760 .9709 .9650 .9584 .9511 .9429 .9338 .9238 .9130 .9012 

5 .9960 .9949 .9935 .9919 .9900 .9878 .9851 .9821 .9787 .9747 
6 .9996 .9994 .9992 .9990 .9987 .9983 .9978 .9972 .9965 .9957 
7 1.0000 1.0000 .9999 .9999 .9999 .9999 .9998 .9997 .9997 .9996 
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

x .31 .32 .33 .34 .35 .36 .37 .38 .39 .40 

0 .0355 .0311 .0272 .0238 .0207 .0180 .0156 .0135 .0117 .0101 
1 .1788 .1628 .1478 .1339 .1211 .1092 .0983 .0882 .0790 '.0705 
2 .4364 .4106 .3854 .3610 .3373 .3144 .2924 .2713 .2511 .2318 
3 .7065 .6827 .6585 .6338 .6089 .5837 .5584 .5331 .5078 .4826 
4 .8885 .8748 .8602 .8447 .8283 .8110 .7928 .7738 .7540 .7334 

5 .9702 .9652 .9596 .9533 .9464 .9388 .9304 .9213 .9114 .9006 
6 .9947 .9936 .9922 .9906 .9888 .9867 .9843 .9816 .9785 .9750 
7 .9994 .9993 .9991 .9989 .9986 .9983 .9979 .9974 .9969 .9962 
8 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9999 .9998 .9998 .9997 
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

x P .41 .42 .43 .44 .45 .46 .47 .48 .49 .50 

0 .0087 .0074 .0064 .0054 .0046 .0039 .0033 .0028 .0023 .0020 
1 .0628 .0558 .0495 .0437 .0385 .0338 .0296 .0259 .0225 .0195 
2 .2134 .1961 .1796 .1641 .1495 .1358 .1231 .1111 .1001 .0898 
3 .4576 .4330 .4087 .3848 .3614 .3386 .3164 .2948 .2740 .2539 
4 .7122 .6903 .6678 .6449 .6214 .5976 .5735 .5491 .5246 .5000 

5 .8891 .8767 .8634 .8492 .8342 .8183 .8015 .7839 .7654 .7461 
6 .9710 .9666 .9617 .9563 .9502 .9436 .9363 .9283 .9196 .9102 
7 .9954 .9945 .9935 .9923 .9909 .9893 .9875 .9855 .9831 .9805 
8 .9997 .9996 .9995 .9994 .9992 .9991 .9989 .9986 .9984 .9980 
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 10 

x .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

0 .9044 .8171 .7374 .6648 .5987 .5386 .4840 .4344 .3894 .3487 
1 .9957 .9838 .9655 .9418 .9139 .8824 .8483 .8121 .7746 .7361 
2 .9999 .9991 .9972 .9938 .9885 .9812 .9717 .9599 .9460 .9298 
3 1.0000 1.0000 .9999 .9996 .9990 .9980 .9964 .9942 .9912 .9872 
4 1.0000 1.0000 1.0000 1.0000 .9999 .9998 .9997 .9994 .9990 .9984 

5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

\;' x .11 .12 .13 .14 .15 .16 .17 .18 .19 .20 

0 .3118 .2785 .2484 .2213 .1969 .1749 .1552 .1374 .1216 .1074 
1 .6972 .6583 .6196 .5816 .5443 .5080 .4730 .4392 .4068 .3758 
2 .9116 .8913 .8692 .8455 .8202 .7936 .7659 .7372 .7078 .6778 
3 .9822 .9761 .9687 .9600 .9500 .9386 .9259 .9117 .8961 .8791 
4 .9975 .9963 .9947 .9927 .9901 .9870 .9832 .9787 .9734 .9672 

5 .9997 .9996 .9994 .9990 .9986 .9980 .9973 .9963 .9951 .9936 
6 1.0000 1.0000 .9999 .9999 .9999 .9998 .9997 .9996 .9994 .9991 
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

\c x  .21 .22 .23 .24 .25 .26 .27 .28 .29 .30 

0 .0947 .0834 .0733 .0643 .0563 .0492 .0430 .0374 .0326 .0282 
1 .3464 .3185 .2921 .2673 .2440 .2222 .2019 .1830 .1655 .1493 
2 .6474 .6169 .5863 .5558 .5256 .4958 .4665 .4378 .4099 .3828 
3 .8609 .8413 .8206 .7988 .7759 .7521 .7274 .7021 .6761 .6496 
4 .9601 .9521 .9431 .9330 .9219 .9096 .8963 .8819 .8663 .8497 

5 .9918 .9896 .9870 .9839 .9803 .9761 .9713 .9658 .9596 .9527 
6 .9988 .9984 .9979 .9973 .9965 .9955 .9944 .9930 .9913 .9894 
7 .9999 .9998 .9998 .9997 .9996 .9994 .9993 .9990 .9988 .9984 
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9999 
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

x .31 .32 .33 .34 .35 .36 .37 .38 .39 .40 

0 .0245 .0211 .0182 .0157 .0135 .0115 .0098 .0084 .0071 .0060 
1 .1344 .1206 .1080 .0965 .0860 .0764 .0677 .0598 .0527 .0464 
2 .3566 .3313 .3070 .2838 .2616 .2405 .2206 .2017 .1840 .1673 
3 .6228 .5956 .5684 .5411 .5138 .4868 .4600 .4336 .4077 .3823 
4 .8321 .8133 .7936 .7730 .7515 .7292 .7061 .6823 .6580 .6331 

5 .9449 .9363 .9268 .9164 .9051 .8928 .8795 .8652 .8500 .8338 
6 .9871 .9845 .9815 .9780 .9740 .9695 .9644 .9587 .9523 .9452 
7 .9980 .9975 .9968 .9961 .9952 .9941 .9929 .9914 .9897 .9877 
8 .9998 .9997 .9997 .9996 .9995 .9993 .9991 .9989 .9986 .9983 
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9999 

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 10 (continued) 

x \P .41 .42 .43 .44 .45 .46 .47 .48 .49 .50 

0 .0051 .0043 .0036 .0030 .0025 .0021 .0017 .0014 .0012 .0010 
1 .0406 .0355 .0309 .0269 .0233 .0201 .0173 .0148 .0126 .0107 
2 .1517 .1372 .1236 .1111 .0996 .0889 .0791 .0702 .0621 .0547 
3 .3575 .3335 .3102 .2877 .2660 .2453 .2255 .2067 .1888 .1719 
4 .6078 .5822 .5564 .5304 .5044 .4784 .4526 .4270 .4018 .3770 

5 .8166 .7984 .7793 .7593 .7384 .7168 .6943 .6712 .6474 .6230 
6 .9374 .9288 .9194 .9092 .8980 .8859 .8729 .8590 .8440 .8281 
7 .9854 .9828 .9798 .9764 .9726 .9683 .9634 .9580 .9520 .9453 
8 .9979 .9975 .9969 .9963 .9955 .9946 .9935 .9923 .9909 .9893 
9 .9999 .9998 .9998 .9997 .9997 .9996 .9995 .9994 .9992 .9990 

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

n = 11 

x \P .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

0 .8953 .8007 .7153 .6382 .5688 .5063 .4501 .3996 .3544 .3138 
1 .9948 .9805 .9587 .9308 .8981 .8618 .8228 .7819 .7399 .6974 
2 .9998 .9988 .9963 .9917 .9848 .9752 .9630 .9481 .9305 .9104 
3 1.0000 1.0000 .9998 .9993 .9984 .9970 .9947 .9915 .9871 .9815 
4 1.0000 1.0000 1.0000 1.0000 .9999 .9997 .9995 .9990 .9983 .9972 

5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9998 .9997 
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

xX .11 .12 .13 .14 .15 .16 .17 .18 .19 .20 

0 .2775 .2451 .2161 .1903 .1673 .1469 .1288 .1127 .0985 .0859 
1 .6548 .6127 .5714 .5311 .4922 .4547 .4189 .3849 .3526 .3221 
2 .8880 .8634 .8368 .8085 .7788 .7479 .7161 .6836 .6506 .6174 
3 .9744 .9659 .9558 .9440 .9306 .9154 .8987 .8803 .8603 .8389 
4 .9958 .9939 .9913 .9881 .9841 .9793 .9734 .9666 .9587 .9496 

5 .9995 .9992 .9988 .9982 .9973 .9963 .9949 .9932 .9910 .9883 
6 1.0000 .9999 .9999 .9998 .9997 .9995 .9993 .9990 .9986 .9980 
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9998 .9998 
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30 

.0748 .0650 .0564 .0489 .0422 .0364 .0314 .0270 .0231 .0198 
1 .2935 .2667 .2418 .2186 .1971 .1773 .1590 .1423 .1270 .1130 
2 .5842 .5512 .5186 .4866 .4552 .4247 .3951 .3665 .3390 .3127 
3 .8160 .7919 .7667 .7404 .7133 .6854 .6570 .6281 .5989 .5696 
4 .9393 .9277 .9149 .9008 .8854 .8687 .8507 .8315 .8112 .7897 

5 .9852 .9814 .9769 .9717 .9657 .9588 .9510 .9423 .9326 .9218 
6 .9973 .9965 .9954 .9941 .9924 .9905 .9881 .9854 .9821 .9784 
7 .9997 .9995 .9993 .9991 .9988 .9984 .9979 .9973 .9966 .9957 
8 1.0000 1.0000 .9999 .9999 .9999 .9998 .9998 .9997 .9996 .9994 
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 11 (continued) 

x .31 .32 .33 .34 .35 .36 .37 .38 .39 .40 

0 .0169 .0144 .0122 .0104 .0088 .0074 .0062 .0052 .0044 .0036 
1 .1003 .0888 .0784 .0690 .0606 .0530 .0463 .0403 .0350 .0302 
2 .2877 .2639 .2413 .2201 .2001 .1814 .1640 .1478 .1328 .1189 
3 .5402 .5110 .4821 .4536 .4256 .3981 .3714 .3455 .3204 .2963 
4 .7672 .7437 .7193 .6941 .6683 .6419 .6150 .5878 .5603 .5328 

5 .9099 .8969 .8829 .8676 .8513 .8339 .8153 .7957 .7751 .7535 
6 .9740 .9691 .9634 .9570 .9499 .9419 .9330 .9232 .9124 .9006 
7 .9946 .9933 .9918 .9899 .9878 .9852 .9823 .9790 .9751 .9707 
8 .9992 .9990 .9987 .9984 .9980 .9974 .9968 .9961 .9952 .9941 
9 .9999 .9999 .9999 .9998 .9998 .9997 .9996 .9995 .9994 .9993 

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10000 

x
X .41 .42 .43 .44 .45 .46 .47 .48 .49 .50 

0 .0030 .0025 .0021 .0017 .0014 .0011 .0009 .0008 .0006 .0005 
1 .0261 .0224 .0192 .0164 .0139 .0118 .0100 .0084 .0070 .0059 
2 .1062 .0945 .0838 .0740 .0652 .0572 .0501 .0436 .0378 .0327 
3 .2731 .2510 .2300 .2100 .1911 .1734 .1567 .1412 .1267 .1133 
4 .5052 .4777 .4505 .4236 .3971 .3712 .3459 .3213 .2974 .2744 

5 .7310 .7076 .6834 .6586 .6331 .6071 .5807 .5540 .5271 .5000 
6 .8879 .8740 .8592 .8432 .8262 .8081 .7890 .7688 .7477 .7256 
7 .9657 .9601 .9539 .9468 .9390 .9304 .9209 .9105 .8991 .8867 
8 .9928 .9913 .9896 .9875 .9852 .9825 .9794 .9759 .9718 .9673 
9 .9991 .9988 .9986 .9982 .9978 .9973 .9967 .9960 .9951 .9941 

10 .9999 .9999 .9999 .9999 .9998 .9998 .9998 .9997 .9996 .9995 
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

n = 12 

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

0 .8864 .7847 .6938 .6127 .5404 .4759 .4186 .3677 .3225 .2824 
.9938 .9769 .9514 .9191 .8816 .8405 .7967 .7513 .7052 .6590 

2 .9998 .9985 .9952 .9893 .9804 .9684 .9532 .9348 .9134 .8891 
3 1.0000 .9999 .9997 .9990 .9978 .9957 .9925 .9880 .9820 .9744 
4 1.0000 1.0000 1.0000 .9999 .9998 .9996 .9991 .9984 .9973 .9957 

5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9998 .9997 .9995 
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 12 (continued) 

x X' .11 .12 .13 .14 .15 .16 .17 .18 .19 .20 

0 .2470 .2157 .1880 .1637 .1422 .1234 .1069 .0924 .0798 .0687 
1 .6133 .5686 .5252 .4834 .4435 .4055 .3696 .3359 .3043 .2749 
2 .8623 .8333 .8023 .7697 .7358 .7010 .6656 .6298 .5940 .5583 
3 .9649 .9536 .9403 .9250 .9078 .8886 .8676 .8448 .8205 .7946 
4 .9935 .9905 .9867 .9819 .9761 .9690 .9607 .9511 .9400 .9274 

5 .9991 .9986 .9978 .9967 .9954 .9935 .9912 .9884 .9849 .9806 
6 .9999 .9998 .9997 .9996 .9993 .9990 .9985 .9979 .9971 .9961 
7 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9998 .9997 .9996 .9994 
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30 

.0591 .0507 .0434 .0371 .0317 .0270 .0229 .0194 .0164 .0138 
1 .2476 .2224 .1991 .1778 .1584 .1406 .1245 .1100 .0968 .0850 
2 .5232 .4886 .4550 .4222 .3907 .3603 .3313 .3037 .2775 .2528 
3 .7674 .7390 .7096 .6795 .6488 .6176 .5863 .5548 .5235 .4925 
4 .9134 .8979 .8808 .8623 .8424 .8210 .7984 .7746 .7496 .7237 

5 .9755 .9696 .9626 .9547 .9456 .9354 .9240 .9113 .8974 .8822 
6 .9948 .9932 .9911 .9887 .9857 .9822 .9781 .9733 .9678 .9614 
7 .9992 .9989 .9984 .9979 .9972 .9964 .9953 .9940 .9924 .9905 
8 .9999 .9999 .9998 .9997 .9996 .9995 .9993 .9990 .9987 .9983 
9 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9998 .9998 

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

xX .31 .32 .33 .34 .35 .36 .37 .38 .39 .40 

0 .0116 .0098 .0082 .0068 .0057 .0047 .0039 .0032 .0027 .0022 
1 .0744 .0650 .0565 .0491 .0424 .0366 .0315 .0270 .0230 .0196 
2 .2296 .2078 .1876 .1687 .1513 .1352 .1205 .1069 .0946 .0834 
3 .4619 .4319 .4027 .3742 .3467 .3201 .2947 .2704 .2472 .2253 
4 .6968 .6692 .6410 .6124 .5833 .5541 .5249 .4957 .4668 .4382 

5 .8657 .8479 .8289 .8087 .7873 .7648 .7412 .7167 .6913 .6652 
6 .9542 .9460 .9368 .9266 .9154 .9030 .8894 .8747 .8589 .8418 
7 .9882 .9856 .9824 .9787 .9745 .9696 .9641 .9578 .9507 .9427 
8 .9978 .9972 .9964 .9955 .9944 .9930 .9915 .9896 .9873 .9847 
9 .9997 .9996 .9995 .9993 .9992 .9989 .9986 .9982 .9978 .9972 

10 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9999 .9998 .9998 .9997 
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 12 (continued) 

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50 

0 .0018 .0014 .0012 .0010 .0008 .0006 .0005 .0004 .0003 .0002 
.0166 .0140 .0118 .0099 .0083 .0069 .0057 .0047 .0039 .0032 

2 .0733 .0642 .0560 .0487 .0421 .0363 .0312 .0267 .0227 .0193 
3 .2047 .1853 .1671 .1502 .1345 .1199 .1066 .0943 .0832 .0730 
4 .4101 .3825 .3557 .3296 .3044 .2802 .2570 .2348 .2138 .1938 

5 .6384 .6111 .5833 .5552 .5269 .4986 .4703 .4423 .4145 .3872 
6 .8235 .8041 .7836 .7620 .7393 .7157 .6911 .6657 .6396 .6128 
7 .9338 .9240 .9131 .9012 .8883 .8742 .8589 .8425 .8249 .8062 
8 .9817 .9782 .9742 .9696 .9644 .9585 .9519 .9445 .9362 .9270 
9 .9965 .9957 .9947 .9935 .9921 .9905 .9886 .9863 .9837 .9807 

10 .9996 .9995 .9993 .9991 .9989 .9986 .9983 .9979 .9974 .9968 
11 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9999 .9999 .9998 .9998 
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

n = 13 

X9  x .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

0 .8775 .7690 .6730 .5882 .5133 .4474 .3893 .3383 .2935 .2542 
1 .9928 .9730 .9436 .9068 .8646 .8186 .7702 .7206 .6707 .6213 
2 .9997 .9980 .9938 .9865 .9755 .9608 .9422 .9201 .8946 .8661 
3 1.0000 .9999 .9995 .9986 .9969 .9940 .9897 .9837 .9758 .9658 
4 1.0000 1.0000 1.0000 .9999 .9997 .9993 .9987 .9976 .9959 .9935 

5 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9997 .9995 .9991 
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

P x \ .11 .12 .13 .14 .15 .16 .17 .18 .19 .20 

0 .2198 .1898 .1636 .1408 .1209 .1037 .0887 .0758 .0646 .0550 
1 .5730 .5262 .4814 .4386 .3983 .3604 .3249 .2920 .2616 .2336 
2 .8349 .8015 .7663 .7296 .6920 .6537 .6152 .5769 .5389 .5017 
3 .9536 .9391 .9224 .9033 .8820 .8586 .8333 .8061 .7774 .7473 
4 .9903 .9861 .9807 .9740 .9658 .9562 .9449 .9319 .9173 .9009 

5 .9985 .9976 .9964 .9947 .9925 .9896 .9861 .9817 .9763 .9700 
6 .9998 .9997 .9995 .9992 .9987 .9981 .9973 .9962 .9948 .9930 
7 1.0000 1.0000 .9999 .9999 .9998 .9997 .9996 .9994 .9991 .9988 
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9998 
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 13 (continued) 

x \P .21 .22 .23 .24 .25 .26 .27 .28 .29 .30 

0 .0467 .0396 .0334 .0282 .0238 .0200 .0167 .0140 .0117 .0097 
1 .2080 .1846 .1633 .1441 .1267 .1111 .0971 .0846 .0735 .0637 
2 .4653 .4301 .3961 .3636 .3326 .3032 .2755 .2495 .2251 .2025 
3 .7161 .6839 .6511 .6178 .5843 .5507 .5174 .4845 .4522 .4206 
4 .8827 .8629 .8415 .8184 .7940 .7681 .7411 .7130 .6840 .6543 

5 .9625 .9538 .9438 .9325 .9198 .9056 .8901 .8730 .8545 .8346 
6 .9907 .9880 .9846 .9805 .9757 .9701 .9635 .9560 .9473 .9376 
7 .9983 .9976 .9968 .9957 .9944 .9927 .9907 .9882 .9853 .9818 
8 .9998 .9996 .9995 .9993 .9990 .9987 .9982 .9976 .9969 .9960 
9 1.0000 1.0000 .9999 .9999 .9999 .9998 .9997 .9996 .9995 .9993 

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

\) x .31 .32 .33 .34 .35 .36 .37 .38 .39 .40 

0 .0080 .0066 .0055 .0045 .0037 .0030 .0025 .0020 .0016 .0013 
1 .0550 .0473 .0406 .0347 .0296 .0251 .0213 .0179 .0151 .0126 
2 .1815 .1621 .1443 .1280 .1132 .0997 .0875 .0765 .0667 .0579 
3 .3899 .3602 .3317 .3043 .2783 .2536 .2302 .2083 .1877 .1686 
4 .6240 .5933 .5624 .5314 .5005 .4699 .4397 .4101 .3812 .3530 

5 .8133 .7907 .7669 .7419 .7159 .6889 .6612 .6327 .6038 .5744 
6 .9267 .9146 .9012 .8865 .8705 .8532 .8346 .8147 .7935 .7712 
7 .9777 .9729 .9674 .9610 .9538 .9456 .9365 .9262 .9149 .9023 
8 .9948 .9935 .9918 .9898 .9874 .9846 .9813 .9775 .9730 .9679 
9 .9991 .9988 .9985 .9980 .9975 .9968 .9960 .9949 .9937 .9922 

10 .9999 .9999 .9998 .9997 .9997 .9995 .9994 .9992 .9990 .9987 
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9999 
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

x \P .41 .42 .43 .44 .45 .46 .47 .48 .49 .50 

0 .0010 .0008 .0007 .0005 .0004 .0003 .0003 .0002 .0002 .0001 
1 .0105 .0088 .0072 .0060 .0049 .0040 .0033 .0026 .0021 .0017 
2 .0501 .0431 .0370 .0316 .0269 .0228 .0192 .0162 .0135 .0112 
3 .1508 .1344 .1193 .1055 .0929 .0815 .0712 .0619 .0536 .0461 
4 .3258 .2997 .2746 .2507 .2279 .2065 .1863 .1674 .1498 .1334 

5 .5448 .5151 .4854 .4559 .4268 .3981 .3701 .3427 .3162 .2905 
6 .7476 .7230 .6975 .6710 .6437 .6158 .5873 .5585 .5293 .5000 
7 .8886 .8736 .8574 .8400 .8212 .8012 .7800 .7576 .7341 .7095 
8 .9621 .9554 .9480 .9395 .9302 .9197 .9082 .8955 .8817 .8666 
9 .9904 .9883 .9859 .9830 .9797 .9758 .9713 .9662 .9604 .9539 

10 .9983 .9979 .9973 .9967 .9959 .9949 .9937 .9923 .9907 .9888 
11 .9998 .9998 .9997 .9996 .9995 .9993 .9991 .9989 .9986 .9983 
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9999 
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 14 

X)  x .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

0 .8687 .7536 .6528 .5647 .4877 .4205 .3620 .3112 .2670 .2288 
1 .9916 .9690 .9355 .8941 .8470 .7963 .7436 .6900 .6368 .5846 
2 .9997 .9975 .9923 .9833 .9699 .9522 .9302 .9042 .8745 .8416 
3 1.0000 .9999 .9994 .9981 .9958 .9920 .9864 .9786 .9685 .9559 
4 1.0000 1.0000 1.0000 .9998 .9996 .9990 .9980 .9965 .9941 .9908 

5 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9998 .9996 .9992 .9985 
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9998 
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

x X' .11 .12 .13 .14 .15 .16 .17 .18 .19 .20 

0 .1956 .1670 .1423 .1211 .1028 .0871 .0736 .0621 .0523 .0440 
1 .5342 .4859 .4401 .3969 .3567 .3193 .2848 .2531 .2242 .1979 
2 .8061 .7685 .7292 .6889 .6479 .6068 .5659 .5256 .4862 .4481 
3 .9406 .9226 .9021 .8790 .8535 .8258 .7962 .7649 .7321 .6982 
4 .9863 .9804 .9731 .9641 .9533 .9406 .9259 .9093 .8907 .8702 

5 .9976 .9962 .9943 .9918 .9885 .9843 .9791 .9727 .9651 .9561 
6 .9997 .9994 .9991 .9985 .9978 .9968 .9954 .9936 .9913 .9884 
7 1.0000 .9999 .9999 .9998 .9997 .9995 .9992 .9988 .9983 .9976 
8 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9998 .9997 .9996 
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

x .21 .22 .23 .24 .25 .26 .27 .28 .29 .30 

0 .0369 .0309 .0258 .0214 .0178 .0148 .0122 .0101 .0083 .0068 
1 .1741 .1527 .1335 .1163 .1010 .0874 .0754 .0648 .0556 .0475 
2 .4113 .3761 .3426 .3109 .2811 .2533 .2273 .2033 .1812 .1608 
3 .6634 .6281 .5924 .5568 .5213 .4864 .4521 .4187 .3863 .3552 
4 .8477 .8235 .7977 .7703 .7415 .7116 .6807 .6490 .6168 .5842 

5 .9457 .9338 .9203 .9051 .8883 .8699 .8498 .8282 .8051 .7805 
6 .9848 .9804 .9752 .9690 .9617 .9533 .9437 .9327 .9204 .9067 
7 .9967 .9955 .9940 .9921 .9897 .9868 .9833 .9792 .9743 .9685 
8 .9994 .9992 .9989 .9984 .9978 .9971 .9962 .9950 .9935 .9917 
9 .9999 .9999 .9998 .9998 .9997 .9995 .9993 .9991 .9988 .9983 

10 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9998 .9998 
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 14 (continued) 

x 
.31 .32 .33 .34 .35 .36 .37 .38 .39 .40 

0 .0055 .0045 .0037 .0030 .0024 .0019 .0016 .0012 .0010 .0008 
1 .0404 .0343 .0290 .0244 .0205 .0172 .0143 .0119 .0098 .0081 
2 .1423 .1254 .1101 .0963 .0839 .0729 .0630 .0543 .0466 .0398 
3 .3253 .2968 .2699 .2444 .2205 .1982 .1774 .1582 .1405 .1243 
4 .5514 .5187 .4862 .4542 .4227 .3920 .3622 .3334 .3057 .2793 

5 .7546 .7276 .6994 .6703 .6405 .6101 .5792 .5481 .5169 .4859 
6 .8916 .8750 .8569 .8374 .8164 .7941 .7704 .7455 .7195 .6925 
7 .9619 .9542 .9455 .9357 .9247 .9124 .8988 .8838 .8675 .8499 
8 .9895 .9869 .9837 .9800 .9757 .9706 .9647 .9580 .9503 .9417 
9 .9978 .9971 .9963 .9952 .9940 .9924 .9905 .9883 .9856 .9825 

10 .9997 .9995 .9994 .9992 .9989 .9986 .9981 .9976 .9969 .9961 
11 1.0000 .9999 .9999 .9999 .9999 .9998 .9997 .9997 .9995 .9994 
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

xX .41 .42 .43 .44 .45 .46 .47 .48 .49 .50 

0 .0006 .0005 .0004 .0003 .0002 .0002 .0001 .0001 .0001 .0001 
1 .0066 .0054 .0044 .0036 .0029 .0023 .0019 .0015 .0012 .0009 
2 .0339 .0287 .0242 .0203 .0170 .0142 .0117 .0097 .0079 .0065 
3 .1095 .0961 .0839 .0730 .0632 .0545 .0468 .0399 .0339 .0287 
4 .2541 .2303 .2078 .1868 .1672 .1490 .1322 .1167 .1026 .0898 

5 .4550 .4246 .3948 .3656 .3373 .3100 .2837 .2585 .2346 .2120 
6 .6645 .6357 .6063 .5764 .5461 .5157 .4852 .4549 .4249 .3953 
7 .8308 .8104 .7887 .7656 .7414 .7160 .6895 .6620 .6337 .6047 
8 .9320 .9211 .9090 .8957 .8811 .8652 .8480 .8293 .8094 .7880 
9 .9788 .9745 .9696 .9639 .9574 .9500 .9417 .9323 .9218 .9102 

10 .9951 .9939 .9924 .9907 .9886 .9861 .9832 .9798 .9759 .9713 
11 .9992 .9990 .9987 .9983 .9978 .9973 .9966 .9958 .9947 .9935 
12 .9999 .9999 .9999 .9998 .9997 .9997 .9996 .9994 .9993 .9991 
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

n = 15 

.7\)  .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

0 .8601 .7386 .6333 .5421 .4633 .3953 .3367 .2863 .2430 .2059 
1 .9904 .9647 .9270 .8809 .8290 .7738 .7168 .6597 .6035 .5490 
2 .9996 .9970 .9906 .9797 .9638 .9429 .9171 .8870 .8531 .8159 
3 1.0000 .9998 .9992 .9976 .9945 .9896 .9825 .9727 .9601 .9444 
4 1.0000 1.0000 .9999 .9998 .9994 .9986 .9972 .9950 .9918 .9873 

5 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9997 .9993 .9987 .9978 
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9998 .9997 
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 15 (continued) 

xX .11 .12 .13 .14 .15 .16 .17 .18 .19 .20 

0 .1741 .1470 .1238 .1041 .0874 .0731 .0611 .0510 .0424 .0352 
1 .4969 .4476 .4013 .3583 .3186 .2821 .2489 .2187 .1915 .1671 
2 .7762 .7346 .6916 .6480 .6042 .5608 .5181 .4766 .4365 .3980 
3 .9258 .9041 .8796 .8524 .8227 .7908 .7571 .7218 .6854 .6482 
4 .9813 .9735 .9639 .9522 .9383 .9222 .9039 .8833 .8606 .8358 

5 .9963 .9943 .9916 .9879 .9832 .9773 .9700 .9613 .9510 .9389 
6 .9994 .9990 .9985 .9976 .9964 .9948 .9926 .9898 .9863 .9819 
7 .9999 .9999 .9998 .9996 .9994 .9990 .9986 .9979 .9970 .9958 
8 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9998 .9997 .9995 .9992 
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Xx  .21 .22 .23 .24 .25 .26 .27 .28 .29 .30 

0 .0291 .0241 .0198 .0163 .0134 .0109 .0089 .0072 .0059 .0047 
1 .1453 .1259 .1087 .0935 .0802 .0685 .0583 .0495 .0419 .0353 
2 .3615 .3269 .2945 .2642 .2361 .2101 .1863 .1645 .1447 .1268 
3 .6105 .5726 .5350 .4978 .4613 .4258 .3914 .3584 .3268 .2969 
4 .8090 .7805 .7505 .7190 .6865 .6531 .6190 .5846 .5500 .5155 

5 .9252 .9095 .8921 .8728 .8516 .8287 .8042 .7780 .7505 .7216 
6 .9766 .9702 .9626 .9537 .9434 .9316 .9183 .9035 .8870 .8689 
7 .9942 .9922 .9896 .9865 .9827 .9781 .9726 .9662 .9587 .9500 
8 .9989 .9984 .9977 .9969 .9958 .9944 .9927 .9906 .9879 .9848 
9 .9998 .9997 .9996 .9994 .9992 .9989 .9985 .9979 .9972 .9963 

10 1.0000 1.0000 .9999 .9999 .9999 .9998 .9998 .9997 .9995 .9993 
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

x .31 .32 .33 .34 .35 .36 .37 .38 .39 .40 

0 .0038 .0031 .0025 .0020 .0016 .0012 .0010 .0008 .0006 .0005 
1 .0296 .0248 .0206 .0171 .0142 .0117 .0096 .0078 .0064 .0052 
2 .1107 .0962 .0833 .0719 .0617 .0528 .0450 .0382 .0322 .0271 
3 .2686 .2420 .2171 .1940 .1727 .1531 .1351 .1187 .1039 .0905 
4 .4813 .4477 .4148 .3829 .3519 .3222 .2938 .2668 .2413 .2173 

5 .6916 .6607 .6291 .5968 .5643 .5316 .4989 .4665 .4346 .4032 
6 .8491 .8278 .8049 .7806 .7548 .7278 .6997 .6705 .6405 .6098 
7 .9401 .9289 .9163 .9023 .8868 .8698 .8513 .8313 .8098 .7869 
8 .9810 .9764 .9711 .9649 .9578 .9496 .9403 .9298 .9180 .9050 
9 .9952 .9938 .9921 .9901 .9876 .9846 .9810 .9768 .9719 .9662 

10 .9991 .9988 .9984 .9978 .9972 .9963 .9953 .9941 .9925 .9907 
11 .9999 .9998 .9997 .9996 .9995 .9994 .9991 .9989 .9985 .9981 
12 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9998 .9998 .9997 
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 15 (continued) 

xX)  .41 .42 .43 .44 .45 .46 .47 .48 .49 .50 

.0004 .0003 .0002 .0002 .0001 .0001 .0001 .0001 .0000 .0000 

.0042 .0034 .0027 .0021 .0017 .0013 .0010 .0008 .0006 .0005 

.0227 .0189 .0157 .0130 .0107 .0087 .0071 .0057 .0046 .0037 

.0785 .0678 .0583 .0498 .0424 .0359 .0303 .0254 .0212 .0176 

.1948 .1739 .1546 .1367 .1204 .1055 .0920 .0799 .0690 .0592 

.3726 .3430 .3144 .2869 .2608 .2359 .2125 .1905 .1699 .1509 

.5786 .5470 .5153 .4836 .4522 .4211 .3905 .3606 .3316 .3036 

.7626 .7370 .7102 .6824 .6535 .6238 .5935 .5626 .5314 .5000 

.8905 .8746 .8573 .8385 .8182 .7966 .7735 .7490 .7233 .6964 

.9596 .9521 .9435 .9339 .9231 .9110 .8976 .8829 .8667 .8491 

.9884 .9857 .9826 .9789 .9745 .9695 .9637 .9570 .9494 .9408 

.9975 .9968 .9960 .9949 .9937 .9921 .9903 .9881 .9855 .9824 

.9996 .9995 .9993 .9991 .9989 .9986 .9982 .9977 .9971 .9963 
1.0000 1.0000 .9999 .9999 .9999 .9998 .9998 .9997 .9996 .9995 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0 

2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

n -= 16 

NP ix .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

0 .8515 .7238 .6143 .5204 .4401 .3716 .3131 .2634 .2211 .1853 
1 .9891 .9601 .9182 .8673 .8108 .7511 .6902 .6299 .5711 .5147 
2 .9995 .9963 .9887 .9758 .9571 .9327 .9031 .8688 .8306 .7892 
3 1.0000 .9998 .9989 .9968 .9930 .9868 .9779 .9658 .9504 .9316 
4 1.0000 1.0000 .9999 .9997 .9991 .9981 .9962 .9932 .9889 .9830 

5 1.0000 1.0000 1.0000 1.0000 .9999 .9998 .9995 .9990 .9981 .9967 
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9997 .9995 
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

xX .11 .12 .13 .14 .15 .16 .17 .18 .19 .20 

0 .1550 .1293 .1077 .0895 .0743 .0614 .0507 .0418 .0343 .0281 
1 .4614 .4115 .3653 .3227 .2839 .2487 .2170 .1885 .1632 .1407 
2 .7455 .7001 .6539 .6074 .5614 .5162 .4723 .4302 .3899 .3518 
3 .9093 .8838 .8552 .8237 .7899 .7540 .7164 .6777 .6381 .5981 
4 .9752 .9652 .9529 .9382 .9209 .9012 .8789 .8542 .8273 .7982 

5 .9947 .9918 .9880 .9829 .9765 .9685 .9588 .9473 .9338 .9183 
6 .9991 .9985 .9976 .9962 .9944 .9920 .9888 .9847 .9796 .9733 
7 .9999 .9998 .9996 .9993 .9989 .9984 .9976 .9964 .9949 .9930 
8 1.0000 1.0000 .9999 .9999 .9998 .9997 .9996 .9993 .9990 .9985 
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9998 .9998 

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 16 (continued) 

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30 

0 .0230 .0188 .0153 .0124 .0100 .0081 .0065 .0052 .0042 .0033 
.1209 .1035 .0883 .0750 .0635 .0535 .0450 .0377 .0314 .0261 

2 .3161 .2827 .2517 .2232 .1971 .1733 .1518 .1323 .1149 .0994 
3 .5582 .5186 .4797 .4417 .4050 .3697 .3360 .3041 .2740 .2459 
4 .7673 .7348 .7009 .6659 .6302 .5940 .5575 .5212 .4853 .4499 

5 .9008 .8812 .8595 .8359 .8103 .7831 .7542 .7239 .6923 .6598 
6 .9658 .9568 .9464 .9342 .9204 .9049 .8875 .8683 .8474 .8247 
7 .9905 .9873 .9834 .9786 .9729 .9660 .9580 .9486 .9379 .9256 
8 .9979 .9970 .9959 .9944 .9925 .9902 .9873 .9837 .9794 .9743 
9 .9996 .9994 .9992 .9988 .9984 .9977 .9969 .9959 .9945 .9929 

10 .9999 .9999 .9999 .9998 .9997 .9996 .9994 .9992 .9989 .9984 
11 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9998 .9997 
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

z
P .31 .32 .33 .34 .35 .36 .37 .38 .39 .40 

0 .0026 .0021 .0016 .0013 .0010 .0008 .0006 .0005 .0004 .0003 
1 .0216 .0178 .0146 .0120 .0098 .0079 .0064 .0052 .0041 .0033 
2 .0856 .0734 .0626 .0533 .0451 .0380 .0319 .0266 .0222 .0183 
3 .2196 .1953 .1730 .1525 .1339 .1170 .1018 .0881 .0759 .0651 
4 .4154 .3819 .3496 .3187 .2892 .2613 .2351 .2105 .1877 .1666 

5 .6264 .5926 .5584 .5241 .4900 .4562 .4230 .3906 .3592 .3288 
6 .8003 .7743 .7469 .7181 .6881 .6572 .6254 .5930 .5602 .5272 
7 .9119 .8965 .8795 .8609 .8406 .8187 .7952 .7702 .7438 .7161 
8 .9683 .9612 .9530 .9436 .9329 .9209 .9074 .8924 .8758 .8577 
9 .9908 .9883 .9852 .9815 .9771 .9720 .9659 .9589 .9509 .9417 

10 .9979 .9972 .9963 .9952 .9938 .9921 .9900 .9875 .9845 .9809 
11 .9996 .9995 .9993 .9990 .9987 .9983 .9977 .9970 .9962 .9951 
12 1.0000 .9999 .9999 .9999 .9998 .9997 .9996 .9995 .9993 .9991 
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9999 
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 



670 	Appendix II • Statistical Tables 

TABLE B (continued) 

n = 16 (continued) 

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50 

.0002 .0002 .0001 .0001 .0001 .0001 .0000 .0000 .0000 .0000 

.0026 .0021 .0016 .0013 .0010 .0008 .0006 .0005 .0003 .0003 
2 .0151 .0124 .0101 .0082 .0066 .0053 .0042 .0034 .0027 .0021 
3 .0556 .0473 .0400 .0336 .0281 .0234 .0194 .0160 .0131 .0106 
4 .1471 .1293 .1131 .0985 .0853 .0735 .0630 .0537 .0456 .0384 

5 .2997 .2720 .2457 .2208 .1976 .1759 .1559 .1374 .1205 .1051 
6 .4942 .4613 .4289 .3971 .3660 .3359 .3068 .2790 .2524 .2272 
7 .6872 .6572 .6264 .5949 .5629 .5306 .4981 .4657 .4335 .4018 
8 .8381 .8168 .7940 .7698 .7441 .7171 .6889 .6596 .6293 .5982 
9 .9313 .9195 .9064 .8919 .8759 .8584 .8393 .8186 .7964 .7728 

10 .9766 .9716 .9658 .9591 .9514 .9426 .9326 .9214 .9089 .8949 
11 .9938 .9922 .9902 .9879 .9851 .9817 .9778 .9732 .9678 .9616 
12 .9988 .9984 .9979 .9973 .9965 .9956 .9945 .9931 .9914 .9894 
13 .9998 .9998 .9997 .9996 .9994 .9993 .9990 .9987 .9984 .9979 
14 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9999 .9998 .9997 

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

n = 17 

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

0 .8429 .7093 .5958 .4996 .4181 .3493 .2912 .2423 .2012 .1668 
1 .9877 .9554 .9091 .8535 .7922 .7283 .6638 .6005 .5396 .4818 
2 .9994 .9956 .9866 .9714 .9497 .9218 .8882 .8497 .8073 .7618 
3 1.0000 .9997 .9986 .9960 .9912 .9836 .9727 .9581 .9397 .9174 
4 1.0000 1.0000 .9999 .9996 .9988 .9974 .9949 .9911 .9855 .9779 

5 1.0000 1.0000 1.0000 1.0000 .9999 .9997 .9993 .9985 .9973 .9953 
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9998 .9996 .9992 
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

x 
.11 .12 .13 .14 .15 .16 .17 .18 .19 .20 

0 .1379 .1138 .0937 .0770 .0631 .0516 .0421 .0343 .0278 .0225 
1 .4277 .3777 .3318 .2901 .2525 .2187 .1887 .1621 .1387 .1182 
2 .7142 .6655 .6164 .5676 .5198 .4734 .4289 .3867 .3468 .3096 
3 .8913 .8617 .8290 .7935 .7556 .7159 .6749 .6331 .5909 .5489 
4 .9679 .9554 .9402 .9222 .9013 .8776 .8513 .8225 .7913 .7582 

5 .9925 .9886 .9834 .9766 .9681 .9577 .9452 .9305 .9136 .8943 
6 .9986 .9977 .9963 .9944 .9917 .9882 .9837 .9780 .9709 .9623 
7 .9998 .9996 .9993 .9989 .9983 .9973 .9961 .9943 .9920 .9891 
8 1.0000 .9999 .9999 .9998 .9997 .9995 .9992 .9988 .9982 .9974 
9 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9998 .9997 .9995 

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 17 (continued) 

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30 

0 .0182 .0146 .0118 .0094 .0075 .0060 .0047 .0038 .0030 .0023 
1 .1004 .0849 .0715 .0600 .0501 .0417 .0346 .0286 .0235 .0193 
2 .2751 .2433 .2141 .1877 .1637 .1422 .1229 .1058 .0907 .0774 
3 .5073 .4667 .4272 .3893 .3530 .3186 .2863 .2560 .2279 .2019 
4 .7234 .6872 .6500 .6121 .5739 .5357 .4977 .4604 .4240 .3887 

5 .8727 .8490 .8230 .7951 .7653 .7339 .7011 .6671 .6323 .5968 
6 .9521 .9402 .9264 .9106 .8929 .8732 .8515 .8279 .8024 .7752 
7 .9853 .9806 .9749 .9680 .9598 .9501 .9389 .9261 .9116 .8954 
8 .9963 .9949 .9930 .9906 .9876 .9839 .9794 .9739 .9674 .9597 
9 .9993 .9989 .9984 .9978 .9969 .9958 .9943 .9925 .9902 .9873 

10 .9999 .9998 .9997 .9996 .9994 .9991 .9987 .9982 .9976 .9968 
11 1.0000 1.0000 1.0000 .9999 .9999 .9998 .9998 .9997 .9995 .9993 
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

.\1\)  .31 .32 .33 .34 .35 .36 .37 .38 .39 .40 

0 .0018 .0014 .0011 .0009 .0007 .0005 .0004 .0003 .0002 .0002 
1 .0157 .0128 .0104 .0083 .0067 .0054 .0043 .0034 .0027 .0021 
2 .0657 .0556 .0468 .0392 .0327 .0272 .0225 .0185 .0151 .0123 
3 .1781 .1563 .1366 .1188 .1028 .0885 .0759 .0648 .0550 .0464 
4 .3547 .3222 .2913 .2622 .2348 .2094 .1858 .1640 .1441 .1260 

5 .5610 .5251 .4895 .4542 .4197 .3861 .3535 .3222 .2923 .2639 
6 .7464 .7162 .6847 .6521 .6188 .5848 .5505 .5161 .4818 .4478 
7 .8773 .8574 .8358 .8123 .7872 .7605 .7324 .7029 .6722 .6405 
8 .9508 .9405 .9288 .9155 .9006 .8841 .8659 .8459 .8243 .8011 
9 .9838 .9796 .9746 .9686 .9617 .9536 .9443 .9336 .9216 .9081 

10 .9957 .9943 .9926 .9905 .9880 .9849 .9811 .9766 .9714 .9652 
11 .9991 .9987 .9983 .9977 .9970 .9960 .9949 .9934 .9916 .9894 
12 .9998 .9998 .9997 .9996 .9994 .9992 .9989 .9985 .9981 .9975 
13 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9998 .9998 .9997 .9995 
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 17 (continued) 

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50 

0 .0001 .0001 .0001 .0001 .0000 .0000 .0000 .0000 .0000 .0000 
.0016 .0013 .0010 .0008 .0006 .0004 .0003 .0002 .0002 .0001 

2 .0100 .0080 .0065 .0052 .0041 .0032 .0025 .0020 .0015 .0012 
3 .0390 .0326 .0271 .0224 .0184 .0151 .0123 .0099 .0080 .0064 
4 .1096 .0949 .0817 .0699 .0596 .0505 .0425 .0356 .0296 .0245 

5 .2372 .2121 .1887 .1670 .1471 .1288 .1122 .0972 .0838 .0717 
6 .4144 .3818 .3501 .3195 .2902 .2623 .2359 .2110 .1878 .1662 
7 .6080 .5750 .5415 .5079 .4743 .4410 .4082 .3761 .3448 .3145 
8 .7762 .7498 .7220 .6928 .6626 .6313 .5992 .5665 .5333 .5000 
9 .8930 .8764 .8581 .8382 .8166 .7934 .7686 .7423 .7145 .6855 

10 .9580 .9497 .9403 .9295 .9174 .9038 .8888 .8721 .8538 .8338 
11 .9867 .9835 .9797 .9752 .9699 .9637 .9566 .9483 .9389 .9283 
12 .9967 .9958 .9946 .9931 .9914 .9892 .9866 .9835 .9798 .9755 
13 .9994 .9992 .9989 .9986 .9981 .9976 .9969 .9960 .9950 .9936 
14 .9999 .9999 .9998 .9998 .9997 .9996 .9995 .9993 .9991 .9988 

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9999 
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

n = 18 

xX .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

0 .8345 .6951 .5780 .4796 .3972 .3283 .2708 .2229 .1831 .1501 
1 .9862 .9505 .8997 .8393 .7735 .7055 .6378 .5719 .5091 .4503 
2 .9993 .9948 .9843 .9667 .9419 .9102 .8725 .8298 .7832 .7338 
3 1.0000 .9996 .9982 .9950 .9891 .9799 .9667 .9494 .9277 .9018 
4 1.0000 1.0000 .9998 .9994 .9985 .9966 .9933 .9884 .9814 .9718 

5 1.0000 1.0000 1.0000 .9999 .9998 .9995 .9990 .9979 .9962 .9936 
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9997 .9994 .9988 
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9998 
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

x 
P .11 .12 .13 .14 .15 .16 .17 .18 .19 .20 

0 .1227 .1002 .0815 .0662 .0536 .0434 .0349 .0281 .0225 .0180 
1 .3958 .3460 .3008 .2602 .2241 .1920 .1638 .1391 .1176 .0991 
2 .6827 .6310 .5794 .5287 .4797 .4327 .3881 .3462 .3073 .2713 
3 .8718 .8382 .8014 .7618 .7202 .6771 .6331 .5888 .5446 .5010 
4 .9595 .9442 .9257 .9041 .8794 .8518 .8213 .7884 .7533 .7164 

5 .9898 .9846 .9778 .9690 .9581 .9449 .9292 .9111 .8903 .8671 
6 .9979 .9966 .9946 .9919 .9882 .9833 .9771 .9694 .9600 .9487 
7 .9997 .9994 .9989 .9983 .9973 .9959 .9940 .9914 .9880 .9837 
8 1.0000 .9999 .9998 .9997 .9995 .9992 .9987 .9980 .9971 .9957 
9 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9998 .9996 .9994 .9991 

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9998 
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 18 (continued) 

I\ .21 21 .22 .23 .24 .25 .26 .27 .28 .29 .30 

0 .0144 .0114 .0091 .0072 .0056 .0044 .0035 .0027 .0021 .0016 
1 .0831 .0694 .0577 .0478 .0395 .0324 .0265 .0216 .0176 .0142 
2 .2384 .2084 .1813 .1570 .1353 .1161 .0991 .0842 .0712 .0600 
3 .4586 .4175 .3782 .3409 .3057 .2728 .2422 .2140 .1881 .1646 
4 .6780 .6387 .5988 .5586 .5187 .4792 .4406 .4032 .3671 .3327 

5 .8414 .8134 .7832 .7512 .7174 .6824 .6462 .6093 .5719 .5344 
6 .9355 .9201 .9026 .8829 .8610 .8370 .8109 .7829 .7531 .7217 
7 .9783 .9717 .9637 .9542 .9431 .9301 .9153 .8986 .8800 .8593 
8 .9940 .9917 .9888 .9852 .9807 .9751 .9684 .9605 .9512 .9404 
9 .9986 .9980 .9972 .9961 .9946 .9927 .9903 .9873 .9836 .9790 

10 .9997 .9996 .9994 .9991 .9988 .9982 .9975 .9966 .9954 .9939 
11 1.0000 .9999 .9999 .9998 .9998 .9997 .9995 .9993 .9990 .9986 
12 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9998 .9997 
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

P X  .31 .32 .33 .34 .35 .36 .37 .38 .39 .40 

0 .0013 .0010 .0007 .0006 .0004 .0003 .0002 .0002 .0001 .0001 
1 .0114 .0092 .0073 .0058 .0046 .0036 .0028 .0022 .0017 .0013 
2 .0502 .0419 .0348 .0287 .0236 .0193 .0157 .0127 .0103 .0082 
3 .1432 .1241 .1069 .0917 .0783 .0665 .0561 .0472 .0394 .0328 
4 .2999 .2691 .2402 .2134 .1886 .1659 .1451 .1263 .1093 .0942 

5 .4971 .4602 .4241 .3889 .3550 .3224 .2914 .2621 .2345 .2088 
6 .6889 .6550 .6202 .5849 .5491 .5133 .4776 .4424 .4079 .3743 
7 .8367 .8122 .7859 .7579 .7283 .6973 .6651 .6319 .5979 .5634 
8 .9280 .9139 .8981 .8804 .8609 .8396 .8165 .7916 .7650 .7368 
9 .9736 .9671 .9595 .9506 .9403 .9286 .9153 .9003 .8837 .8653 

10 .9920 .9896 .9867 .9831 .9788 .9736 .9675 .9603 .9520 .9424 
11 .9980 .9973 .9964 .9953 .9938 .9920 .9898 .9870 .9837 .9797 
12 .9996 .9995 .9992 .9989 .9986 .9981 .9974 .9966 .9956 .9942 
13 .9999 .9999 .9999 .9998 .9997 .9996 .9995 .9993 .9990 .9987 
14 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9998 .9998 

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n -= 18 (continued) 

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50 

.0001 .000 1 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 

.0010 .0008 .0006 .0004 .0003 .0002 .0002 .0001 .0001 .0001 

.0066 .0052 .0041 .0032 .0025 .0019 .0015 .0011 .0009 .0007 

.0271 .0223 .0182 .0148 .0120 .0096 .0077 .0061 .0048 .0038 

.0807 .0687 .0582 .0490 .0411 .0342 .0283 .0233 .0190 .0154 

.1849 .1628 .1427 .1243 .1077 .0928 .0795 .0676 .0572 .0481 

.3418 .3105 .2807 .2524 .2258 .2009 .1778 .1564 .1368 .1189 

.5287 .4938 .4592 .4250 .3915 .3588 .3272 .2968 .2678 .2403 

.7072 .6764 .6444 .6115 .5778 .5438 .5094 .4751 .4409 .4073 

.8451 .8232 .7996 .7742 .7473 .7188 .6890 .6579 .6258 .5927 

.9314 .9189 .9049 .8893 .8720 .8530 .8323 .8098 .7856 .7597 

.9750 .9693 .9628 .9551 .9463 .9362 .9247 .9117 .8972 .8811 

.9926 .9906 .9882 .9853 .9817 .9775 .9725 .9666 .9598 .9519 

.9983 .9978 .9971 .9962 .9951 .9937 .9921 .9900 .9875 .9846 

.9997 .9996 .9994 .9993 .9990 .9987 .9983 .9977 .9971 .9962 

1.0000 .9999 .9999 .9999 .9999 .9998 .9997 .9996 .9995 .9993 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

n -= 19 

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

.8262 .6812 .5606 .4604 .3774 .3086 .2519 .2051 .1666 .1351 

.9847 .9454 .8900 .8249 .7547 .6829 .6121 .5440 .4798 .4203 

.9991 .9939 .9817 .9616 .9335 .8979 .8561 .8092 .7585 .7054 
1.0000 .9995 .9978 .9939 .9868 .9757 .9602 .9398 .9147 .8850 
1.0000 1.0000 .9998 .9993 .9980 .9956 .9915 .9853 .9765 .9648 

1.0000 1.0000 1.0000 .9999 .9998 .9994 .9986 .9971 .9949 .9914 
1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9998 .9996 .9991 .9983 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9997 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

.11 .12 .13 .14 .15 .16 .17 .18 .19 .20 

.1092 .0881 .0709 .0569 .0456 .0364 .0290 .0230 .0182 .0144 

.3658 .3165 .2723 .2331 .1985 .1682 .1419 .1191 .0996 .0829 

.6512 .5968 .5432 .4911 .4413 .3941 .3500 .3090 .2713 .2369 

.8510 .8133 .7725 .7292 .6841 .6380 .5915 .5451 .4995 .4551 

.9498 .9315 .9096 .8842 .8556 .8238 .7893 .7524 .7136 .6733 

.9865 .9798 .9710 .9599 .9463 .9300 .9109 .8890 .8643 .8369 

.9970 .9952 .9924 .9887 .9837 .9772 .9690 .9589 .9468 .9324 

.9995 .9991 .9984 .9974 .9959 .9939 .9911 .9874 .9827 .9767 

.9999 .9998 .9997 .9995 .9992 .9986 .9979 .9968 .9953 .9933 
1.0000 1.0000 1.0000 .9999 .9999 .9998 .9996 .9993 .9990 .9984 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9998 .9997 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 19 (continued) 

xX .21 .22 .23 .24 .25 .26 .27 .28 .29 .30 

0 .0113 .0089 .0070 .0054 .0042 .0033 .0025 .0019 .0015 .0011 
1 .0687 .0566 .0465 .0381 .0310 .0251 .0203 .0163 .0131 .0104 
2 .2058 .1778 .1529 .1308 .1113 .0943 .0795 .0667 .0557 .0462 
3 .4123 .3715 .3329 .2968 .2631 .2320 .2035 .1776 .1542 .1332 
4 .6319 .5900 .5480 .5064 .4654 .4256 .3871 .3502 .3152 .2822 

5 .8071 .7749 .7408 .7050 .6677 .6295 .5907 .5516 .5125 .4739 
6 .9157 .8966 .8751 .8513 .8251 .7968 .7664 .7343 .7005 .6655 
7 .9693 .9604 .9497 .9371 .9225 .9059 .8871 .8662 .8432 .8180 
8 .9907 .9873 .9831 .9778 .9713 .9634 .9541 .9432 .9306 .9161 
9 .9977 .9966 .9953 .9934 .9911 .9881 .9844 .9798 .9742 .9674 

10 .9995 .9993 .9989 .9984 .9977 .9968 .9956 .9940 .9920 .9895 
11 .9999 .9999 .9998 .9997 .9995 .9993 .9990 .9985 .9980 .9972 
12 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9998 .9997 .9996 .9994 
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

xX .31 .32 .33 .34 .35 .36 .37 .38 .39 .40 

0 .0009 .0007 .0005 .0004 .0003 .0002 .0002 .0001 .0001 .0001 
1 .0083 .0065 .0051 .0040 .0031 .0024 .0019 .0014 .0011 .0008 
2 .0382 .0314 .0257 .0209 .0170 .0137 .0110 .0087 .0069 .0055 
3 .1144 .0978 .0831 .0703 .0591 .0495 .0412 .0341 .0281 .0230 
4 .2514 .2227 .1963 .1720 .1500 .1301 .1122 .0962 .0821 .0696 

5 .4359 .3990 .3634 .3293 .2968 .2661 .2373 .2105 .1857 .1629 
6 .6294 .5927 .5555 .5182 .4812 .4446 .4087 .3739 .3403 .3081 
7 .7909 .7619 .7312 .6990 .6656 .6310 .5957 .5599 .5238 .4878 
8 .8997 .8814 .8611 .8388 .8145 .7884 .7605 .7309 .6998 .6675 
9 .9595 .9501 .9392 .9267 .9125 .8965 .8787 .8590 .8374 .8139 

10 .9863 .9824 .9777 .9720 .9653 .9574 .9482 .9375 .9253 .9115 
11 .9962 .9949 .9932 .9911 .9886 .9854 .9815 .9769 .9713 .9648 
12 .9991 .9988 .9983 .9977 .9969 .9959 .9946 .9930 .9909 .9884 
13 .9998 .9998 .9997 .9995 .9993 .9991 .9987 .9983 .9977 .9969 
14 1.0000 1.0000 .9999 .9999 .9999 .9998 .9998 .9997 .9995 .9994 

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 19 (continued) 

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50 

0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 
1 .0006 .0005 .0004 .0003 .0002 .0001 .0001 .0001 .0001 .0000 
2 .0043 .0033 .0026 .0020 .0015 .0012 .0009 .0007 .0005 .0004 
3 .0187 .0151 .0122 .0097 .0077 .0061 .0048 .0037 .0029 .0022 
4 .0587 .0492 .0410 .0340 .0280 .0229 .0186 .0150 .0121 .0096 

5 .1421 .1233 .1063 .0912 .0777 .0658 .0554 .0463 .0385 .0318 
6 .2774 .2485 .2213 .1961 .1727 .1512 .1316 .1138 .0978 .0835 
7 .4520 .4168 .3824 .3491 .3169 .2862 .2570 .2294 .2036 .1796 
8 .6340 .5997 .5647 .5294 .4940 .4587 .4238 .3895 .3561 .3238 
9 .7886 .7615 .7328 .7026 .6710 .6383 .6046 .5701 .5352 .5000 

10 .8960 .8787 .8596 .8387 .8159 .7913 .7649 .7369 .7073 .6762 
11 .9571 .9482 .9379 .9262 .9129 .8979 .8813 .8628 .8425 .8204 
12 .9854 .9817 .9773 .9720 .9658 .9585 .9500 .9403 .9291 .9165 
13 .9960 .9948 .9933 .9914 .9891 .9863 .9829 .9788 .9739 .9682 
14 .9991 .9988 .9984 .9979 .9972 .9964 .9954 .9940 .9924 .9904 

15 .9999 .9998 .9997 .9996 .9995 .9993 .9990 .9987 .9983 .9978 
16 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9999 .9998 .9997 .9996 
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

n = 20 

x p  .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

0 .8179 .6676 .5438 .4420 .3585 .2901 .2342 .1887 .1516 .1216 
1 .9831 .9401 .8802 .8103 .7358 .6605 .5869 .5169 .4516 .3917 
2 .9990 .9929 .9790 .9561 .9245 .8850 .8390 .7879 .7334 .6769 
3 1.0000 .9994 .9973 .9926 .9841 .9710 .9529 .9294 .9007 .8670 
4 1.0000 1.0000 .9997 .9990 .9974 .9944 .9893 .9817 .9710 .9568 

5 1.0000 1.0000 1.0000 .9999 .9997 .9991 .9981 .9962 .9932 .9887 
6 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9997 .9994 .9987 .9976 
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9998 .9996 
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 20 (continued) 

x .11 .12 .13 .14 .15 .16 .17 .18 .19 .20 

0 .0972 .0776 .0617 .0490 .0388 .0306 .0241 .0189 .0148 .0115 
1 .3376 .2891 .2461 .2084 .1756 .1471 .1227 .1018 .0841 .0692 
2 .6198 .5631 .5080 .4550 .4049 .3580 .3146 .2748 .2386 .2061 
3 .8290 .7873 .7427 .6959 .6477 .5990 .5504 .5026 .4561 .4114 
4 .9390 .9173 .8917 .8625 .8298 .7941 .7557 .7151 .6729 .6296 

5 .9825 .9740 .9630 .9493 .9327 .9130 .8902 .8644 .8357 .8042 
6 .9959 .9933 .9897 .9847 .9781 .9696 .9591 .9463 .9311 .9133 
7 .9992 .9986 .9976 .9962 .9941 .9912 .9873 .9823 .9759 .9679 
8 .9999 .9998 .9995 .9992 .9987 .9979 .9967 .9951 .9929 .9900 
9 1.0000 1.0000 .9999 .9999 .9998 .9996 .9993 .9989 .9983 .9974 

10 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9998 .9996 .9994 
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

xX .21 .22 .23 .24 .25 .26 .27 .28 .29 .30 

0 .0090 .0069 .0054 .0041 .0032 .0024 .0018 .0014 .0011 .0008 
1 .0566 .0461 .0374 .0302 .0243 .0195 .0155 .0123 .0097 .0076 
2 .1770 .1512 .1284 .1085 .0913 .0763 .0635 .0526 .0433 .0355 
3 .3690 .3289 .2915 .2569 .2252 .1962 ' .1700 .1466 .1256 .1071 
4 .5858 .5420 .4986 .4561 .4148 .3752 .3375 .3019 .2685 .2375 

5 .7703 .7343 .6965 .6573 .6172 .5765 .5357 .4952 .4553 .4164 
6 .8929 .8699 .8442 .8162 .7858 .7533 .7190 .6831 .6460 .6080 
7 .9581 .9464 .9325 .9165 .8982 .8775 .8545 .8293 .8018 .7723 
8 .9862 .9814 .9754 .9680 .9591 .9485 .9360 .9216 .9052 .8867 
9 .9962 .9946 .9925 .9897 .9861 .9817 .9762 .9695 .9615 .9520 

10 .9991 .9987 .9981 .9972 .9961 .9945 .9926 .9900 .9868 .9829 
11 .9998 .9997 .9996 .9994 .9991 .9986 .9981 .9973 .9962 .9949 
12 1.0000 1.0000 .9999 .9999 .9998 .9997 .9996 .9994 .9991 .9987 
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9998 .9997 
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 



0 
1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 

,X)  

0 
1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 

.31 .32 .33 .34 .35 .36 .37 .38 .39 .40 

.0006 .0004 .0003 .0002 .0002 .0001 .0001 .0001 .0001 .0000 

.0060 .0047 .0036 .0028 .0021 .0016 .0012 .0009 .0007 .0005 

.0289 .0235 .0189 .0152 .0121 .0096 .0076 .0060 .0047 .0036 

.0908 .0765 .0642 .0535 .0444 .0366 .0300 .0245 .0198 .0160 

.2089 .1827 .1589 .1374 .1182 .1011 .0859 .0726 .0610 .0510 

.3787 .3426 .3082 .2758 .2454 .2171 .1910 .1671 .1453 .1256 

.5695 .5307 .4921 .4540 .4166 .3803 .3453 .3118 .2800 .2500 

.7409 .7078 .6732 .6376 .6010 .5639 .5265 .4892 .4522 .4159 

.8660 .8432 .8182 .7913 .7624 .7317 .6995 .6659 .6312 .5956 

.9409 .9281 .9134 .8968 .8782 .8576 .8350 .8103 .7837 .7553 

.9780 .9721 .9650 .9566 .9468 .9355 .9225 .9077 .8910 .8725 

.9931 .9909 .9881 .9846 .9804 .9753 .9692 .9619 .9534 .9435 

.9982 .9975 .9966 .9955 .9940 .9921 .9898 .9868 .9833 .9790 

.9996 .9994 .9992 .9989 .9985 .9979 .9972 .9963 .9951 .9935 

.9999 .9999 .9999 .9998 .9997 .9996 .9994 .9991 .9988 .9984 

1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9998 .9998 .9997 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50 

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 

.0004 .0003 .0002 .0002 .0001 .0001 .0001 .0000 .0000 .0000 

.0028 .0021 .0016 .0012 .0009 .0007 .0005 .0004 .0003 .0002 

.0128 .0102 .0080 .0063 .0049 .0038 .0029 .0023 .0017 .0013 

.0423 .0349 .0286 .0233 .0189 .0152 .0121 .0096 .0076 .0059 

.1079 .0922 .0783 .0660 .0553 .0461 .0381 .0313 .0255 .0207 

.2220 .1959 .1719 .1499 .1299 .1119 .0958 .0814 .0688 .0577 

.3804 .3461 .3132 .2817 .2520 .2241 .1980 .1739 .1518 .1316 

.5594 .5229 .4864 .4501 .4143 .3793 .3454 .3127 .2814 .2517 

.7252 .6936 .6606 .6264 .5914 .5557 .5196 .4834 .4474 .4119 

.8520 .8295 .8051 .7788 .7507 .7209 .6896 .6568 .6229 .5881 

.9321 .9190 .9042 .8877 .8692 .8489 .8266 .8024 .7762 .7483 

.9738 .9676 .9603 .9518 .9420 .9306 .9177 .9031 .8867 .8684 

.9916 .9893 .9864 .9828 .9786 .9735 .9674 .9603 .9520 .9423 

.9978 .9971 .9962 .9950 .9936 .9917 .9895 .9867 .9834 .9793 

.9996 .9994 .9992 .9989 .9985 .9980 .9973 .9965 .9954 .9941 

.9999 .9999 .9999 .9998 .9997 .9996 .9995 .9993 .9990 .9987 
1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9999 .9998 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 20 (continued) 
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TABLE B (continued) 

n = 25 

xX .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 

0 .7778 .6035 .4670 .3604 .2774 .2129 .1630 .1244 .0946 .0718 
1 .9742 .9114 .8280 .7358 .6424 .5527 .4696 .3947 .3286 .2712 
2 .9980 .9868 .9620 .9235 .8729 .8129 .7466 .6768 .6063 .5371 
3 .9999 .9986 .9938 .9835 .9659 .9402 .9064 .8649 .8169 .7636 
4 1.0000 .9999 .9992 .9972 .9928 .9850 .9726 .9549 .9314 .9020 

5 1.0000 1.0000 .9999 .9996 .9988 .9969 .9935 .9877 .9790 .9666 
6 1.0000 1.0000 1.0000 1.0000 .9998 .9995 .9987 .9972 .9946 .9905 
7 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9998 .9995 .9989 .9977 
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9998 .9995 
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

x P .11 .12 .13 .14 .15 .16 .17 .18 .19 .20 

0 .0543 .0409 .0308 .0230 .0172 .0128 .0095 .0070 .0052 .0038 
1 .2221 .1805 .1457 .1168 .0931 .0737 .0580 .0454 .0354 .0274 
2 .4709 .4088 .3517 .3000 .2537 .2130 .1774 .1467 .1204 .0982 
3 .7066 .6475 .5877 .5286 .4711 .4163 .3648 .3171 .2734 .2340 
4 .8669 .8266 .7817 .7332 .6821 .6293 .5759 .5228 .4708 .4207 

5 .9501 .9291 .9035 .8732 .8385 .7998 .7575 .7125 .6653 .6167 
6 .9844 .9757 .9641 .9491 .9305 .9080 .8815 .8512 .8173 .7800 
7 .9959 .9930 .9887 .9827 .9745 .9639 .9505 .9339 .9141 .8909 
8 .9991 .9983 .9970 .9950 .9920 .9879 .9822 .9748 .9652 .9532 
9 .9998 .9996 .9993 .9987 .9979 .9965 .9945 .9917 .9878 .9827 

10 1.0000 .9999 .9999 .9997 .9995 .9991 .9985 .9976 .9963 .9944 
11 1.0000 1.0000 1.0000 1.0000 .9999 .9998 .9997 .9994 .9990 .9985 
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9998 .9996 
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n = 25 (continued) 

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30 

0 .0028 .0020 .0015 .0010 .0008 .0005 .0004 .0003 .0002 .0001 
.0211 .0162 .0123 .0093 .0070 .0053 .0039 .0029 .0021 .0016 

2 .0796 .0640 .0512 .0407 .0321 .0252 .0196 .0152 .0117 .0090 
3 .1987 .1676 .1403 .1166 .0962 .0789 .0642 .0519 .0417 .0332 
4 .3730 .3282 .2866 .2484• .2137 .1826 .1548 .1304 .1090 .0905 

5 .5675 .5184 .4701 .4233 .3783 .3356 .2956 .2585 .2245 .1935 
6 .7399 .6973 .6529 .6073 .5611 .5149 .4692 .4247 .3817 .3407 
7 8642 .8342 .8011 .7651 .7265 .6858 .6435 .6001 .5560 .5118 
8 .9386 .9212 .9007 .8772 .8506 .8210 .7885 .7535 .7162 .6769 
9 .9760 .9675 .9569 .9440 .9287 .9107 .8899 .8662 .8398 .8106 

10 .9918 .9883 .9837 .9778 .9703 .9611 .9498 .9364 .9205 .9022 
11 .9976 .9964 .9947 .9924 .9893 .9852 .9801 .9736 .9655 .9558 
12 .9994 .9990 .9985 .9977 .9966 .9951 .9931 .9904 .9870 .9825 
13 .9999 .9998 .9996 .9994 .9991 .9986 .9979 .9970 .9957 .9940 
14 1.0000 1.0000 .9999 .9999 .9998 .9997 .9995 .9992 .9988 .9982 

15 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9998 .9997 .9995 
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

.31 .32 .33 .34 .35 .36 .37 .38 .39 .40 

0 .0001 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 
.0011 .0008 .0006 .0004 .0003 .0002 .0002 .0001 .0001 .0001 

2 .0068 .0051 .0039 .0029 .0021 .0016 .0011 .0008 .0006 .0004 
3 .0263 .0207 .0162 .0126 .0097 .0074 .0056 .0043 .0032 .0024 
4 .0746 .0610 .0496 .0400 .0320 .0255 .0201 .0158 .0123 .0095 

5 .1656 .1407 .1187 .0994 .0826 .0682 .0559 .0454 .0367 .0294 
6 .3019 .2657 .2321 .2013 .1734 .1483 .1258 .1060 .0886 .0736 
7 .4681 .4253 .3837 .3439 .3061 .2705 .2374 .2068 .1789 .1536 
8 .6361 .5943 .5518 .5092 .4668 .4252 .3848 .3458 .3086 .2735 
9 .7787 .7445 .7081 .6700 .6303 .5896 .5483 .5067 .4653 .4246 

10 .8812 .8576 .8314 .8025 .7712 .7375 .7019 .6645 .6257 .5858 
11 .9440 .9302 .9141 .8956 .8746 .8510 .8249 .7964 .7654 .7323 
12 .9770 .9701 .9617 .9515 .9396 .9255 .9093 .8907 .8697 .8462 
13 .9917 .9888 .9851 .9804 .9745 .9674 .9588 .9485 .9363 .9222 
14 .9974 .9964 .9950 .9931 .9907 .9876 .9837 .9788 .9729 .9656 

15 .9993 .9990 .9985 .9979 .9971 .9959 .9944 .9925 .9900 .9868 
16 .9998 .9998 .9996 .9995 .9992 .9989 .9984 .9977 .9968 .9957 
17 1.0000 1.0000 .9999 .9999 .9998 .9997 .9996 .9994 .9992 .9988 
18 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9998 .9997 
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE B (continued) 

n 	25 (continued) 

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50 

0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 

2 .0003 .0002 .0002 .0001 .0001 .0000 .0000 .0000 .0000 .0000 
3 .0017 .0013 .0009 .0007 .0005 .0003 .0002 .0002 .0001 .0001 
4 .0073 .0055 .0042 .0031 .0023 .0017 .0012 .0009 .0006 .0005 

5 .0233 .0184 .0144 .0112 .0086 .0066 .0050 .0037 .0028 .0020 
6 .0606 .0495 .0401 .0323 .0258 .0204 .0160 .0124 .0096 .0073 
7 .1308 .1106 .0929 .0773 .0639 .0523 .0425 .0342 .0273 .0216 
8 .2407 .2103 .1823 .1569 .1340 .1135 .0954 .0795 .0657 .0539 
9 .3849 .3465 .3098 .2750 .2424 .2120 .1840 .1585 .1354 .1148 

10 .5452 .5044 .4637 .4235 .3843 .3462 .3098 .2751 .2426 .2122 
11 .6971 .6603 .6220 .5826 .5426 .5022 .4618 .4220 .3829 .3450 
12 .8203 .7920 .7613 .7285 .6937 .6571 .6192 .5801 .5402 .5000 
13 .9059 .8873 .8664 .8431 .8173 .7891 .7587 .7260 .6914 .6550 
14 .9569 .9465 .9344 .9203 .9040 .8855 .8647 .8415 .8159 .7878 

15 .9829 .9780 .9720 .9647 .9560 .9457 .9337 .9197 .9036 .8852 
16 .9942 .9922 .9897 .9866 .9826 .9778 .9719 .9648 .9562 .9461 
17 .9983 .9977 .9968 .9956 .9942 .9923 .9898 .9868 .9830 .9784 
18 .9996 .9994 .9992 .9988 .9984 .9977 .9969 .9959 .9945 .9927 
19 .9999 .9999 .9998 .9997 .9996 .9995 .9992 .9989 .9985 .9980 

20 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9998 .9998 .9997 .9995 
21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 
22 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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TABLE C Cumulative Poisson Distribution P(X 5 XIA). 1000 Times the 
Probability of X or Fewer Occurrences of Event that has Average Number 
of Occurrences Equal to A 

0 1 2 3 4 5 6 
p(x < 21k = 1.00) = .920 

x .02 .04 .06 .08 .10 .15 .20 .25 

0 980 961 942 923 905 861 819 779 
1 1000 999 998 997 995 990 982 974 
2 1000 1000 1000 1000 999 999 998 
3 1000 1000 1000 

il,, 
x .30 .35 .40 .45 .50 .55 .60 .65 

0 741 705 670 638 607 577 549 522 
1 963 951 938 925 910 894 878 861 
2 996 994 992 989 986 982 977 972 
3 1000 1000 999 999 998 998 997 998 
4 1000 1000 1000 1000 1000 999 
5 1000 

x .70 .75 .80 .85 .90 .95 1.0 1.1 

0 497 472 449 427 407 387 368 333 
1 844 827 809 791 772 754 736 699 
2 966 959 953 945 937 929 920 900 
3 994 993 991 989 987 984 981 974 
4 999 999 999 998 998 997 996 995 
5 1000 1000 1000 1000 1000 1000 999 999 
6 1000 1000 
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TABLE C (continued) 

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

0 301 273 247 223 202 183 165 150 
1 663 627 592 558 525 493 463 434 
2 879 857 833 809 783 757 731 704 
3 966 957 946 934 921 907 891 875 
4 992 989 986 981 976 970 964 956 
5 998 998 997 996 994 992 990 987 
6 1000 1000 999 999 999 998 997 997 
7 1000 1000 1000 1000 999 999 
8 1000 1000 

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 

0 135 111 091 074 061 050 041 033 
1 406 355 308 267 231 199 171 147 
2 677 623 570 518 469 423 380 340 
3 857 819 779 736 692 647 603 558 
4 947 928 904 877 848 815 781 744 
5 983 975 964 951 935 916 895 871 
6 995 993 988 983 976 966 955 942 
7 999 998 997 995 992 988 983 977 
8 1000 1000 999 999 998 997 994 992 
9 1000 1000 999 999 998 997 

10 1000 1000 1000 999 
11 1000 

3.6 3.8 .40 4.2 4.4 4.6 4.8 5.0 

0 027 022 018 015 012 010 008 007 
1 126 107 092 078 066 056 048 040 
2 303 269 238 210 185 163 143 125 
3 515 473 433 395 359 326 294 265 
4 706 668 629 590 551 513 476 440 
5 844 816 785 753 720 686 651 616 
6 927 909 889 867 844 818 791 762 
7 969 960 949 936 921 905 887 867 
8 988 984 979 972 964 955 944 932 
9 996 994 992 989 985 980 975 968 

10 999 998 997 996 994 992 990 986 
11 1000 999 999 999 998 997 996 995 
12 1000 1000 1000 999 999 999 998 
13 1000 1000 1000 999 
14 1000 
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TABLE C (continued) 

• 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 

0 006 005 004 003 002 002 002 001 
1 034 029 024 021 017 015 012 010 
2 109 095 082 072 062 054 046 040 
3 238 213 191 170 151 134 119 105 
4 406 373 342 313 285 259 235 213 
5 581 546 512 478 446 414 384 355 
6 732 702 670 638 606 574 542 511 
7 845 822 797 771 744 716 687 658 
8 918 903 886 867 847 826 803 780 
9 960 951 941 929 916 902 886 869 

10 982 977 972 965 957 949 939 927 
11 993 990 988 984 980 975 969 963 
12 997 996 995 993 991 989 986 982 
13 999 999 998 997 996 995 994 992 
14 1000 999 999 999 999 998 997 997 
15 1000 1000 1000 999 999 999 999 
16 1000 1000 1000 999 
17 1000 

6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.5 

0 001 001 001 001 001 000 000 000 
1 009 007 006 005 004 004 003 002 
2 034 030 025 022 019 016 014 009 
3 093 082 072 063 055 048 042 030 
4 192 173 156 140 125 112 100 074 
5 327 301 276 253 231 210 191 150 
6 480 450 420 392 365 338 313 256 
7 628 599 569 539 510 481 453 386 
8 755 729 703 676 648 620 593 523 
9 850 830 810 788 765 741 717 653 

10 915 901 887 871 854 835 816 763 
11 955 947 937 926 915 902 888 849 
12 978 973 967 961 954 945 936 909 
13 990 987 984 980 976 971 966 949 
14 996 994 993 991 989 986 983 973 
15 998 998 997 996 995 993 992 986 
16 999 999 999 998 998 997 996 993 
17 1000 1000 999 999 999 999 998 997 
18 1000 1000 1000 1000 999 999 
19 1000 999 
20 1000 
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TABLE C (continued) 

685 

9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 

1 001 001 000 000 000 000 000 000 
2 006 004 003 002 001 001 001 000 
3 021 015 010 007 005 003 002 002 
4 055 040 029 021 015 011 008 005 
5 116 089 067 050 038 028 020 015 
6 207 165 130 102 079 060 046 035 
7 324 269 220 179 143 114 090 070 
8 456 392 333 279 232 191 155 125 
9 587 522 458 397 341 289 242 201 

10 706 645 583 521 460 402 347 297 
11 803 752 697 639 579 520 462 406 
12 876 836 792 742 689 633 576 519 
13 926 898 864 825 781 733 682 628 
14 959 940 917 888 854 815 772 725 
15 978 967 951 932 907 878 844 806 
16 989 982 973 960 944 924 899 869 
17 995 991 986 978 968 954 937 916 
18 998 996 993 988 982 974 963 948 
19 999 998 997 994 991 986 979 969 
20 1000 999 998 997 995 992 988 983 
21 1000 999 999 998 996 994 991 
22 1000 999 999 998 997 995 
23 1000 1000 999 999 998 
24 1000 999 999 
25 1000 999 
26 1000 
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TABLE C (continued) 

13.0 13.5 14.0 14.5 15 16 17 18 

3 001 001 000 000 000 000 000 000 
4 004 003 002 001 001 000 000 000 
5 011 008 006 004 003 001 001 000 
6 026 019 014 010 008 004 002 001 
7 054 041 032 024 018 010 005 003 
8 100 079 062 048 037 022 013 007 
9 166 135 109 088 070 043 026 015 

10 252 211 176 145 118 077 049 030 
11 353 304 260 220 185 127 085 055 
12 463 409 358 311 268 193 135 092 
13 573 518 464 413 363 275 201 143 
14 675 623 570 518 466 368 281 208 
15 764 718 669 619 568 467 371 287 
16 835 798 756 711 664 566 468 375 
17 890 861 827 790 749 659 564 469 
18 930 908 883 853 819 742 655 562 
19 957 942 923 901 875 812 736 651 
20 975 965 952 936 917 868 805 731 
21 986 980 971 960 947 911 861 799 
22 992 989 983 976 967 942 905 855 
23 996 994 991 986 981 963 937 899 
24 998 997 995 992 989 978 959 932 
25 999 998 997 996 994 987 975 955 
26 1000 999 999 998 997 993 985 972 
27 1000 999 999 998 996 991 983 
28 1000 999 999 998 995 990 
29 1000 1000 999 997 994 
30 999 999 997 
31 1000 999 998 
32 1000 999 
33 1000 



Appendix II • Statistical Tables 	 687 

TABLE C (continued) 

19 20 21 22 23 24 25 

6 001 000 000 000 000 000 000 
7 002 001 000 000 000 000 000 
8 004 002 001 001 000 000 000 
9 009 005 003 002 001 000 000 

10 018 011 006 004 002 001 001 
11 035 021 013 008 004 003 001 
12 061 039 025 015 009 005 003 
13 098 066 043 028 017 011 006 
14 150 105 072 048 031 020 012 
15 215 157 111 077 052 034 022 
16 292 221 163 117 082 056 038 
17 378 297 227 169 123 087 060 
18 469 381 302 232 175 128 092 
19 561 470 384 306 238 180 134 
20 647 559 471 387 310 243 185 
21 725 644 558 472 389 314 247 
22 793 721 640 556 472 392 318 
23 849 787 716 637 555 473 394 
24 893 843 782 712 635 554 473 
25 927 888 838 777 708 632 553 
26 951 922 883 832 772 704 629 
27 969 948 917 877 827 768 700 
28 980 966 944 913 873 823 763 
29 988 978 963 940 908 868 818 
30 993 987 976 959 936 904 863 
31 996 992 985 973 956 932 900 
32 998 995 991 983 971 953 929 
33 999 997 994 989 981 969 950 
34 999 999 997 994 988 979 966 
35 1000 999 998 996 993 987 978 
36 1000 999 998 996 992 985 
37 999 999 997 995 991 
38 1000 999 999 997 994 
39 1000 999 998 997 
40 1000 999 998 
41 999 999 
42 1000 999 
43 1000 
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TABLE D Normal Curve Areas P(z s zo) Entries in the Body of the Table are 
Areas between -wand z 

z -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 z 

- 3.80 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 -3.80 
-3.70 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 -3.70 
-3.60 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0002 .0002 -3.60 

-3.50 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 -3.50 
-3.40 .0002 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 -3.40 
-3.30 .0003 .0004 .0004 .0004 .0004 .0004 .0004 .0005 .0005 .0005 -3.30 
-3.20 .0005 .0005 .0005 .0006 .0006 .0006 .0006 .0006 .0007 .0007 -3.20 
-3.10 .0007 .0007 .0008 .0008 .0008 .0008 .0009 .0009 .0009 .0010 -3.10 

-3.00 .0010 .0010 .0011 .0011 .0011 .0012 .0012 .0013 .0013 .0013 -3.00 
-2.90 .0014 .0014 .0015 .0015 .0016 .0016 .0017 .0018 .0018 .0019 -2.90 
-2.80 .0019 .0020 .0021 .0021 .0022 .0023 .0023 .0024 .0025 .0026 -2.80 
-2.70 .0026 .0027 .0028 .0029 .0030 .0031 .0032 .0033 .0034 .0035 -2.70 
-2.60 .0036 .0037 .0038 .0039 .0040 .0041 .0043 .0044 .0045 .0047 -2.60 

-2.50 .0048 .0049 .0051 .0052 .0054 .0055 .0057 .0059 .0060 .0062 -2.50 
-2.40 .0064 .0066 .0068 .0069 .0071 .0073 .0075 .0078 .0080 .0082 -2.40 
-2.30 .0084 .0087 .0089 .0091 .0094 .0096 .0099 .0102 .0104 .0107 -2.30 
-2.20 .0110 .0113 .0116 .0119 .0122 .0125 .0129 .0132 .0136 .0139 -2.20 
-2.10 .0143 .0146 .0150 .0154 .0158 .0162 .0166 .0170 .0174 .0179 -2.10 

-2.00 .0183 .0188 .0192 .0197 .0202 .0207 .0212 .0217 .0222 .0228 -2.00 
-1.90 .0233 .0239 .0244 .0250 .0256 .0262 .0268 .0274 .0281 .0287 -1.90 
-1.80 .0294 .0301 .0307 .0314 .0322 .0329 .0336 .0344 .0351 .0359 -1.80 
-1.70 .0367 .0375 .0384 .0392 .0401 .0409 .0418 .0427 .0436 .0446 -1.70 
-1.60 .0455 .0465 .0475 .0485 .0495 .0505 .0516 .0526 .0537 .0548 -1.60 

-1.50 .0559 .0571 .0582 .0594 .0606 .0618 .0630 .0643 .0655 .0668 -1.50 
-1.40 .0681 .0694 .0708 .0721 .0735 .0749 .0764 .0778 .0793 .0808 -1.40 
-1.30 .0823 .0838 .0853 .0869 .0885 .0901 .0918 .0934 .0951 .0968 -1.30 
-1.20 .0985 .1003 .1020 .1038 .1056 .1075 .1093 .1112 .1131 .1151 -1.20 
-1.10 .1170 .1190 .1210 .1230 .1251 .1271 .1292 .1314 .1335 .1357 -1.10 

-1.00 .1379 .1401 .1423 .1446 .1469 .1492 .1515 .1539 .1562 .1587 -1.00 
-0.90 .1611 .1635 .1660 .1685 .1711 .1736 .1762 .1788 .1814 .1841 -0.90 
-0.80 .1867 .1894 .1922 .1949 .1977 .2005 .2033 .2061 .2090 .2119 -0.80 
-0.70 .2148 .2177 .2206 .2236 .2266 .2296 .2327 .2358 .2389 .2420 -0.70 
-0.60 .2451 .2483 .2514 .2546 .2578 .2611 .2643 .2676 .2709 .2743 -0.60 

-0.50 .2776 .2810 .2843 .2877 .2912 .2946 .2981 .3015 .3050 .3085 -0.50 
-0.40 .3121 .3156 .3192 .3228 .3264 .3300 .3336 .3372 .3409 .3446 -0.40 
-.030 .3483 .3520 .3557 .3594 .3632 .3669 .3707 .3745 .3783 .3821 -0.30 
-0.20 .3859 .3897 .3936 .3974 .4013 .4052 .4090 .4129 .4168 .4207 -0.20 
-0.10 .4247 .4286 .4325 .4364 .4404 .4443 .4483 .4522 .4562 .4602 -0.10 

0.00 .4641 .4681 .4721 .4761 .4801 .4840 .4880 .4920 .4960 .5000 0.00 
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TABLE D (continued) 

689 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.00 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 0.00 
0.10 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 0.10 
0.20 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 0.20 
0.30 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 0.30 
0.40 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 0.40 

0.50 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 0.50 
0.60 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 0.60 
0.70 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 0.70 
0.80 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 0.80 
0.90 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 0.90 

1.00 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 1.00 
1.10 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 1.10 
1.20 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 1.20 
1.30 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 1.30 
1.40 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 1.40 

1.50 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 1.50 
1.60 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 1.60 
1.70 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 1.70 
1.80 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 1.80 
1.90 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 1.90 

2.00 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 2.00 
2.10 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 2.10 
2.20 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 2.20 
2.30 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 2.30 
2.40 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 2.40 

2.50 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 2.50 
2.60 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 2.60 
2.70 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 2.70 
2.80 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 2.80 
2.90 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 2.90 

3.00 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 3.00 
3.10 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 3.10 
3.20 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 3.20 
3.30 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997 3.30 
3.40 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 3.40 

3.50 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 3.50 
3.60 .9998 .9998 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 3.60 
3.70 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 3.70 
3.80 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 3.80 
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TABLE E Percentiles of the t Distribution 

0 	2.2281 	tic 
p(tIo  s 2.2281) = .975 

di. t.90  t.95 t.975 t.99  l.995  

1 3.078 6.3138 12.706 31.821 63.657 
2 1.886 2.9200 4.3027 6.965 9.9248 
3 1.638 2.3534 3.1825 4.541 5.8409 
4 1.533 2.1318 2.7764 3.747 4.6041 
5 1.476 2.0150 2.5706 3.365 4.0321 
6 1.440 1.9432 2.4469 3.143 3.7074 
7 1.415 1.8946 2.3646 2.998 3.4995 
8 1.397 1.8595 2.3060 2.896 3.3554 
9 1.383 1.8331 2.2622 2.821 3.2498 

10 1.372 1.8125 2.2281 2.764 3.1693 
11 1.363 1.7959 2.2010 2.718 3.1058 
12 1.356 1.7823 2.1788 2.681 3.0545 
13 1.350 1.7709 2.1604 2.650 3.0123 
14 1.345 1.7613 2.1448 2.624 2.9768 
15 1.341 1.7530 2.1315 2.602 2.9467 
16 1.337 1.7459 2.1199 2.583 2.9208 
17 1.333 1.7396 2.1098 2.567 2.8982 
18 1.330 1.7341 2.1009 2.552 2.8784 
19 1.328 1.7291 2.0930 2.539 2.8609 
20 1.325 1.7247 2.0860 2.528 2.8453 
21 1.323 1.7207 2.0796 2.518 2.8314 
22 1.321 1.7171 2.0739 2.508 2.8188 
23 1.319 1.7139 2.0687 2.500 2.8073 
24 1.318 1.7109 2.0639 2.492 2.7969 
25 1.316 1.7081 2.0595 2.485 2.7874 
26 1.315 1.7056 2.0555 2.479 2.7787 
27 1.314 1.7033 2.0518 2.473 2.7707 
28 1.313 1.7011 2.0484 2.467 2.7633 
29 1.311 1.6991 2.0452 2.462 2.7564 
30 1.310 1.6973 2.0423 2.457 2.7500 
35 1.3062 1.6896 2.0301 2.438 2.7239 
40 1.3031 1.6839 2.0211 2.423 2.7045 
45 1.3007 1.6794 2.0141 2.412 2.6896 
50 1.2987 1.6759 2.0086 2.403 2.6778 
60 1.2959 1.6707 2.0003 2.390 2.6603 
70 1.2938 1.6669 1.9945 2.381 2.6480 
80 1.2922 1.6641 1.9901 2.374 2.6388 
90 1.2910 1.6620 1.9867 2.368 2.6316 

100 1.2901 1.6602 1.9840 2.364 2.6260 
120 1.2887 1.6577 1.9799 2.358 2.6175 
140 1.2876 1.6558 1.9771 2.353 2.6114 
160 1.2869 1.6545 1.9749 2.350 2.6070 
180 1.2863 1.6534 1.9733 2.347 2.6035 
200 1.2858 1.6525 1.9719 2.345 2.6006 

00 1.282 1.645 1.96 2.326 2.576 
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TABLE F Percentiles of the Chi-square Distribution 

31.410 

P(Xlo 5 31.41t 	= .95 
x20  

d.f. 2 
X.005 

2 
X.025 

2 
X.05 

2 
X.90 

„2 
A..95 

2 
X.975 

2 
X.99 

2 
X.995 

1 .0000393 .000982 .00393 2.706 3.841 5.024 6.635 7.879 
2 .0100 .0506 .103 4.605 5.991 7.378 9.210 10.597 
3 .0717 .216 .352 6.251 7.815 9.348 11.345 12.838 
4 .207 .484 .711 7.779 9.488 11.143 13.277 14.860 
5 .412 .831 1.145 9.236 11.070 12.832 15.086 16.750 
6 .676 1.237 1.635 10.645 12.592 14.449 16.812 18.548 
7 .989 1.690 2.167 12.017 14.067 16.013 18.475 20.278 
8 1.344 2.180 2.733 13.362 15.507 17.535 20.090 21.955 
9 1.735 2.700 3.325 14.684 16.919 19.023 21.666 23.589 

10 2.156 3.247 3.940 15.987 18.307 20.483 23.209 25.188 
11 2.603 3.816 4.575 17.275 19.675 21.920 24.725 26.757 
12 3.074 4.404 5.226 18.549 21.026 23.336 26.217 28.300 
13 3.565 5.009 5.892 19.812 22.362 24.736 27.688 29.819 
14 4.075 5.629 6.571 21.064 23.685 26.119 29.141 31.319 
15 4.601 6.262 7.261 22.307 24.996 27.488 30.578 32.801 
16 5.142 6.908 7.962 23.542 26.296 28.845 32.000 34.267 
17 5.697 7.564 8.672 24.769 27.587 30.191 33.409 35.718 
18 6.265 8.231 9.390 25.989 28.869 31.526 34.805 37.156 
19 6.844 8.907 10.117 27.204 30.144 32.852 36.191 38.582 
20 7.434 9.591 10.851 28.412 31.410 34.170 37.566 39.997 
21 8.034 10.283 11.591 29.615 32.671 35.479 38.932 41.401 
22 8.643 10.982 12.338 30.813 33.924 36.781 40.289 42.796 
23 9.260 11.688 13.091 32.007 35.172 38.076 41.638 44.181 
24 9.886 12.401 13.848 33.196 36.415 39.364 42.980 45.558 
25 10.520 13.120 14.611 34.382 37.652 40.646 44.314 46.928 
26 11.160 13.844 15.379 35.563 38.885 41.923 45.642 48.290 
27 11.808 14.573 16.151 36.741 40.113 43.194 46.963 49.645 
28 12.461 15.308 16.928 37.916 41.337 44.461 48.278 50.993 
29 13.121 16.047 17.708 39.087 42.557 45.722 49.588 52.336 
30 13.787 16.791 18.493 40.256 43.773 46.979 50.892 53.672 

35 17.192 20.569 22.465 46.059 49.802 53.203 57.342 60.275 
40 20.707 24.433 26.509 51.805 55.758 59.342 63.691 66.766 
45 24.311 28.366 30.612 57.505 61.656 65.410 69.957 73.166 
50 27.991 32.357 34.764 63.167 67.505 71.420 76.154 79.490 
60 35.535 40.482 43.188 74.397 79.082 83.298 88.379 91.952 
70 43.275 48.758 51.739 85.527 90.531 95.023 100.425 104.215 
80 51.172 57.153 60.391 96.578 101.879 106.629 112.329 116.321 
90 59.196 65.647 69.126 107.565 113.145 118.136 124.116 128.299 

100 67.328 74.222 77.929 118.498 124.342 129.561 135.807 140.169 
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TABLE G Percentiles of the F Distribution 

4.04 	F9. 19 

p (F9,19  s 4.04) = .995 

F.995 

Denominator 
Degrees of 
Freedom 

Numerator Degrees of Freedom 

1 2 3 4 5 6 7 8 9 

1 16211 20000 21615 22500 23056 23437 23715 23925 24091 
2 198.5 199.0 199.2 199.2 199.3 199.3 199.4 199.4 199.9 
3 55.55 49.80 47.47 46.19 45.39 44.84 44.43 44.13 43.8 
4 31.33 26.28 24.26 23.15 22.46 21.97 21.62 21.35 21.1 

5 22.78 18.31 16.53 15.56 14.94 14.51 14.20 13.96 13.7 
6 18.63 14.54 12.92 12.03 11.46 11.07 10.79 10.57 10.3 
7 16.24 12.40 10.88 10.05 9.52 9.16 8.89 8.68 8.5 
8 14.69 11.04 9.60 8.81 8.30 7.95 7.69 7.50 7.3 
9 13.61 10.11 8.72 7.96 7.47 7.13 6.88 6.69 6.5 

10 12.83 9.43 8.08 7.34 6.87 6.54 6.30 6.12 5.9 
11 12.23 8.91 7.60 6.88 6.42 6.10 5.86 5.68 5.5 
12 11.75 8.51 7.23 6.52 6.07 5.76 5.52 5.35 5.2 
13 11.37 8.19 6.93 6.23 5.79 5.48 5.25 5.08 4.9 
14 11.06 7.92 6.68 6.00 5.56 5.26 5.03 4.86 4.7 

15 10.80 7.70 6.48 5.80 5.37 5.07 4.85 4.67 4.5 
16 10.58 7.51 6.30 5.64 5.21 4.91 4.69 4.52 4.3 
17 10.38 7.35 6.16 5.50 5.07 4.78 4.56 4.39 4.2 
18 10.22 7.21 6.03 5.37 4.96 4.66 4.44 4.28 4.1 
19 10.07 7.09 5.92 5.27 4.85 4.56 4.34 4.18 4.0 

20 9.94 6.99 5.82 5.17 4.76 4.47 4.26 4.09 3.9 
21 9.83 6.89 5.73 5.09 4.68 4.39 4.18 4.01 3.8 
22 9.73 6.81 5.65 5.02 4.61 4.32 4.11 3.94 3.8 
23 9.63 6.73 5.58 4.95 4.54 4.26 4.05 3.88 3.7 
24 9.55 6.66 5.52 4.89 4.49 4.20 3.99 3.83 3.6 

25 9.48 6.60 5.46 4.84 4.43 4.15 3.94 3.78 3.6 
26 9.41 6.54 5.41 4.79 4.38 4.10 3.89 3.73 3.6 
27 9.34 6.49 5.36 4.74 4.34 4.06 3.85 3.69 3.5 
28 9.28 6.44 5.32 4.70 4.30 4.02 3.81 3.65 3.5 
29 9.23 6.40 5.28 4.66 4.26 3.98 3.77 3.61 3.4 

30 9.18 6.35 5.24 4.62 4.23 3.95 3.74 3.58 3.4 
40 8.83 6.07 4.98 4.37 3.99 3.71 3.51 3.35 3.2 
60 8.49 5.79 4.73 4.14 3.76 3.49 3.29 3.13 3.0 

120 8.18 5.54 4.50 3.92 3.55 3.28 3.09 2.93 2.8 
00 7.88 5.30 4.28 3.72 3.35 3.09 2.90 2.74 2.6 
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Denominator 
Degrees of 
Freedom 

Numerator Degrees of Freedom 
10 12 15 20 24 30 40 60 	120 	00 

1 24224 24426 24630 24836 24940 25044 25148 25253 	25359 	25465 
2 199.4 199.4 199.4 199.4 199.5 199.5 199.5 199.5 	199.5 	199.5 
3 43.69 43.39 43.08 42.78 42.62 42.47 42.31 42.15 	41.99 	41.83 
4 20.97 20.70 20.44 20.17 20.03 19.89 19.75 19.61 	19.47 	19.32 

5 13.62 13.38 13.15 12.90 12.78 12.66 12.53 12.40 	12.27 	12.14 
6 10.25 10.03 9.81 9.59 9.47 9.36 9.24 9.12 	9.00 	8.88 
7 8.38 8.18 7.97 7.75 7.65 7.53 7.42 7.31 	7.19 	7.08 
8 7.21 7.01 6.81 6.61 6.50 6.40 6.29 6.18 	6.06 	5.95 
9 6.42 6.23 6.03 5.83 5.73 5.62 5.52 5.41 	5.30 	5.19 

10 5.85 5.66 5.47 5.27 5.17 5.07 4.97 4.86 	4.75 	4.64 
11 5.42 5.24 5.05 4.86 4.76 4.65 4.55 4.44 	4.34 	4.23 
12 5.09 4.91 4.72 4.53 4.43 4.33 4.23 4.12 	4.01 	3.90 
13 4.82 4.64 4.46 4.27 4.17 4.07 3.97 3.87 	3.76 	3.65 
14 4.60 4.43 4.25 4.06 3.96 3.86 3.76 3.66 	3.55 	3.44 

15 4.42 4.25 4.07 3.88 3.79 3.69 3.58 3.48 	3.37 	3.26 
16 4.27 4.10 3.92 3.73 3.64 3.54 3.44 3.33 	3.22 	3.11 
17 4.14 3.97 3.79 3.61 3.51 3.41 3.31 3.21 	3.10 	2.98 
18 4.03 3.86 3.68 3.50 3.40 3.30 3.20 3.10 	2.99 	2.87 
19 3.93 3.76 3.59 3.40 3.31 3.21 3.11 3.00 	2.89 	2.78 

20 3.85 3.68 3.50 3.32 3.22 3.12 3.02 2.92 	2.81 	2.69 
21 3.77 3.60 3.43 3.24 3.15 3.05 2.95 2.84 	2.73 	2.61 
22 3.70 3.54 3.36 3.18 3.08 2.98 2.88 2.77 	2.66 	2.55 
23 3.64 3.47 3.30 3.12 3.02 2.92 2.82 2.71 	2.60 	2.48 
24 3.59 3.42 3.25 3.06 2.97 2.87 2.77 2.66 	2.55 	2.43 

25 3.54 3.37 3.20 3.01 2.92 2.82 2.72 2.61 	2.50 	2.38 
26 3.49 3.33 3.15 2.97 2.87 2.77 2.67 2.56 	2.45 	2.33 
27 3.45 3.28 3.11 2.93 2.83 2.73 2.63 2.52 	2.41 	2.29 
28 3.41 3.25 3.07 2.89 2.79 2.69 2.59 2.48 	2.37 	2.25 
29 3.38 3.21 3.04 2.86 2.76 2.66 2.56 2.45 	2.33 	2.21 

30 3.34 3.18 3.01 2.82 2.73 2.63 2.52 2.42 	2.30 	2.18 
40 3.12 2.95 2.78 2.60 2.50 2.40 2.30 2.18 	2.06 	1.93 
60 2.90 2.74 2.57 2.39 2.29 2.19 2.08 1.96 	1.83 	1.69 

120 2.71 2.54 2.37 2.19 2.09 1.98 1.87 1.75 	1.61 	1.43 
00 2.52 2.36 2.19 2.00 1.90 1.79 1.67 1.53 	1.36 	1.00 
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F.99  

Denominator 
Degrees of 
Freedom 

Numerator Degrees of Freedom 
1 2 3 4 5 6 7 8 9 

1 4052 4999.5 5403 5625 5764 5859 5928 5981 6022 
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 
co 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 
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Denominator 
Degrees of 
Freedom 

Numerator Degrees of Freedom 

10 	12 15 20 24 30 40 60 	120 	00 

1 6056 	6106 	6157 	6209 6235 6261 6287 6313 	6339 	6366 
2 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 	99.49 	99.50 
3 27.23 27.05 26.87 26.69 26.60 26.50 26.41 26.32 	26.22 	26.13 
4 14.55 14.37 14.20 14.02 13.93 13.84 13.75 13.65 	13.56 	13.46 

5 10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 	9.11 	9.02 
6 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 	6.97 	6.88 
7 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 	5.74 	5.65 
8 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 	4.95 	4.86 
9 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 	4.40 	4.31 

10 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 	4.00 	3.91 
11 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 	3.69 	3.60 
12 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 	3.45 	3.36 
13 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 	3.25 	3.17 
14 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 	3.09 	3.00 

15 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 	2.96 	2.87 
16 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 	2.84 	2.75 
17 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 	2.75 	2.65 
18 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 	2.66 	2.57 
19 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 	2.58 	2.49 

20 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 	2.52 	2.42 
21 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 	2.46 	2.36 
22 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 	2.40 	2.31 
23 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 	2.35 	2.26 
24 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 	2.31 	2.21 

25 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 	2.27 	2.17 
26 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 	2.23 	2.13 
27 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 	2.20 	2.10 
28 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 	2.17 	2.06 
29 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 	2.14 	2.03 

30 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 	2.11 	2.01 
40 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 	1.92 	1.80 
60 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 	1.73 	1.60 

120 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 	1.53 	1.38 
2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 	1.32 	1.00 
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F.975  

Denominator 
Degrees of Numerator Degrees of Freedom 

Freedom 1 2 3 4 5 6 7 8 9 

1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 
2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 
3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 
4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 

5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 
6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 
7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 
8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 
9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 
11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 
12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 
13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 
14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 

15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 
16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 
17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 
18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 
19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 

20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 
21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 
22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 
23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 
24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 

25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 
26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 
27 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63 
28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 
29 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59 

30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 
40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 
60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 

120 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 
co 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 
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Denominator 
Degrees of 
Freedom 

Numerator Degrees of Freedom 

10 12 15 20 24 30 40 60 120 OD 

1 968.6 976.7 984.9 993.1 997.2 1001 1006 1010 1014 1018 
2 39.40 39.41 39.43 39.45 39.46 39.46 39.47 39.48 39.49 39.50 
3 14.42 14.34 14.25 14.17 14.12 14.08 14.04 13.99 13.95 13.90 
4 8.84 8.75 8.66 8.56 8.51 8.46 8.41 8.36 8.31 8.26 

5 6.62 6.52 6.43 6.33 6.28 6.23 6.18 6.12 6.07 6.02 
6 5.46 5.37 5.27 5.17 5.12 5.07 5.01 4.96 4.90 4.85 
7 4.76 4.67 4.57 4.47 4.42 4.36 4.31 4.25 4.20 4.14 
8 4.30 4.20 4.10 4.00 3.95 3.89 3.84 3.78 3.73 3.67 
9 3.96 3.87 3.77 3.67 3.61 3.56 3.51 3.45 3.39 3.33 

10 3.72 3.62 3.52 3.42 3.37 3.31 3.26 3.20 3.14 3.08 
11 3.53 3.43 3.33 3.23 3.17 3.12 3.06 3.00 2.94 2.88 
12 3.37 3.28 3.18 3.07 3.02 2.96 2.91 2.85 2.79 2.72 
13 3.25 3.15 3.05 2.95 2.89 2.84 2.78 2.72 2.66 2.60 
14 3.15 3.05 2.95 2.84 2.79 2.73 2.67 2.61 2.55 2.49 

15 3.06 2.96 2.86 2.76 2.70 2.64 2.59 2.52 2.46 2.40 
16 2.99 2.89 2.79 2.68 2.63 2.57 2.51 2.45 2.38 2.32 
17 2.92 2.82 2.72 2.62 2.56 2.50 2.44 2.38 2.32 2.25 
18 2.87 2.77 2.67 2.56 2.50 2.44 2.38 2.32 2.26 2.19 
19 2.82 2.72 2.62 2.51 2.45 2.39 2.33 2.27 2.20 2.13 

20 2.77 2.68 2.57 2.46 2.41 2.35 2.29 2.22 2.16 2.09 
21 2.73 2.64 2.53 2.42 2.37 2.31 2.25 2.18 2.11 2.04 
22 2.70 2.60 2.50 2.39 2.33 2.27 2.21 2.14 2.08 2.00 
23 2.67 2.57 2.47 2.36 2.30 2.24 2.18 2.11 2.04 1.97 
24 2.64 2.54 2.44 2.33 2.27 2.21 2.15 2.08 2.01 1.94 

25 2.61 2.51 2.41 2.30 2.24 2.18 2.12 2.05 1.98 1.91 
26 2.59 2.49 2.39 2.28 2.22 2.16 2.09 2.03 1.95 1.88 
27 2.57 2.47 2.36 2.25 2.19 2.13 2.07 2.00 1.93 1.85 
28 2.55 2.45 2.34 2.23 2.17 2.11 2.05 1.98 1.91 1.83 
29 2.53 2.43 2.32 2.21 2.15 2.09 2.03 1.96 1.89 1.81 

30 2.51 2.41 2.31 2.20 2.14 2.07 2.01 1.94 1.87 1.79 
40 2.39 2.29 2.18 2.07 2.01 1.94 1.88 1.80 1.72 1.64 
60 2.27 2.17 2.06 1.94 1.88 1.82 1.74 1.67 1.58 1.48 

120 2.16 2.05 1.94 1.82 1.76 1.69 1.61 1.53 1.43 1.31 
00 2.05 1.94 1.83 1.71 1.64 1.57 1.48 1.39 1.27 1.00 
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F." 

Denominator 
Degrees of Numerator Degrees of Freedom 
Freedom 1 2 3 4 5 6 7 8 9 

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 
3 10.13 9`55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 
OD 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 
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Denominator 
Degrees of Numerator Degrees of Freedom 

Freedom 10 12 15 20 24 30 40 60 120 co 

1 241.9 243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 254.3 
2 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50 
3 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53 
4 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63 

5 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36 
6 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67 
7 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23 
8 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93 
9 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71 

10 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54 
11 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40 
12 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30 
13 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21 
14 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13 

15 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07 
16 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01 
17 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96 
18 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92 
19 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88 

20 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84 
21 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81 
22 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78 
23 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76 
24 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73 

25 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71 
26 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69 
27 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67 
28 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65 
29 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64 

30 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62 
40 2.08 2.00 .92 1.84 1.79 1.74 1.69 1.64 1.58 1.51 
60 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39 

120 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25 
00 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00 
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Fs0  

Denominator 
Degrees of Numerator Degrees of Freedom 
Freedom 1 2 3 4 5 6 7 8 9 

1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 
2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 
3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 
4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 
5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 

6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 
7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 
8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 
9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 
11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 
13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 
14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 

15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 
16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 
17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 
18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 
19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 

20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 
21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 
22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 
23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 
24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 

25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 
26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 
27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 
28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 
29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 

30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 
40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 
60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 

120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 
co 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 
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Denominator 
Degrees of 
Freedom 

Numerator Degrees of Freedom 
10 12 15 20 24 30 40 60 120 00 

1 60.19 60.71 61.22 61.74 62.00 62.26 62.53 62.79 63.06 63.33 
2 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49 
3 5.23 5.22 5.20 5.18 5.18 5.17 5.16 5.15 5.14 5.13 
4 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76 

5 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.10 
6 2.94 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.72 
7 2.70 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49 2.47 
8 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.29 
9 2.42 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18 2.16 

10 2.32 2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.08 2.06 
11 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.97 
12 2.19 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93 1.90 
13 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.88 1.85 
14 2.10 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83 1.80 

15 2.06 2.02 1.97 1.92 1.90 1.87 1.85 1.82 1.79 1.76 
16 2.03 1.99 1.94 1.89 1.87 1.84 1.81 1.78 1.75 1.72 
17 2.00 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72 1.69 
18 1.98 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69 1.66 
19 1.96 1.91 1.86 1.81 1.79 1.76 1.73 1.70 1.67 1.63 

20 1.94 1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.64 1.61 
21 1.92 1.87 1.83 1.78 1.75 1.72 1.69 1.66 1.62 1.59 
22 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.57 
23 1.89 1.84 1.80 1.74 1.72 1.69 1.66 1.62 1.59 1.55 
24 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.61 1.57 1.53 

25 1.87 1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56 1.52 
26 1.86 1.81 1.76 1.71 1.68 1.65 1.61 1.58 1.54 1.50 
27 1.85 1.80 1.75 1.70 1.67 1.64 1.60 1.57 1.53 1.49 
28 1.84 1.79 1.74 1.69 1.66 1.63 1.59 1.56 1.52 1.48 
29 1.83 1.78 1.73 1.68 1.65 1.62 1.58 1.55 1.51 1.47 

30 1.82 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.50 1.46 
40 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42 1.38 
60 1.71 1.66 1.60 1.54 1.51 1.48 1.44 1.40 1.35 1.29 

120 1.65 1.60 1.55 1.48 1.45 1.41 1.37 1.32 1.26 1.19 
co 1.60 1.55 1.49 1.42 1.38 1.34 1.30 1.24 1.17 1.00 
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TABLE H Percentage Points of the Studentized Range for 2 through 20 Treatments Upper 5% Points 

Error 
df 2 3 4 5 6 7 	8 9 10 

1 17.97 26.98 32.82 37.08 40.41 43.12 	45.40 47.36 49.07 
2 6.08 8.33 9.80 10.88 11.74 12.44 	13.03 13.54 13.99 
3 4.50 5.91 6.82 7.50 8.04 8.48 	8.85 9.18 9.46 
4 3.93 5.04 5.76 6.29 6.71 7.05 	7.35 7.60 7.83 
5 3.64 4.60 5.22 5.67 6.03 6.33 	6.58 6.80 6.99 

6 3.46 4.34 4.90 5.30 5.63 5.90 	6.12 6.32 6.49 
7 3.34 4.16 4.68 5.06 5.36 5.61 	5.82 6.00 6.16 
8 3.26 4.04 4.53 4.89 5.17 5.40 	5.60 5.77 5.92 
9 3.20 3.95 4.41 4.76 5.02 5.24 	5.43 5.59 5.74 
10 3.15 3.88 4.33 4.65 4.91 5.12 	5.30 5.46 5.60 

11 3.11 3.82 4.26 4.57 4.82 5.03 	5.20 5.35 5.49 
12 3.08 3.77 4.20 4.51 4.75 4.95 	5.12 5.27 5.39 
13 3.06 3.73 4.15 4.45 4.69 4.88 	5.05 5.19 5.32 
14 3.03 3.70 4.11 4.41 4.64 4.83 	4.99 5.13 5.25 
15 3.01 3.67 4.08 4.37 4.59 4.78 	4.94 5.08 5.20 

16 3.00 3.65 4.05 4.33 4.56 4.74 	4.90 5.03 5.15 
17 2.98 3.63 4.02 4.30 4.52 4.70 	4.86 4.99 5.11 
18 2.97 3.61 4.00 4.28 4.49 4.67 	4.82 4.96 5.07 
19 2.96 3.59 3.98 4.25 4.47 4.65 	4.79 4.92 5.04 
20 2.95 3.58 3.96 4.23 4.45 4.62 	4.77 4.90 5.01 

24 2.92 3.53 3.90 4.17 4.37 4.54 	4.68 4.81 4.92 
30 2.89 3.49 3.85 4.10 4.30 4.46 	4.60 4.72 4.82 
40 2.86 3.44 3.79 4.04 4.23 4.39 	4.52 4.63 4.73 
60 2.83 3.40 3.74 3.98 4.16 4.31 	4.44 4.55 4.65 

120 2.80 3.36 3.68 3.92 4.10 4.24 	4.36 4.47 4.56 
00 2.77 3.31 3.63 3.86 4.03 4.17 	4.29 4.39 4.47 

Error 
df 11 12 13 14 15 16 	17 	18 19 20 

1 50.59 51.96 53.20 54.33 55.36 56.32 	57.22 	58.04 58.83 59.56 
2 14.39 14.75 15.08 15.38 15.65 15.91 	16.14 	16.37 16.57 16.77 
3 9.72 9.95 10.15 10.35 10.52 10.69 	10.84 	10.98 11.11 11.24 
4 8.03 8.21 8.37 8.52 8.66 8.79 	8.91 	9.03 9.13 9.23 
5 7.17 7.32 7.47 7.60 7.72 7.83 	7.93 	8.03 8.12 8.21 

6 6.65 6.79 6.92 7.03 7.14 7.24 	7.34 	7.43 7.51 7.59 
7 6.30 6.43 6.55 6.66 6.76 6.85 	6.94 	7.02 7.10 7.17 
8 6.05 6.18 6.29 6.39 6.48 6.57 	6.65 	6.73 6.80 6.87 
9 5.87 5.98 6.09 6.19 6.28 6.36 	6.44 	6.51 6.58 6.64 

10 5.72 5.83 5.93 6.03 6.11 6.19 	6.27 	6.34 6.40 6.47 

11 5.61 5.71 5.81 5.90 5.98 6.06 	6.13 	6.20 6.27 6.33 
12 5.51 5.61 5.71 5.80 5.88 5.95 	6.02 	6.09 6.15 6.21 
13 5.43 5.53 5.63 5.71 5.79 5.86 	5.93 	5.99 6.05 6.11 
14 5.36 5.46 5.55 5.64 5.71 5.79 	5.85 	5.91 5.97 6.03 
15 5.31 5.40 5.49 5.57 5.65 5.72 	5.78 	5.85 5.90 5.96 
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Error 
df 11 12 13 14 	15 	16 17 18 19 20 

16 5.26 5.35 5.44 5.52 	5.59 	5.66 5.73 5.79 5.84 5.90 
17 5.21 5.31 5.39 5.47 	5.54 	5.61 5.67 5.73 5.79 5.84 
18 5.17 5.27 5.35 5.43 	5.50 	5.57 5.63 5.69 5.74 5.79 
19 5.14 5.23 5.31 5.39 	5.46 	5.53 5.59 5.65 5.70 5.75 
20 5.11 5.20 5.28 5.36 	5.43 	5.49 5.55 5.61 5.66 5.71 

24 5.01 5.10 5.18 5.25 	5.32 	5.38 5.44 5.49 5.55 5.59 
30 4.92 5.00 5.08 5.15 	5.21 	5.27 5.33 5.38 5.43 5.47 
40 4.82 4.90 4.98 5.04 	5.11 	5.16 5.22 5.27 5.31 5.36 
60 4.73 4.81 4.88 4.94 	5.00 	5.06 5.11 5.15 5.20 5.24 

120 4.64 4.71 4.78 4.84 	4.90 	4.95 5.00 5.04 5.09 5.13 
oo 4.55 4.62 4.68 4.74 	4.80 	4.85 4.89 4.93 4.97 5.01 

Upper 1% Points 

Error 
df 2 3 4 5 	6 7 8 9 10 

1 90.03 135.0 164.3 185.6 	202.2 215.8 227.2 237.0 245.6 

2 14.04 19.02 22.29 24.72 	26.63 28.20 29.53 30.68 31.69 

3 8.26 10.62 12.17 13.33 	14.24 15.00 15.64 16.20 16.69 

4 6.51 8.12 9.17 9.96 	10.58 11.10 11.55 11.93 12.27 

5 5.70 6.98 7.80 8.42 	8.91 9.32 9.67 9.97 10.24 

6 5.24 6.33 7.03 7.56 	7.97 8.32 8.61 8.87 9.10 

7 4.95 5.92 6.54 7.01 	7.37 7.68 7.94 8.17 8.37 

8 4.75 5.64 6.20 6.62 	6.96 7.24 7.47 7.68 7.86 

9 4.60 5.43 5.96 6.35 	6.66 6.91 7.13 7.33 7.49 

10 4.48 5.27 5.77 6.14 	6.43 6.67 6.87 7.05 7.21 

11 4.39 5.15 5.62 5.97 	6.25 6.48 6.67 6.84 6.99 

12 4.32 5.05 5.50 5.84 	6.10 6.32 6.51 6.67 6.81 

13 4.26 4.96 5.40 5.73 	5.98 6.19 6.37 6.53 6.67 

14 4.21 4.89 5.32 5.63 	5.88 6.08 6.26 6.41 6.54 

15 4.17 4.84 5.25 5.56 	5.80 5.99 6.16 6.31 6.44 

16 4.13 4.79 5.19 5.49 	5.72 5.92 6.08 6.22 6.35 

17 4.10 4.74 5.14 5.43 	5.66 5.85 6.01 6.15 6.27 

18 4.07 4.70 5.09 5.38 	5.60 5.79 5.94 6.08 6.20 

19 4.05 4.67 5.05 5.33 	5.55 5.73 5.89 6.02 6.14 

20 4.02 4.64 5.02 5.29 	5.51 5.69 5.84 5.97 6.09 

24 3.96 4.55 4.91 5.17 	5.37 5.54 5.69 5.81 5.92 

30 3.89 4.45 4.80 5.05 	5.24 5.40 5.54 5.65 5.76 

40 3.82 4.37 4.70 4.93 	5.11 5.26 5.39 5.50 5.60 

60 3.76 4.28 4.59 4.82 	4.99 5.13 5.25 5.36 5.45 

120 3.70 4.20 4.50 4.71 	4.87 5.01 5.12 5.21 5.30 

co 3.64 4.12 4.40 4.60 	4.76 4.88 4.99 5.08 5.16 
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Error 
df 11 12 	13 	14 	15 16 17 18 19 20 

1 253.2 260.0 	266.2 	271.8 	277.0 281.8 286.3 290.4 294.3 298.0 
2 32.59 33.40 	34.13 	34.81 	35.43 36.00 36.53 37.03 37.50 37.95 
3 17.13 17.53 	17.89 	18.22 	18.52 18.81 19.07 19.32 19.55 19.77 
4 12.57 12.84 	13.09 	13.32 	13.53 13.73 13.91 14.08 14.24 14.40 
5 10.48 10.70 	10.89 	11.08 	11.24 11.40 11.55 11.68 11.81 11.93 

6 9.30 9.48 	9.65 	9.81 	9.95 10.08 10.21 10.32 10.43 10.54 
7 8.55 8.71 	8.86 	9.00 	9.12 9.24 9.35 9.46 9.55 9.65 
8 8.03 8.18 	8.31 	8.44 	8.55 8.66 8.76 8.85 8.94 9.03 
9 7.65 7.78 	7.91 	8.03 	8.13 8.23 8.33 8.41 8.49 8.57 
10 7.36 7.49 	7.60 	7.71 	7.81 7.91 7.99 8.08 8.15 8.23 

11 7.13 7.25 	7.36 	7.46 	7.56 7.65 7.73 7.81 7.88 7.95 
12 6.94 7.06 	7.17 	7.26 	7.36 7.44 7.52 7.59 7.66 7.73 
13 6.79 6.90 	7.01 	7.10 	7.19 7.27 7.35 7.42 7.48 7.55 
14 6.66 6.77 	6.87 	6.96' 	7.05 7.13 7.20 7.27 7.33 7.39 
15 6.55 6.66 	6.76 	6.84 	6.93 7.00 7.07 7.14 7.20 7.26 

16 6.46 6.56 	6.66 	6.74 	6.82 6.90 6.97 7.03 7.09 7.15 
17 6.38 6.48 	6.57 	6.66 	6.73 6.81 6.87 6.94 7.00 7.05 
18 6.31 6.41 	6.50 	6.58 	6.65 6.73 6.79 6.85 6.91 6.97 
19 6.25 6.34 	6.43 	6.51 	6.58 6.65 6.72 6.78 6.84 6.89 
20 6.19 6.28 	6.37 	6.45 	6.52 6.59 6.65 6.71 6.77 6.82 

24 6.02 6.11 	6.19 	6.26 	6.33 6.39 6.45 6.51 6.56 6.61 
30 5.85 5.93 	6.01 	6.08 	6.14 6.20 6.26 6.31 6.36 6.41 
40 5.69 5.76 	5.83 	5.90 	5.96 6.02 6.07 6.12 6.16 6.21 
60 5.53 5.60 	5.67 	5.73 	5.78 5.84 5.89 5.93 5.97 6.01 
120 5.37 5.44 	5.50 	5.56 	5.61 5.66 5.71 5.75 5.79 5.83 
co 5.23 5.29 	5.35 	5.40 	5.45 5.49 5.54 5.57 5.61 5.65 

TABLE I Transformation of r to z (the body of the table contains values of 
z = .5[In(1 + r) / (1 - 	= tanh -1  r for corresponding values of r, 
the correlation coefficient) 

r 	.00 	.01 	.02 	.03 	.04 .05 .06 .07 .08 .09 

.0 .00000 .01000 .02000 .03001 .04002 .05004 .06007 .07012 .08017 .09024 

.1 .10034 .11045 .12058 .13074 .14093 .15114 .16139 .17167 .18198 .19234 

.2 .20273 .21317 .22366 .23419 .24477 .25541 .26611 .27686 .28768 .29857 

.3 .30952 .32055 .33165 .34283 .35409 .36544 .37689 .38842 .40006 .41180 

.4 .42365 .43561 .44769 .45990 .47223 .48470 .49731 .51007 .52298 .53606 

.5 .54931 .56273 .57634 .59014 .60415 .61838 .63283 .64752 .66246 .67767 

.6 .69315 .70892 .72500 .74142 .75817 .77530 .79281 .81074 .82911 .84795 

.7 .86730 .88718 .90764 .92873 .95048 .97295 .99621 1.02033 1.04537 1.07143 

.8 1.09861 1.12703 1.15682 1.18813 1.22117 1.25615 1.29334 1.33308 1.37577 1.42192 

.9 1.47222 1.52752 1.58902 1.65839 1.73805 1.83178 1.94591 2.09229 2.29756 2.64665 
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Probability 

a 0.05 0.025 0.01 0.005 

A=3B=3 3 0.050 
A= 4 B= 4 4 0.014 0.014 

3 4 0.029 - - 
A=5B=5 5 1.024 1.024 0.004 0.004 

4 0.024 0.024 - - 
4 5 1.048 0.008 0.008 

4 0.040 - - 
3 5 0.018 0.018 
2 5 0.048 - - 

A=6B=6 6 2.030 1.008 1.008 0.001 
5 1.040 0.008 0.008 
4 O.030 - - - 

5 6 1.015 + 1.015+  0.002 0.002 
5 0.013 0.013 - - 

4 0.045 + - 
4 6 1.033 0.005 + 0.005 + 0.005 + 

5 0.024 0.024 
3 6 0.012 0.012 

5 0.048 - - 
2 6 0.036 

A=713=7 7 3.035- 2.010+  1.002 1.002 
6 1.015- 1.015-  0.002 0.002 
5 0.010+  0.010+  
4 0.035 - 

6 7 2.021 2.021 1.005 - 1.005 - 
6 1.025+   0.004 0.004 0004 
5 0.016 0.016 - 
4 0.049 - - - 

5 7 2.045 + 1.010 + 0.001 0.001 
6 1.045 + 0.008 0.008 
5 0.027 - - 

4 7 1.024 1.024 0.003 0.003 

6 0.015+  0.015+  
5 0.045+  - 

3 7 0.008 0.008 0.008 
6 0.033 - 

2 7 0.028 - - - 
A=8B=8 8 1̀.038 3.013 2.003 2.003 

7 2.020 2.020 1  .005 + 0.001 
6 1.020 1.020 0.003 0.003 
5 0.013 0.013 - 
4 0.038 - - 

A=8B=7 8 3.026 2.007 2.007 1.001 
7 2.035 - 1.009 1.009 0.001 
6 1.032 0.006 0.006 
5 0.019 0.019 - 

6 8 2.015-  2.015 + 1.003 1.003 

'Bold type, for given a, A, and B, shows the value of b (< a), which is just significant at the probability 
level quoted (single-tail test). Small type, for given A, B, and r = a + b, shows the exact probability (if 
there is independence) that b is equal to or less than the integer shown in bold type. 
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Probability 

a 	0.05 	0.025 	0.01 0.005 

7 1.016 1.016 	0.002 0.002 
6 0.009 0.009 	0.009 
5 0.028 

5 	8 2.035 - 1.007 	1.007 	0.001 
7 1.032 0.005- 	0.005 - 	0.005 - 
6 0.016 0.016 	- 
5 °.044 

4 	8 1.018 	1.018 	0.002 	0.002 
7 0.010+ 	0.010+ 
6 0.030 	- 	- 

3 	8 0.006 	0.006 	0.006 
7 0.024 	0.024 

2 	8 0.022 	0.022 	- 	- 
A = 9 B = 9 	9 5.041 	4.015 - 	3.005 - 	3.005 - 

8 3.025 - 	3.025- 	2.008 	1.002 
7 2.028 	1.008 	1.008 	0.001 
6 1.025 - 	1.025- 	0.005- 	0.005 - 
5 0.015 - 	0.015- 	- 	- 
4 0.041 	- 	- 	- 

8 	9 4.o29 	3.009 	3.009 	2.002 
8 3.043 	2.013 	1.003 	1.003 
7 2.044 	1.012 	0.002 	0.002 
6 1.036 	0.007 	0.007 	- 
5 0.020 	0.020 	- 	- 

7 	9 3.019 	3.019 	2.005- 	2.005 - 
8 2.024 	2.024 	1.006 	0.001 
7 1.020 	1.020 	0.003 	0.003 
6 0.010+ 	0m10+ 	- 	- 
5 0.029 	- 	- 	- 

6 	9 3.o44 	2.011 	1.002 	1.002 
8 2.047 	1.011 	0.001 	0.001 
7 1.035- 	0.006 	0.006 
6 0.017 	0.017 	- 
5 0.042 	- 	- 	- 

5 	9 2.027 	1.005- 	1.005- 	1 .005 - 
8 1 .023 	1.023 	0.003 	0.003 
7 0.010+ 	0.010+ 	- 	- 
6 0.028 

4 	9 1.014 	1.014 	0.001 	0.001 
8 0.007 	0.007 	°.007 
7 4:21 	0.021 	- 
6 0.049 	- 	 - 

3 	9 
8 

1.045 + 	0.005 - 	0.005 - 	0.005 -
018 	0.018 

7 0.045 + 	- 
2 	9 0.018 	0.018 

A = 10 B = 10 	10 6.043 	5.016 	4.005+ 	3.002 
9 4.029 	3.010- 	3.010 - 	2.003 
8 3 35 - 	2.012 	1.003 	1.003 
7 2.035- 	1 .010 - 	1.010- 	0.002 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

6 1.029 0.005+  0.005+  
5 0.016 0.016 - 
4 0.043 - - - 

A = 10 B = 9 10 5.033 4.011 3.003 3.003 
9 4.050-  3.017 2.005 - 2.005 - 
8 2.019 2.019 1.004 1.004 
7 1  .015 - 1  .015 - 0.002 0.002 
6 1.040 0.008 0.008 - 
5 0.022 0.022 - - 

8 10 4.o23 4.023 3.007 2.002 

9 3.032 2.009 2.009 1.002 
8 2.031 1.008 1.008 0.001 
7 1.023 1.023 0.004 0.004 
6 0.011 0.011 - - 
5 0.029 

- 
- - 

7 10 3.015-  3.015- 2.003 2.003 
9 2.018 2.018 1.004 1.004 
8 1.013 1.013 0.002 0.002 
7 1.036 0.006 0.006 - 
6 0.017 0.017 - 
5 0.041 - - - 

6 10 3.o36 2.008 2.008 1.001 
9 2.036 1.008 1.008 0.001 

8 1.024 1.024 0.003 0.003 

7 0.010+  0.010+ - - 
6 0.026 

- 
- - 

5 10 2.022 2.022 1.004 1.004 

9 1.017 1.017 0.002 0.002 

8 1.047 0.007 0.007 - 
7 0.019 0.019 - 
6 0.042 - - - 

4 10 1.011  1  .011 0.001 0.001 

9 1.041 0.005 - 0.005 - 0.005 
8 0.015-  0.015- - - 

7 0.035 - - - - 
3 10 1.038  0.003 0.003 0.003 

9 0.014 0.014 - - 
8 0.035 - - 

2 10 0.015+  0.015 + - 

9 0.045+  
A = 11 B = 11 11 7.045 + 6.018 5.006 4.002 

10 5.032 4.012 3.004 3.004 
9 4.040 3.015 - 2.004 2.004 
8 3.043 2.015 - 1.004 1.004 
7 2.040 1.012 0.002 0.002 

6 1.032 0.006 0.006 - 
5 0.018 0.018 - 

4 0.045 + 
10 11 6.035+  5.012 4.004 4.004 

10 4.021 4.021 3.007 2.002 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

9 3.024 3.024 2.007 1.002 
8 2.023 2.023 1.006 0.001 
7 1.017 1.017 0.003 0.003 
6 1.043 0.009 0.009 

_ 

5 0.023 0.023 - - 
9 11 5.026 4.008 4.008 3.002 

10 4.038 3.012 2.003 2.003 
9 3.040 2.012 1.003 1.003 

8 2.033 - 1.009 1.009 0.001 
7 1.025 - 1.025 - 0.004 0.004 
6 0.012 0.012 

- 

5 0.030 
- - - 

A = 11 B = 8 11 4.018 4.018 3.00s-  3.005 - 
10 3.024 3.024 2.006 1.001 
9 2.022 2.022 1.005-  1  .005 - 
8 1.015 - 1.015-  0.002 0.002 
7 1.037 0.007 0.007 
6 0.017 0.017 
5 0.040 

7 11 4.043 3.011  2.002 2.002 

10 3.047 2.013 1.002 1.002 
9 2.030 1.009 1.009 0.001 
8 1.025-  1.025 - 0.004 0.004 
7 0.010 + 0.010+ 
6 0.025 - 0.025 - 

6 11 3.029 2.006 2.006 1.001 
10 2.028 1.005+ 1.005+  0.001 
9 1.018 1.018 0.002 0.002 
8 1.043 0.007 0.007 
7 0.017 0.017 
6 0.037 

5 11 2.018 2.018 1.003 1.003 
10 1.013 1.013 0.001 0.001 
9 1.036 0.005-  0.005-  0.005 - 
8 0.013 0.013 

- 

7 0.029 
- 

- - 
4 11 1.009 1.009 1.009 0.001 

10 1.033 0.004  0.004  0.004 

9 0.011 0.011 - - 
8 0.026 - - 

3 11 1.033 0.003 0.003 0.003 
10 0.011 0.011 - 
9 0.027 - - - 

2 11 0.013 0.013 
10 0.038 

- 
- - 

A = 12 B = 12 12 8.047 7.019 6.007 5.002 
11 6.034 5.014 4.005 - 4.005 
10 5.045- 4.018  3.006 2.002  
9 4.050-  3.020 2.006 1.001 
8 3.050' 2.018 1.005-  1.005- 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

7 2.045-  1.014 0.002 0.002 
6 1.034 0.007 0.007 
5 0.019 0.019 - 
4 0.047 - - - 

11 12 7.037 6.014 5.005-  5.005- 
11 5.o24 5.024 4.008 3.002 
10 4.029 3.010+ 2.003 2.003 
9 3.030 2.009 2.009 1.002 
8 2.026 1.007 1.007 0.001 
7 1.019 1.019 0.003 0.003 
6 1.045 - 0.009 0.009 - 
5 0.024 0.024 

 

10 12 6.029 5.010-  5.010 - 4.003 
11 5.043 4.015+ 3.005-  3.005- 
10 4.o48 3.017 2.005-  2.005 - 
9 3.046 2.015 - 1.004 1.004 
8 2.038 1  .010 + 0.002 0.002 
7 1.026 0.005 - 0.005 - 0.005 - 
6 0.012 0.012 - - 
5 0.030 - - - 

A = 12 B = 9 12 5.021 5.021 4.006 3.002 
11 4.029 3.009 3.009 2.002 
10 3.029 2.008 2.008 1.002 
9 2.024 2.024 1.006 0.001 
8 1.016 1.016 0.002 0.002 
7 1.037  0.007 0.007  

6 0.017 0.017 - 
5 0.039 - - - 

8 12 5.049 4.014 3.004 3.004 
11 3.018 3.018 2.004 2.004 
10 2.015+ 2.015+ 1.003 1.003 
9 2.040 1.010 - 1.010 - 0.001 
8 1.025 - 1.025 - 0.004 0.004 
7 0.010+ 0.010+ 

- - 

6 0.024 0.024 - - 
7 12 4.o36 3.009 3.009 2.002 

11 3.038 2.010-  2.010-  1.002 
10 2.029 1.006 1.006 0.001 
9 1.017 1.017 0.002 0.002 
8 1.040 0.007 0.007 - 
7 0.016 0.016 - 
6 0.034 - - 

6 12 3.025-  3.025 - 2.005 - 2.005 - 
11 2.022 2.022 1.004 1.004 
10 1.013 1.013 0.002 0.002 
9 1.032 0.005 - 0.005 - 0.005 - 
8 (1011 0.011 - 

- 

7 0.025 - 0.025- - - 
6 0.050 - 

- - - 

5 12 2.015-  2.015-  1.002 1.002 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

11 1.010-  1.010-  1  .010 - 0.001 
10 1.028 0.003 0.003 0.003 
9 8.009 8.009 0.009 
8 8.020 8.020 - - 
7 0.041 

 

4 12 2.050 1.007 1.007 8.001 
11 1.027 8.003 8.003 8.003 
10 8.008 8.008 8.008 
9 0.019  8.019 - 
8 0.038 - 

3 12 1.029 8.002 8.002 0.002 
11 8.009 8.009 8.009 
10 8.022 8.022 - - 
9 0.044 - - 

2 12 0.011 0.011 - 
11 0.033 - - - 

A = 13 B = 13 13 9.048 8.020 7.007 6.003 
12 7.037 6.015+ 5.006 4.002 
11 6.048 5.021 4.008 3.002 
10 4.024 4.024 3.008 2.002 
9 3.024 3.024 2.008 1.002 
8 2.021 2.021 1.006 0.001 
7 2.048 1  .015 + 0.003 0.003 
6 1.037 0.007 0.007 - 
5 0.020 0.020 - - 
4 0.048 - 

12 13 8.039 7.015-  6.005+ 5.002 
12 6.027 5.010-  5.010-  4.003 
11 3.033 4.013 3.004 3.004 
10 4.036 3.013 2.004 2.004 

A = 13 B = 12 9 3.034 2.011 1.003 1.003 
8 2.029 1.008 1.008 0.001 
7 1.020 1.020 0.004 0.004 
6 1.046 0.010-  8.010 - _ 

5 8.024 0.024 
 

11 13 7.031 6.011 5.003 5.003 
12 6.048 5.018 4.006 3.002 
11 4.021 4.021 3.007 2.002 
10 3.021 3.021 2.006 1.001 
9 3.050-  2.017 1.004 1.004 
8 2.040 1.011 0.002 0.002 
7 1.027 0.005-  0.005-  0.005 - 
6 0.013  0.013 

 

5 0.030  

10 13 6.024 6.024 5.007 4.002 
12 3.035-  4.012 3.003 3.003 
11 4.037  3.012 2.003 2.003 
10 3.033 2.010+ 1.002 1.002 
9 2.026 1.006 1.006 0.001 
8 1.017 1.017  0.003 0.003 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

7 1.038 0.007 0.007 
6 0.017 0.017 
5 0.038 - - - 

9 13 5.017 5.017 4.005-  4.005- 
12 4.023 4.023 3.007 2.001 
11 3.022 3.022 2.006 1.001 
10 2.017 2.017 1.004 1.004 
9 2.040 1.010 + 0.001 0.001 
8 1.025-  1  .025 - 0.004 0.004  
7 0.010+ 0.010+ - - 
6 0.023 0.023 
5 °.049 - 

8 13 5.o42 4.012 3.003 3.003 
12 4.047 3.014 2.003 2.003 
11 3.041 2.011 1.002 1.002 
10 2.029 1.007 1.007 0.001 
9 1.017 1.017 0.002 0.002 
8 1.037 0.006 0.006 - 
7 0.015-   °.015 - - - 
6 0.032 - - - 

7 13 4.o31 3.007 3.007 2.001 
12 3.031 2.007 2.007 1.001 
11 2.022 2.022 1.004 1.004 
10 1.012 1.012 0.002 0.002 
9 1.029 0.004 0.004 0.004 
8 0.010+ 0.010+ - - 
7 0.022 0.022 - - 
6 0.044 - - - 

6 13 3.021 3.021 2.004 2.004 
12 2.017 2.017 1.003 1.003 
11 2.046 1.010 - 1.010 - Om 1  
10 1.024 1.024 0.003 0.003 
9 1.050 - 0.008 0.008 - 
8 0.017 0.017 
7 0.034 - 

5 13 2.012 2.012 1.002 1.002 
12 2.044 1.008 1.008 0.001 
11 1.022 1.022 0.002 0.002  
10 1.047 0.007 0.007 - 
9 0.015-  O.015-  - - 
8 0.029 - - 

A = 13 B = 4 13 2.044 1.006 1.006  0.000  
12 1.022 1.022 0.002 0.002 
11 0.006  0.006 0.006 - 
10 0.015-   0.015 - - 
9 0.029 - - - 

3 13 1.025 1.025 0.002 0.002 
12 0.007  0.007 0.007 - 
11 0.018 0.018 - - 
10 0.036 - 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

2 13 0.010-  0.010 - 0.010 - 
12 0.029 

A = 14 B = 14 14 10.049 9.020 8.008 7.003 
13 8.038 7.016 6.006 5.002 
12 6.023 6.023 5.009 4.003 
11 5.027 4.01 1  3.004 3.004 
10 4.028 3.011 2.003 2.003 
9 3.027 2.009 2.009 1.002 
8 2.023 2.023 1.006 0.001 
7 1.016 1.016 0.003 0.003 
6 1.038 0.008 0.008 
5 0.020 0.020 
4 0.049 

13 14 9.041 8.016 7.006 6.002 

13 7.029 6.011 5.004 5.004 
12 6.037 5.015+ 4.005+ 3.002 
11 5.041 4.017 3.006 2.0o1 
10 4.041 3.016 2.005-  2.005- 
9 3.038 2.013 1  .003 1.003 
8 2.031  1.009 1.009 0.001 

7 1.021 1.021 0.004 0.004 

6 1.048  0.010+ 
5 0.025 - 0.025 - 

12 14 8.033  7.012 6.004 6.004 
13 6.021 6.021 5.007 4.002 
12 5.025 + 4.009 4.009 3.003 
11 4.026 3.009 3.009 2.002 
10 3.024 3.024 2.007 1.002 
9 2.019 2.019 1.005-  1  .005 - 
8 2.042 1.012 0.002 0.002 
7 1.028 0.005 + °.005 
6 0.013 0.013 
5 0.030 

11 14 7.026 6.009 6.009 5.003 
13 6.039  5.014 4.004 4.004 

12 5.043 4.016 3.005 - 3.005 - 

11 4.042 3.015 2.004 2.004 

10 3.036 2.011 1.003 1.003 

9 2.027 1.007 1.007 0.001 
8 1.017 1.017 °M03 0.003 
7 1.038 0.007 0.007 
6 0.017 0.017 
5 0.038 

10 14 6.020 6.020 5.006 4.002 

13 5.028 4.009 4.009 3.002 

12 4.028 3.009 3.009 2.002 

11 3.024 3.024 2.007 1.001 

10 2.018 2.018 1.004 1.004 
9 2.040  1.011 0.002 0.002 

8 1.024 1.024 °M04 °AK 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

7 0.0 1 0 - 0.010-  0.010 - 
A = 14 B = 10 6 0.022 0.022 - - 

5 0.047 - 
9 14 6.047 5.014 4.004 4.004 

13 4.018 4.018 3.005-  3.005 - 
12 3.017 3.017 2.004 2.004 
11 3.042 2.012 1.002 1.002 
10 2.029 1.007 1.007 0.001 

9 1.017 1.017 0.002 0.002 
8 1.036 0.006 0.006 - 
7 0.014 0.014 - - 
6 0.030 - - - 

8 14 5.o36 4.010-  4.010-  3.002 
13 4.039 3.011 2.002 2.002 
12 3.032 2.008 2.008 1.001 
11 2.022 2.022 1.005 1.005 - 
10 2.048 1.012 0.002 0.002 
9 1.026 0.004 0.004 0.004 
8 0.009 0.009 0.009 - 
7 0.020 0.020 - - 
6 0.040 - - - 

7 14 4.026 3.006 3.006 2.001 
13 3.025 2.006 2.006 1.001 
12 2.017 2.017 1.003 1.003 
11 2.041 1.009 1.009 0.001 
10 1  .021 1  .021 0.003 0.003 
9 1.043 0.007 0.007 - 
8 0.015 - 0.015 - - - 
7 0.030 - - 

6 14 3.018 3.018 2.003 2.003 
13 2.014 2.014 1.002 1.002 
12 2.037 1.007 1.007 0.001 
11 1.018 1.018 0.002 0.002 
10 1.038 0.005+  0.005+  - 
9 0.012 0.012 - - 
8 0.024 0.024 
7 0.044 - - - 

5 14 2.010+  2.010 + 1.001 1.001 
13 2.037 1.006 1.006 0.001 
12 1.017 1.017 0.002 0.002 
11 1.038 0.005 - 0.005 - 0.005 - 
10 0.011 0.011 - - 
9 0.022 0.022 
8 0.040 - - - 

4 14 2.039 1.005 - 1.005 - 1.005 - 
13 1.019  1.019 0.002 0.002 
12 1.044 0.005 - 0.005 - 0.005 - 
11 0.011 0.011 - - 

10 0.023 0.023 
9 0.041 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

3 14 1.022 1.022 0.001 0.001 
13 0.006 0.006 0.006 
12 0.015-  0.015-  - 
11 0.029 - - 

2 14 0.008 0.008 0.008 
13 0.025 0.025 - 
12 0.050 - 

A = 15 B = 15 15 11.050  - 1  °M21 9.008 8.003 
14 9.040 8.018 7.007 6.003 
13 7.025 + 6.010+ 5.004 5.004 
12 6.030 5.013 4.005 - 4.005 - 

A = 15 B = 15 11 5.033 4.013  3.005-  3.005- 
10 4.033 3.013 2.004 2.004 
9 3.030 2.010+ 1.003 1.003 
8 2.025+ 1.007 1.007 0.001 
7 1.018 1.018 0.003 0.003 
6 1.040  0.008 0.008 _ 

5 0.021 0.021 - - 
4 0.050-  - - - 

14 15 10.042 9.017 8.006 7.002 
14 8.031 7.013 6.005-  6.005 - 
13 7.o41 6.o 17 5.007 4.002 
12 6.046 5.020 4.007 3.002 
11 5.048 4.020 3.007 2.002 
10 4.046 3.018 2.006 1.001 
9 3.041 2.014 1.004 1.004 
8 2.033  1.009 1.009 0.001 
7 1.022 1.022 0.004 0 004 
6 1.049 0.011 

 

5 0.025+ 
 

13 15 9.035-  8.013 7.005-  7.005- 
14 7.023 7.023 6.009 5.003 
13 6.029 5.011 4.004 4.004 
12 5.031 4.012 3.004 3.004 
11 4.030 3.011 2.003 2.003 
10 3.026 2.008 2.008  1.002 
9 2.020 2.020 1.005 + 0M01 
8 2.043 1.013 0M02 0M02 
7 1.029 0.005+ 0.005+ - 
6 0.013 0.013 - - 
5 0.031 

 

12 15 8.028 7.010-  7.010-  6.003 
14 7.043 6.016 5.006 4.002 

13 6.049 5.019 4.007 3.002 
12 5.049 4.019 3.006 2.002 
11 4.045+ 3.017 2.005-  2.005 - 
10 3.038 2.012 1.003 1.003 
9 2.028 1.007 1.007 0 001 
8 1.018 1.018 0.003 0.003 
7 1.038 0.007 0.007 _ 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

6 0.017 0.017 
5 0.037 

11 15 7.022 7.022 6.007 5.002 
14 6.032 5.011 4.003 4.003 
13 5.034 4.012 3.003 3.003 
12 4.032 3.010+  2.003 2.003 
11 3.026 2.008 2.008 1.002 
10 2.019 2.019 1.004 1.004 

9 2.040 1.011 0.002 0.002 
8 1.024 1.024 0.004 0.004 
7 1.049 0.010 - 0.010-  
6 0.022 0.022 
5 0.046 

10 15 6.017 6.017 5.005-  5.005-  
14 5.023 5.023 4.007 3.002 
13 4.022 4.022 3.007 2.001 
12 3.°18 3.018 2.005 - 
11 3.042 2.013 1.003 1.003 
10 2.029 1.007 1.007 0.001 
9 1.016 1.016 0.002 0.002 
8 1.034 0.006 0.006 

A = 15 B = 10 7 0.013 0.013 
6 0.028 

9 15 6.042 5.012 4.003 4.003 
14 5.047 4.015-  3.004 3.004 
13 4.042 3.013 2.003 2.003 
12 3.032 2.009 2.009 1.002 
11 2.021 2.021 1  .005 - 1  M05 
10 2.045 - 1  .011 °.002 0.002 
9 1.024  1.024 0.004 0.004 
8 1.048 0.009 0.009 - 
7 °.019 0.019 - 

6 0.037 - - 

8 15 5.032 4.008 4.008 3.002 
14 4.033 3.009 3.009 2.002 
13 3.026 2.006 2.006 1.001 
12 2.017 2.017 1.003 1.003 
11 2m37 1.008 1.008 0.001 
10 1.019 1.019 0.003 0.003 
9 1.038 0.006 0.006 

_ 

8 0.013 0.013 
- - 

7 0.026 
- - - 

6 °.050 
- _ - 

7 15 4.023 4.023 3.005-  3.005 - 
14 3.021 3.021 2.004 2.004 
13 2.014 2.014 1.002 1.002 
12 2.032 1.007 1.007 0.001 
11 1.015+  1.015+  0.002 0.002 
10 1..032 °.005- 0.005 - 0.005 - 
9 0.010+  0.010+  

- - 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

8 
7 

0.020 
°A38 

 
0.020 

_ 

6 15 3.015+ 3.015+ 2.003 2.003 
14 2.011 2.011 1.002 1.002 
13 2.031 1.006 1.006 0.001 
12 1.014 1.014 0.002 0.002 
11 1.029 0.004 0.004 0.004 
10 0.009 0.009 0.009 - 
9 0.017 0.017 - - 
8 0.032 

 

5 15 2.009 2.009 2.009 1.001 
14 2.032 1.005 - 1.005 - 1.005 
13 1.014 1.014 0.001 0.001 
12 1.031 0.004 0.004 0.004 
11 0.008 0.008 0.008 
10 °A 16 °A 16 - - 
9 0.030  

4 15 2.035 + 1.004 1.004 1.004 
14 1.016 1.016 0.001 0.001 
13 1.037 0 004 0.004 0.004 
12 0.009 0.009 0A09 
11 0 018 0.018 - - 
10 0.033 - 

3 15 1.020  1  M20 0.001 0.001 
14 0.005-  0.005-  0.005-  0.005 
13 0.012 °Al2 
12 0.025-  0.025 - 
11 0.043 - - 

2 15 0.007 0.007 0.007 
14 0.022 0.022 
13 /3.044 - - - 

A = 16B = 16 16 11022  1 1  A22 10.009 9.003 
15 10.041 9.019 8.008 7.003 
14 8.027 7.012 6.005-  8.005 
13 7.033 6.015 - 5.006 4.002 

12 6.037 5.016 4.006 3.002 
11 5.038 4.016 3.006 2.002 
10 4.037 3.015 -  2.005 - 2.005 
9 3.033 2.012 1.003 1.003 
8 2A27 1.008 1.008 0.001 
7 1.019 1.019 0.003 0.003 
6 1.041 0.009 0.009 _ 

5 0.022 0.022 - - 
15 16 11.043  10.018 9.007 8.002 

15 9.033 9.014 7.005 +  6.002 
14 8.044 7.019 6.008 5.003 
13 8.023 6.023 5.009 4.003 
12 5.024 5.024 4.009 3.003 
11 4.023 4.023 3.008 2.002 
10 4.049 3.020 2.006 1.001 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

9 3.043 2.016 1.004 1.004 
8 2.035-  1.010+  9.002 9.002 
7 1.023 1.023 9.004 9.004 
6 9.011 0.011 - - 
5 0.026 - - - 

14 16 10.037 9.014 8.005+  7.002 
15 8.025 +  7.010-  7.010-  6.003 
14 7.032 6.013 5.005-  5.005 - 
13 6.035 + 5.014 4.005 + 3.001 
12 5.035+  4.014 3.005-  3.005- 
11 4.033 3.012 2.004 2.004 
10 3.028 2.009 2.009 1.002 
9 2.021 2.021 1.006 9.001 
8 2.045 - 1.013 9.002 9.002 
7 1.030 9.006 9.006 - 
6 9.013 0.013 - 
5 9.031 - - 

13 16 9.030 8.011 7.004 7.004 
15 8.047 7.019 6.007 5.002 
14 6.023 6.023 5.008 4.003 
13 5.023 5.023 4.008 3.003 
12 4.022 4.022 3.007 2.002 
11 4.048 3.018 2.005+  1.001 
10 3.039 2.013 1.003 1.003 
9 2.029 1.008 1.008 9.001 
8 1.018 1.018 9.003 9.003 
7 1.038 0.007 0.007 - 
6 9.017 9.017 - 

5 0.037 - - 
12 16 8.024 8.024 7.008 6.002 

15 7.036 6.013 5.004 5.004 
14 6.040 5.015-  4.005 4.005 - 
13 5.039 4.014 3.004 3.004 
12 4.034 3.012 2.003 2.003 
11 3.027 2.008 2.008 1.002 
10 2.019 2.019 1.005 - 1.005 
9 2.040 1.011 9.002 
8 1.024 1.024 9.004 0.004 
7 1.048 9.010-  9.010 - - 
6 9.021 9.021 - 
5 9.044 - - - 

A - 16B = 11 16 7.019 7.019 6.006 5.002 
15 6.027 5.009 5.009 4.002 
14 5.027 4.009 4.009 3.002 
13 4.024 4.024 3.008 2.002 
12 3.019 3.019 2.005+  1.001 
11 3.041 2.013 1.003 1.003 
10 2.028 1.007 1.007 0.001 
9 1.016 1.016 0.002 0.002 
8 1.033 9.006 0.006 - 

717 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

7 0.013 0.013 
6 0.027 

10 16 7.046 6.014 5.004 5.004 
15 5.018 5.018 4.005+ 3.001 
14 4.018 4.018 3.005-  3.005- 
13 4.042 3.014 2.003 2.003 
12 3.032 2.009 2.009 1.002 
11 2.021 2.021 1.005 - 1.005 - 
10 2.042 1.011 0.002 0.002 
9 1.023 1.023 0.004 0.004 
8 1.045 - 0.008 0.008 - 
7 0.017 0.017 - 
6 0.035 - - - - 

9 16 6.037 5.010-  5.010-  4.002 
15 5.040 4.012 3.003 3.003 
14 4.034 3.010-  3.010-  2.002 
13 3.025+ 2.007 2.007 1.001 
12 2.016 2.016 1.003 1.003 
11 2.033  1.008 1.008 0.001 
10 1.017 1.017 0 002 0.002 
9 1.034 0.006 0M06 - 
8 0.012 0.012 - 
7 0.024 0.024 
6 0.045+ - 

8 16 5.o28 4.007 4.007 3.001 
15 4.028 3.007 3.007 2.001 
14 3.021 3.021 2.005 - 2.005 - 
13 3.047 2.013 1.002 1.002 
12 2.028 1.006 1.006 0.001 
11 1.014 1.014 0.002 0 002 
10 1.027 0.004 0.004 0 004 
9 0.009 0.009 0.009 - 
8 0.017 0.017 - - 
7 0.033 - - - 

7 16 4.020 4.020 3.004 3.004 
15 3.017 3.017 2.003 2.003 
14 3.045 2.011 1.002 1.002 
13 2.026 1.005 - 1.005 - 1.005 - 
12 1.012 1.012  0.001 0.001 
11 1.024 1.024 0M03 0.003 
10 1.045 - 0.007 0.007 - 
9 0.014 0.014 - 
8 0.026 
7 0.047 

6 16 3.013 3.013 2.002 2.002 
15 3.046 2.009 2.009 1.001 
14 2.025 1.004 1.004 1.004 
13 1.011 1.011 0.001 0.001 
12 1.023 1.023 0.003 0.003 
11 1.043 0.006 0.006 

- 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

A = 16B = 6 
10 
9 
8 

9.012 
9.023 
0.040  

9.012 
0.023 

5 16 3.048 2.008 2.008 1.001 
15 2.028 1.004 1.004 1.004 
14 1.011 1.011 0.001 0.001 
13 1.025 + 0.003 0.003 9.003 
12 1 .047 0.006 0.006 
11 9.012 9.012 _ 

10 9.023 9.023 
9 0.039  - - - 

4 16 2.032 1.004 1.004 1.004 
15 1.013 1.013 9.001 1.001 
14 1.032 9.003 9.003 9.003 
13 9.007 9.007 9.007 - 
12 0.014 9.014 - 
11 0.026 - - 
10 0.043 - 

3 16 1.018 1.018 9.001 0.001  
15 9.004 9.004 9.004 0.004 
14 0.010+ 0.010+ 
13 9.021 9.021 - 
12 0.036 - 

2 16 0.007 9.007 9.007 
15 9.020 9.020 - 
14 0.039 - - - 

A = 17 B = 17 17 12.022  1 2.022 11.009 10.004 
16 11.043 19.020 9.008 8.003 
15 9.029 9.013 7.005+ 6.002 
14 8.035+ 7.016 8.007 5.002 
13 7.040 6.018 5.007 4.003 
12 6.042 5.019 4.007 3.002 
11 5.042 4.018 3.007 2.002 
10 4.040 3.016 2.0o5+ 1.001 
9 3.035 + 2.013 1.003 1.003 
8 2.029 1.008 1.008 9.001 
7 1.020 1.020 0.004 9.004 
6 1.043 0.009 0.009 _ 

5 0.022 0.022  

16 17 12.044 11.018 10.007 9.003 
16 10.035 - 9.015 - 8.006 7.002 
15 9.046 8.021 7.009 6.003  
14 7.025+ 8.011 5.004 5.004 
13 8.027 5.011 4.004 4.004 
12 5.027 4.011 3.004 3.004 
11 4.025+ 3.009 3.009 2.003 
10 3.022 3.022 2.007 1.002 
9 
8 

3.046 
2.036 

2.017  

1.011 
1.004 
0.002 

1.004 
0.002 

7 1.024 1.024 0.005  - 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

6 
5 

0.011 

9.026 

0.011 

- - 
15 17 11038  1 0.015 - 9.006 8.002 

16 9.027 8.011 7.004 7.004 
15 8.035+ 7.015-  6.006 5.002 
14 7.040 6.017 5.006 4.002 
13 6.041 5.017 4.006 3.002 
12 5.030 4.016 3.005+ 2.001 
11 4.035+ 3.013 2.004 2.004 
10 3.029 2.010-  2.010-  1.002 
9 2.022 2.022 1.006 0.001 

A = 17 B = 15 8 2.046 1.014 9.002 9.002 
7 1.030 9.006 9.006 - 
6 9.014 9.014 

_ 

5 9.031 
- - 

14 17 10.032 9.012 8.004 8.004 
16 8.021 8.021 7.008 6.003 
15 7.026 6.010-  8.010-  5.003 
14 8.028 5.011 4.004 4.004 
13 5.027 4.010-  4.010-  3.003 
12 4.024 4.024 3.008 2.002 
11 4.049 3.019 2.006 1.001 
10 3.040 2.014 1.003 1.003 
9 2.029 1.008 1.008 9.001 
8 1.018 1.018 9.003 9.003 
7 1.038 0.007 9.007 - 
6 9.017 9.017 - - 
5 9.036 

- - 

13 17 9.026 8.009 8.009 7.003 
16 8.040 7.015 +  6.005 +  5.002 
15 7.045+ 8.018 5.006 4.002 
14 6.045+ 5.018 4.006 3.002 
13 5.042 4.016 3.005+ 2.001 
12 4.035 + 3.013 2.004 2.004 
11 3.028 2.009 2.009 1.002 
10 2.019 2.019 1.005-  1  .005 
9 2.040 1.011 0.002 0.003 

8 1.024 1.024 9.004 9.004 
7 1.047 9.010-  0.010-  - 
6 9.021 0.021 - - 
5 9.043 

- - 

12 17 8.021 8.021 7.007 6.003 

16 7.030 6.011 5.003 5.003 
15 8.033  5.012 4.004 4.004 

14 5.030 4.011 3.003 3.003 
13 4.026 3.008 3.008 2.003  

12 3.020 3.020 2.006 1.001 
11 3.041 2.013 1.003 1.003 
10 2.028 1.007 1.007 9.001 

9 1.016 1.016 9.002 0.003 

- 
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TABLE J (continued) 

Probability 

a 	0.05 	0.025 	0.01 	 0.005 

8 

7 

6 
11 	17 

16 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 

10 	17 
16 
15 
14 
13 
12 

A = 17 B = 10 	11 
10 
9 
8 
7 
6 

9 	17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 

8 	17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 

7 	17 

	

1.032 	0.006 	 0.006 

	

0.012 	0.012 

	

0.026 	- 	 - 	 - 

	

7.016 	7.016 	 6.005 - 	6.005 - 

	

6.022 	6.022 	 5.007 	 4.002 

	

5.022 	5.022 	 4.007 	 3.002 

	

4.019 	4.019 	 3.006 	 2.001 

	

4.042 	3.014 	 2.004 	 2.004 

	

3.031 	2.009 	 2.009 	 1.002 

	

2.020 	2.020 	 1.005- 	1.005 - 

	

2.040 	1.011 	 0.001 	 0.001 

	

1.022 	1.022 	 0.004 	 0.004 

	

1.042 	0.008 	 0.008 	- 

	

0.016 	0.016 	- 	 - 

	

0.033 	- 	 - 	 - 

	

7.041 	6.012 	 5.003 	 5.003 

	

6.047 	5.015+ 	4.004 	 4.004 

	

3.043 	4.014 	 3.004 	 3.004 

	

4.034 	3.010+ 	2.002 	 2.002 

	

3.024 	3.024 	 2.007 	 1.001 

	

3.049 	2.013  + 	1.003 	 1.003 

	

2.031 	1.007 	 1.007 	 0.001 

	

1.016 	1.016 	 0.002 	 0.002 
1.031  0.005+ 	0.005+ 	- 

	

0.011 	0.011  

	

0.022 	0.022 

	

0.042 	- 	 - 	 - 

	

6.032 	5.008 	 5.008 	 4.002 

	

5.034 	4.010- 	4.010- 	3.002 

	

4.028 	3.008 	 3.008 	 2.002 

	

3.020 	3.020 	 2.005 - 	2.005 - 

	

3.042 	2.012 	 1.002 	 1.002 

	

2.025 + 	1.006 	 1.006 	 0.001 

	

2.048 	1.012 	 0.002 	 0.002 

	

1.024 	1.024 	 0.004 	 0.004 

	

1.045 - 	0.008 	 0.008 	- 

	

0.016 	0.016 	- 	 - 

	

0.030 	- 	 - 	 - 

	

5.o24 	5.024 	 4.006 	 3.001 

	

4.023 	4.023 	 3.006 	 2.001 

	

3.017 	3.017 	 2.004 	 2.004 

	

3.039 	2.010- 	2.010- 	1.002 

	

2.022 	2.022 	 1.004 	 1.004 

	

2.043 	1.010 - 	1.010 - 	0.001 

	

1.020 	1.020 	 0.003 	 0.003 

	

1.038 	0.006 	 0.006 	- 

	

0.012 	0.012 	- 	 - 

	

0.022 	0.022 	- 	 - 

	

0.040 	- 	 - 	 - 

4.o17 4.017 	 3.003 	 3.003 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

16 3.014 3.014 2.003 2.003 
15 3.038 2.009 2.009 1.001 
14 2.021 2.021 1.004 1.004 
13 2.042 1.009 1.009 9.001 
12 1.018 1.018 0.002 0.002 
11 
10 

1.034 

9.010 - 

0.005-  0.005-  

0.010- 

0.005-

0.010-  
....._ 

9 9.019 9.019 
8 0.033 

6 17 3.011 3.011 2.002 2.002 
16 3.040 2.008 2.008 1.001 
15 2.021 2.021 1.003 1.003 
14 2.045 ± 1.009 1.009 9.001 
13 1.018 1.018 9.002 9.002 
12 1  .035 - 0.005-  0.005-  9.005 - 
11 9.009 9.009 9.009 - 
10 0.017 9.017 _ 

9 9.030 _ 

8 9.050 - _ 

5 17 3.043 2.006 2.006 1.001 
16 2.024 2.024 1.003 1.003 
15 1.009 1.009 1.009 9.001 
14 1.021 1.021 0.002 9.002 
13 1.039 0.005-  0.005-  9.005 - 
12 9.010 - 0.010-  9.010 - _ 

11 9.018 9.018 - - 
10 0.030 - - - 
9 9.049 - - - 

4 17 2.029 1.003 1.003 1.003 
16 1.011 1.011 0.001 9.001 
15 1.028 9.003 0.003 9.003 
14 9.006 0.006 9.006 

_ 

A= 17 B = 4 13 9.012 9.012 
_ 

12 9.021 9.021 
11 0.035+ - - - 

3 17 1.016 1.016 9.001 9.001 
16 1.046 9.004 0.004 9.004 
15 9.009 9.009 9.009 
14 9.018 9.018 - 
13 0.031 

- - - 
12 0.049 - - 

2 17 0.006 9.006 9.006 
16 9.018 9.018 
15 0.035+ - - - 

A = 18 B = 18 18 13.023 13.023 12.010 - 11.004 
17 12.044 11.020 10.009 9.004 
16 10.030 9.014 8.006 7.002 
15 9.038 9.018 7.008 8.003 
14 8.043 7.020 6.009 5.003 
13 7.046 6.022 5.009 4.003 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

12 8.047 5.022 4.009 3.003 
I1 5.046 4.020 3.008 2.002 
10 4.043 3.018 2.006 1.001 
9 3.038 2.014 1.004 1.004 
8 2.030 1.009 1.009 0.001 
7 1.020 1.020 0.004 0.004 
6 1.044 0.010-  0.010-  - 
5 0.023 0.023 - - 

17 18 13.045  + 12.019 11.008 10.003  
17 11036 10.016 9.007 8.002 
16 10.049 9.023 8.010-  7.004 
15 8.028 7.012 6.005 - 6.005 - 
14 7.030 6.013 5.005 + 4.002  
13 6.031 5.013 4.005 - 4.005 
12 5.030 4.012 3.004 3.004 
11 4.028 3.010+ 2.003 2.003 
10 3.023 3.023 2.008 1.002 
9 3.047 2.018 1  .005 - 
8 2.037  1.011 0.002 0.002 
7 1.025 - 1.025 - 0.005-  0.005 - 
6 0.011 0.011 - - 
5 0.026 - - - 

16 18 12.039 11.016 10.006 9.002 
17 10029 9.012 8.005-  8.005 - 
16 9.038 8.017 7.007 6.002 
15 8.043 7.019 6.008 5.003 
14 7.046 6.020 5.008 4.003 
13 6.045+ 5.020 4.007 3.002 
12 5.042 4.018 3.006 2.002 
11 4.037  3.015-  2.004 2.004 
10 3.031 2.011 1.003  1.003 
9 2.023 2.023 1.006 0.001 
8 2.046 1.014 0.002 0.002 
7 1.030 0.006 0.006  - 
6 0.014 0.014 - - 
5 0.031 - - - 

15 18 11033  1 0.013  9.005-  9.005 - 
17 9.023 9.023 8.009 7.003 
16 8.029 7.012 6.004 6.004 
15 7.031 6.013 5.005-  5.005 - 
14 6.031 5.013 4.004 4.004  
13 5.029 4.011 3.004 3.004 

A = 18 B = 15 	12 4.025 + 3.009 3.009 2.003 
11 3.020 3.020 2.006 1.001 
10 3.041 2.014 1.004 1.004 
9 2.030 1.008 1.008 0.001 
8 1.018 1.018 0.003 0.003  
7 1.038 0.007  0.007  - 
6 0.017 0.017 - - 
5 0.036 - - - 

723 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

14 18 10 028 9.010-  9.010-  8.003 
17 9.043 8.017 7.006 6.002 
16 8.050 - 7.021 6.008 5.003 
15 6.022 6.022 5.008 4.003 
14 6.049 5.020 4.007 3.002 
13 5.044 4.017 3.006 2.001 
12 4.037  3.013 2.004 2.004 
11 3.028 2.009 2.009 1.002 
10 2.020 2.020 1.005 - 1.005 
9 2.039 1.011 0.002 9.002 
8 1.024 1.024 9.004 0.004 
7 1.047 9.009 9.009 - 
6 0.020 0.020 - 
5 0.043 - - 

13 18 9.023 9.023 8.008 7.002 
17 8.034 7.012 6.004 6.004 
16 7.037 6.014 5.005-  5.005 - 
15 6.036 5.014 4.004 4.004 
14 5.032 4.012 3.004 3.004 
13 4.027 3.009 3.009 2.002 
12 3.020 3.020 2.006 1.001 
11 3.040 2.013 1.003 1.003 
10 2.027 1.007 1.007 0.001 
9 1  .015 ± 1  M15 + 9.002 9.002 
8 1.031 9.006 9.006 - 
7 9.012 9.012 - 
6 0.025+  _ - 

12 18 8.018 8.018 7.006 6.002 
17 7.026 6.009 6.009 5.003 
16 6.027 5.009 5.009 4.003 
15 5.024 5.024 4.008 3.002 
14 4.020 4.020 3.006 2.001 
13 4.042 3.014 2.004 2.004 
12 3.030 2.009 2.009 1.002 
11 2.019 2.019 1.005 - 1.005 
10 2.038 1.010 ± 9.001 9.001 
9 1.021 1.021 9.003 9.003 
8 1.040 9.007 9.007 - 
7 0.016 9.016 - 
6 0.031 - - - 

11 18 8.045 + 7.014 6.004 6.004 
17 6.018 6.018 5.006 4.001 
16 5.018 5.018 4.005+  3.001 
15 5.043 4.015 - 3.004 3.004 
14 4.033 3.011 2.003 2.003 
13 3.023 3.023 2.007 1.001 
12 3.046 2.014 1.003 1.003 
11 2.029 1.007 1.007 9.001 
10 1  .015 - 1 .015 - 9.002 9.002 
9 1.029 9.005 - 9.005 - 9.005 - 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

8 0.01o+ 0.010+  
7 0.020 0.020 
6 0.039 

A = 18 B = 10 18 7.037 6.010+  5.003 5.003 
17 6.041 5.013 4.003 4.003 
16 5.036 4.011 3.003 3.003 
15 4.028 3.008 3.008 2.002 
14 3.019 3.019 2.005 - 2.005- 
13 3.039 2 .011 1.002 1.002 
12 2.023 2.023 1.005+  0.001 
11 2.043 1.011 0.001 0.001 
10 1.022 1.022 0.003 0.003 
9 1.040 0.007 0.007 
8 0.014 0.014 
7 0.027 
6 0.049 

9 18 6.029 5.007 5.007 4.002 
17 5.030 4.008 4.008 3.002 
16 4.023 4.023 3.006 2.001 
15 3.016 3.016 2.004 2.004 
14 3.034 2.009 2.009 1.002 
13 2.019 2.019 1.004 1.004 
12 2.037 1.009 1.009 0.001 
11 1.018  1.018 0.002 0.002 
10 1.033 0.005 + 0.005 + 
9 0.01o+ 0.010+  
8 0.020 0.020 
7 0.036 

8 18 5.022 5.022 4.005 - 4.005- 
17 4.020 4.020 3.004 3.004 
16 3.014 3.014 2.003 2.003 
15 3.032 2.008 2.008 1.001 
14 2.017 2.017 1.003 1.003 
13 2.034 1.007 1.007 0.001 
12 1.015+  1.015+  0.002 0.002 
11 1.028 0.004 0.004 0.004 
10 1.049 0.008 0.008 
9 0.016 0.016 
8 0.028 
7 0.048 

7 18 4.015+ 4.015+  3.003 3.003 
17 3.012 3.012 2.002 2.002 
16 3.032 2.007 2.007 1.001 
15 2.017 2.017 1.003 1.003 
14 2.034 1.007 1.007 0.001 
13 1.014 1.014 0.002 0.002 
12 1.027 0.004 0.004 0.004 
11 1.046 0.007 0.007 - 
10 0.013 0.013 - - 
9 0.024 0.024 

725 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

8 0.040 - - - 
6 18 3.010-   3.010 - 3.010-  2.001 

17 3.035+ 2.006 2.006 1.001 
16 2.018 2.018 1.003 1.003 
15 2.038 1.007 1.007 0.001 
14 1.015-  1.015-  0.002 0.002 
13 1.028 0.003 0.003 0.003 
12 1.048 0.007 0.007 - 
11 0.013 9.013 - - 
10 0.022 0.022 - 
9 0.037 - - 

5 18 3.040 2.006 2.006 1.001 
17 2.021 2.021 1.003 1.003 
16 2.048 1.008 1.008 9.001 

A = 18 B = 5 15 1.017 1.017 0.002 0.002 
14 1.033 0.004 0.004 0.004 
13 0.007 9.007 0.007 - 
12 0.014 0.014 - 
11 0.024 0.024 - 
10 0.038 - - - 

4 18 2.026 1.003 1.003 1.003 
17 1  .010 - 1.010-  1.010-  0.001 
16 1.024 1.024 0.002 0.002 
15 1.046 0.005 - 9.005 - 9.005 - 
14 0.010-  0.010-  0.010-  - 
13 0.017 0.017 - 
12 0.029 - - - 
11 0.045+  _ _ - 

3 18 1.014 1.014 0.001 0.001 
17 1.041 0.003 0.003 9.003 
16 0.008 0.008 0.008 
15 0.015+ 0.015+ - 
14 0.026 - 
13 0.042 - - 

2 18 0.005+ 0.005+ 0.005+ - 

17 0.016 0.016 - 
16 0.032 - - - 

A = 19 B = 19 19 14.023 14.023 13.010 - 12.004 
18 13.045 - 1 2.021 11.009 10.004 
17 11.031 10.015 - 9.006 8.003 
16 10.039 9.019 8.009 7.003 
15 9.046 8.022 6.004 6.004 
14 8.050-  7.024 5.004 5.004 
13 8.025 + 5.011 4.004 4.004 
12 5.024 5.024 3.003 3.003 
11 5.050-  4.022 3.009 2.003 
10 4.046 3.019 2.006 1.002 
9 3.039 2.015 - 1.004 1.004 
8 2.031 1.009 1.009 0.002 
7 1.021 1.021 0.004  0.004 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

6 1.045 - 0.010 - 0.010-  
5 0.023 0.023 

18 19 14.046 13.020 12.008 11.003 
18 12.037 11.017 10 007 9.003 
17 1 0.024 10.024 8.004 8.004 
16 9.030 8.014 7.006 6.002 
15 8.033  7.015+ 6.006 5.002 
14 7.035+ 6.016 5.006 4.002 
13 6.035  - 5.015+ 4.006 3.002 
12 
11 

5.033 
4.030 

4.014 
3.011 

3.005-  
2 004 

3.005 
2.004 

10 3.025 - 3.025-  2.008 1.002 
9 3.049 2.019 1.005+ 0.001 
8 2.038 1.012 0.002 0.002 
7 1  .025 + 0.005 - 0.005 - 0.005 
6 0.012 0.012 
5 0.027 

17 19 13.040 12.016 11.006 10.002 
18 11030 10.013  9.005+ 8.002 
17 10.040 9.018 8.008 7.003 
16 9.047 8.022 7.009 6.003 
15 8.050 - 7.023 6.010 - 5.004 
14 6.023 6.023 5.010-  4.003 
13 6.049 5.022 4.008 3.003 

A = 19 B = 17 12 5.045 - 4.019 3.007 2.002 
11 4.039 3.015+ 2.005-  2.005 
10 3.032 2.011  1.003 1.003 
9 2.024 2.024 1.007 0.001 
8 2.047 1.015 - 0.002 0.002 
7 1.031 0.006 0.006  

6 0.014 0.014 - - 
5 0.031 - - - 

16 19 12.035 - 1 1.013  10.005- 10.005  
18 1 0.024 1 0.024 9.010 - 8.004 
17 9.031 8.013 7.005 + 6.002 
16 8.035-  7.015+ 6.006 5.002 
15 7.036 6.015+ 5.006 4.002 
14 6.034 5.914 4.005+ 3.002 
13 5.031 4.013 3.004 3.004 
12 4.027 3.010-  3.010-  2.003 
11 3.021 3.021 2.007 1.002 
10 3.042 2.015 - 1.004 1.004 
9 2.030 1.009 1.009 0.001 
8 1.018 1.018 0.003 0.003 
7 1.037 0.007 0.007 _ 
6 0.017 0.017  - - 
5 0.036 - 

15 19 11.029  1 0.011 9.004 9.004 
18 1 0.046 9.019 8.007 7.002 
17 8.023 8.023 7.009 6.003 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

16 7.025-  7.025 - 6.010-  5.003 
15 6.024 6.024 5.009 4.003 
14 5.022 5.022 4.008 3.002 
13 5.045+  4.018 3.006 2.002 
12 4.037 3.014 2.004 2.004 
11 3.029 2.009 2.009 1.002 
10 2.020 2.020 1.005 + 0.001 
9 2.039 1.011 0.002 0.002 
8 1.023 1.023 9.004 9.004 
7 1.046 9.009 9.009 - 
6 0.020 9.020 - 
5 0.042 - - 

_ 

14 19 1 9A24 19.024 9.008 8.003 
18 9.037 8.014 7.005 - 7.005 - 
17 8.042 7.017 6.006 5.002 
16 7.042 6.017 5.006 4.002 
15 6.039 5.015 +  4.005 +  3.001 
14 5.034 4.013 3.004 3.004 
13 4.027 3.009 3.009 2.003 
12 3.020 3.020 2.006 1.001 
11 3.040 2.013 1.003 1.003 
10 2.027 1.007 1.007 0.001 
9 1.015-  1.015-  0.002 0.002 
8 1.030 0.005+  0.005+  - 
7 9.012 0.012 - - 
6 0.024 0.024 - 
5 0.049 - - - 

13 19 9.020 9.020 8.006 7.002 
18 8.029 7.010+  6.003 6.003 
17 7.031 6.011 5.004 5.004 
16 6.029 5.011 4.003 4.003 
15 5.025 + 4.009 4.009 3.003 
14 4.020 4.020 3.006 2.002 
13 4.041 3.015-  2.004 2.004 

A = 19 B = 13 12 3.029 2.009 2.009 1.002 
11 2.019 2.019 1  .005 - 1.005 - 
10 2.036 1  .010 - 1  .010 - 0.001 
9 1.020 1.020 0.003 0.003 
8 1.038 0.007 0.007 - 
7 0.015-   9.015 - - - 
6 9.030 - - 

12 19 9.049 8.016 7.005 - 7.005 - 
18 7.022 7.022 6.007 5.002 
17 6.022 6.022 5.007 4.002 
16 5.019 5.019 4.006 3.002 
15 5.042 4.015+ 3.004 3.004 
14 4.032 3.011 2.003 2.003 
13 3.023 3.023 2.006 1.001 
12 3.043 2.014 1.003 1.003 
11 2.027 1.007 1.007 9.001 
10 2.050-  1.014 9.002 9.002 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

9 1.027 0.005 - 8.005 - ()MOS - 
8 1.050-   8.010 - 8.010 - _ 

7 0.019  8.019 
6 0.037  - - - 

11 19 8.041 7.012 6.003 6.003 
18 7.047 6.016 5.004 5.004 
17 6.043 5.015-  4.004 4.004 
16 5.035 + 4.012 3.003 3.003 
15 4.027 3.008 3.008 2.002 
14 3.018 3.018 2.005  - 2.005  - 
13 3.035 + 2.010+ 1.002 1.002 

12 2.021 2.021 1.005 - 1.005 - 
11 2.040 1.010 + 0.001 8.001 
10 1.020 1.020 8.003 0.003 
9 1.037  8.006 8.006 _ 

8 8.013 0.013 
 

7 0.025 - 8.025 - 
6 8.046 - - - 

10 19 7.033 6.009 6.009 5.002 
18 6.036 5.011 4.003 4.003 

17 5.030 4.009 4.009 3.002 
16 4.022 4.022 3.006 2.001 
15 4.047 3.015-  2.004 2.004 
14 3.030 2.008 2.008 1.002 
13 2.017 2.017 1.004 1.004 
12 2.033 1.008 1.008 °MO 1 
11 1.016 1.016 8.002 0.002 
10 1.029 8.005 - 8.005 - 8.005 - 
9 8.009 8.009 0.009  

8 0.018  8.018  

7 0.032 - - - 
9 19 6.026 5.006 5.006 4.001 

18 5.026 4.007 4.007 3.001 
17 4.020 4.020 3.005 - 3.005 - 
16 4.044 3.013 2.003 2.003 
15 3.028 2.007 2.007 1.001 
14 2.015 - 2.015-  1.003 1.003 
13 2.029 1.006 1.006 0.001 
12 1.013 1.013 8.002 0.002  
11 1.024 1.024 0.004  0.004  
10 1.042 8.007 0.007 - 
9 0.013 0.013 

_ 

8 8.024 0.024 
_ 

7 8.043 - - - 
A = 19 B = 8 19 5.019 5.019 4.004 4.004  

18 4.017 4.917 3.004 3.004 
17 4.044  3.011 2.002 2.002 
16 3.027 2.006 2.006 1.001  
15 2.013 2.013 1.002 1.002 
14 2.027 1.006 1.006 0.001 
13 2.049 1.011 8.001 0.001 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

12 1.021 1.021 0.003 0.003 
11 1.038 0.006 0.006 - 
10 0.011 0.011 - 
9 0.020 0.020 - 
8 0.034 - - - 

7 19 4.013 4.013  3.002 3.002 
18 4.047 3.010+ 2.002 2.002 
17 3.028 2.006 2.006 1.001 
16 2.014 2.014 1.002 1.002 
15 2.028 1.005 + 1.005 + 0.001 
14 1.011 1.011 0.001 0.001 
13 1.021 1.021 0.003 0.003 
12 1.037  0.005+ 0.005+ - 
11 0.010 - 0.010 - 0.010 - 
10 0.017 0.017  - 
9 0.030 - 
8 0.048 

6 19 4.050-  3.009 3.009 2.001 
18 3.031 2.005+ 2.005+ 1.001 
17 2.015+ 2.015+ 1.002 1.002 
16 2.032 1.006 1.006 0.000 
15 1.012 1.012 0.001 0.001 
14 1.023 1.023 0.003 0.003 
13 1.039 0.005+ 0.005+ - 
12 0.010-   0.010 - 0.010 - 
11 0.017 0.017 - 
10 0.028 - 

9 0.045 + - - - 
5 19 3.036 2.005-  2.005 - 2.005 - 

18 2.018 2.018 1.002 1.002 
17 2.042 1.006 1.006 0.000 
16 1.014 1.014 0.001 0.001 
15 1.028 0.003 0.003 0.003 
14 1.047 0.006 0.006 - 
13 0.011 0.011 - 
12 0.019 0.019 
11 0.030 - 
10 0.047 - - - 

4 19 2.024 2.024 1.002 1.002 
18 1.009 1.009 1.009 0.001 
17 1.021 1.021 0.002 0.002 
16 1.040 0.004 0.004 0.004  

15 0.008 0.008 0.008 - 
14 0.014 0.014 - 
13 0.024 0.024 
12 0.037  - - - 

3 19 1.013  1.013 0.001 0.001 
18 1.038  0.003 0.003  0.003 
17 0.006 0.006 0.006 - 
16 0.013 0.013 - 
15 0.023 °M23 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

2 

A = 19 B 	2 

14 
19 
18 
17 
16 

0036 
0.005 - 
0014 
0.029 
0.048 

- 

0005-  
0.014 
- 
- 

- 

0005-  
- 

- 

- 

0.0 
- 

- 
A = 20 B = 20 20 15.024 15.024 10004 10004 

19 14.048 13.022 12.010-  11.004 
18 12.032  1 1.015 + 10.007 9.003 
17 11.041 10.020 9.009 8.004 
16 1  0048 9.024 7.005 - 7.005 - 
15 8.027 7.012 6.005+ 5.002 
14 7.028 6.013 5.0o5+ 4.002  
13 6.028 5.012 4.005 4.005-  
12 5.027 4.011 3.004 3.004 
11 4.024 4.024 0009 2.003 
10 4.048  3.020 2.007  1.002 
9 
8 

3.041 
2.032 

2.015+ 
1.010 - 

1.004 
1.010 - 

1.004  

0002  
7 1.022 1.022 0.004  0004  
6 1.046 0.010+ - - 
5 0.024 0.024 - 

19 20 15.047 14.020 13.008  12.003  
19 10039 12.018 11.008 10.003 
18 11.026 10.012 9.005 - p.005- 
17 10.032  9.015-  8.006 7.002 
16 9.036 8.017 7.007 6.003  
15 8.038 7.018 6.008 5.003 
14 7.039 6.018 5.007 4.003  
13 6.038 5.017 4.007 3.002 
12 5.035+ 4.015+ 3.005+ 2.002  
11 4.031 3.012 2.004  2.004  
10 3.026 2.009 2.009  1.002 
9 2.019 2.019 1.005 + 0.001 
8 2.039  1.012 0002 0.002 
7 1.026 0005+ 0.005+ - 
6 0.012 0.012 - 
5 0.027 - - - 

18 20 14.041 13.017 12.037  11.003 
19 12.032 11.014 10006 9.002 
18 11.043 10020 9.008 8.003 
17 10.050-  9.024 7.004 7.004 
16 8.026 7.011 
15 7.027 6o12 5.004 5.004 
14 6.026 5.011 4.004 4.004 
13 5.024 5.024 4.009 3.003 
12 5.047 4.020 3.007 2.002  
11 4.041 3.016 2.005+ 1.001 
10 3.033 2.012 1.003 1.003 
9 2.024 2.024 1.007 0.001 

8 2.048  1.015 - 0003 0003 
7 1.031 0008  0.006 - 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

6 9.014 9.014 - 
5 0.031 - 

17 20 13036  12.014 11.005 + 10.002 
19 11026 10.011  9.004 9.004 
18 10.034 9.015-  8.006 7.002 
17 9.038 8.017 7.007 6.003 
16 8.040 7.018 6.007 5.003 
15 7.039 6.017 5.007 4.002 
14 6.037  5.016 4.006 3.002 
13 5.033 4.013 3.005-  3.005-  
12 4.028 3.010+ 2.003 2.003 
11 3.022 3.022 2.007 1.002 

A = 20 B = 17 10 3.042 2.015+ 1.004 1.004 
9 2.031 1.009 1.009 9.001 
8 1.019 1.019 9.003 9.003 
7 1.037  9.008 9.008 - 
6 0.017 9.017 - 
5 0.036 - - - 

16 20 12.031  1 1.012 10.004 10.004 
19 1 1.049  10.021 9.008 8.003 
18 9.026 8.011 7.004 7.004 
17 8.028 7.012 6.004 6.004 
16 7.028 6.012 5.004 5.004 
15 6.026 5.011 4.004 4.004 
14 5.023 5.023 4.009 3.003 
13 5.046 4.010 3.007 2.002 
12 4.038 3.014 2.004 2.004 
11 3.029 2.010 - 2.010 - 1.002 
10 2.020 2.020 1.005 + 0.001 
9 2.039  1.011 9.002 0.002 
8 1.023 1.023 0.004  0.004 
7 1.045+ 9.009 9.009 - 
6 0.020 9.020 - 
5 0.041 - - 

15 20 11.026  10.009  10.009 9.003 
19 10.040  9.016 8.006 7.002 
18 9.046 8.019 7.007 6.002 
17 8.047 7.020 6.008 5.002 
16 7.045-  6.019 5.007 4.002 
15 6.040 5.017 4.006 3.002 
14 5.034 4.013 3.004 3.004 
13 4.028 3.010-  3.010-  2.003 
12 3.020 3.020 2.006 1.001 
11 3.039 2.013 1.003 1.003 
10 2.026 1.007 1.007 9.001 
9 2.049 1.015 - 0.002 0.002 
8 1.029 0.005+ 0.005+ - 
7 0.012 9.012 - 
6 0.024 0.024 
5 0.048  - - - 

14 20 10.022  1 9.022 9.007 8.002 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

19 9.032 8.012 7.004 7.004 
18 8.035+  7.014 6.005-  6.005 
17 7.035 6.013 5.005 - 5.005 
16 6.031 5.012 4.004 4.004 
15 5.026 4.009 4.000 3.003 
14 4.020 4.020 3.007 2.002 
13 4.040 3.015 - 2.004 2.004 
12 3.029 2.009 2.009 1.002 
11 2.018 2.018 1.005 - 1.005 
10 2.035+  1  .010 - 1.010 - 9.001 
9 1  .019 1.019 9.003 9.003 
8 1.037 0.007 9.007 
7 0.014 9.014 
6 9.029 

13 20 9.017 6.017 8.005+  7.002 
19 8.025 8.025 - 7.008 6.003 
18 7.026 6.009 6.009 5.003 
17 6.024 6.024 5.008 4.002 
16 5.020 5.020 4.007 3.002 
15 5.041 4.015+  3.005 - 3.005 
14 4.031 3.011 2.003 2.003 

A = 20 B = 13 13 3.022 3.022 2.006 1.001 
12 3.041 2.013 1.003 1.003 
11 2.026 1.007 1.007 9.001 
10 2.047 1.013 9.002 9.002 
9 1.026 9.004 9.004 9.004 
8 1.047 9.009 9.009 
7 0.018 9.018 
6 0.035 - 

12 20 9.044 8.014 7.004 7.004 
19 7.0 I 9 7.019 6.006 5.002 
18 6.018 6.018 5.006 4.002 
17 6.043 5.016 4.005 - 4.005 
16 5.034 4.012 3.003 3.003 
15 4.o25 +  3.00s 3.008 2.002 
14 4.049 3.017 2.005 - 2.005 
13 3.033 2.010 2.010 - 1.002 
12 2.020 2.020 1.005 - 1.005 
11 2.036 1.009 1  .009 9.001 
10 1.018 1.018 9.003 9.003 
9 1.034 9.006 9.006 
8 9.012 9.012 
7 9.023 9.023 
6 9.043 

11 20 8.037 7.010+  6.003 6.003 
19 7.042 6.013 5.004 5.004 
18 8.037  5.012 4.003 4.003 
17 5.029 4.000 4.000 3.002 
16 4.021 4.021 3.006 2.001 
15 4.042 3.014 2.003 2.003 
14 3.028 2.008 2.008 1.001 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

13 2.016 2.016 1.003 1.003 
12 2.029 1.007 1.007 0.001 
11 1 .014 1.014 0.002 0.002 
10 1.026 0.004 0.004 0.004 
9 1.046 0.008 0.008 - 
8 0.016 0.016 - 
7 0.029 - - - 

10 20 7.030 6.008 6.008 5.,002 
19 6.031 5.009 5.009 4.002 
18 5.026 4.007 4.007 3.002 
17 4.o18 4.018 3.005-  3.005 - 
16 4.039 3.012 2.003 2.003 
15 3.024 3.024 2.006 1.001 
14 3.045+  2.013 1.003 1.003 
13 2.025 + 1 .006 1.006 0.001 
12 2.045 - 1 .011 0.001 0.001 
11 1.021 1 .021 0.003 0.003 
10 1.037 0.006 0.006 - 
9 0.012 0.012 - 
8 0.022 0.022 - 
7 0.038 - - - 

9 20 6.023 6.023 5.005+  4.001 
19 5.022 5.022 4.005+  3.001 
18 4.016 4.016 3.004 3.004 
17 4.937 3.010 +  2.002 2.002 
16 3.022 3.022 2.005+  1.001 
15 3.043 2.012 1.002 1.002 
14 2.023 2.023 1.005 - 1.005 
13 2.041 1.009 1.009 0.001 
12 1.018 1.018 0.002 0.002 
11 1.032 0.005 - 0.005 -  0.005 - 

A = 20 B = 9 10 0.009 0.009 0.009 - 
9 0.017 0.017 - - 
8 0.029 - 

7 0.959-  
8 20 5.o17 5.017 4.003 4.003 

19 4.015-  4.015 - 3.003 3.003 
18 4.038 3.009 3.009 2.002 
17 3.022 3.022 2.005 - 2.005- 
16 3.044 2.011 1  .002 1.002 
15 2.022 2.022 1.004 1.004 

14 2.040 1.009 1.009 0.001 
13 1.016 1.016 0.002 0.002 
12 1.029 0.004 0.004 0.004 
11 1.048 0.008 °M08 
10 0.014 0.014 
9 0.024 0.024 
8 0.041 

7 20 4.012 4.012 3.002 3.002 
19 4.042 3.009 3.009 2.001 
18 3.024 3.024 2.005 2.005- 
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TABLE J (continued) 

Probability 

a 0.05 0.025 0.01 0.005 

17 3.050-  2.011 1.002 1.002 
16 2.023 2.023 1.004 1.004 
15 2.043 1.009 1.009 0.001  
14 1.016 1.016 0.002  0.002  
13 1.029 0.004  0.004  0.004  
12 1.048 0.007 0.007  - 
11 0.013 0.013 - - 
10 0.022 0.022 - - 
9 0.036 - - - 

6 20 4.o46 3.008 3.008 2.001  
19 3.028 2.005-  2.005 - 2.005  - 
18 2.013 2.013 1.002 1.002 
17 2.028 1.004 1.004 1.004 
16 1.010-  1 .010  - 1 .010  - 0.001 
15 1.018 1.018 0.002  0.002  
14 1.032 0.004  0.004  0.004  
13 0.007 0.007  0.007  - 
12 0.013 0.013 - 
11 0.022 0.022 
10 0.035-  - - - 

5 20 3.033 2.004  2.004  2.004  
19 2.016 2.016 1.002 1.002 
18 2.038  1.005 + 1.005 + 0 000 
17 1.012 1.012 0.001  0.001 
16 1.023 1.023 0.002  0.002  
15 1.040 0.005-  0.005-  0.005 
14 0.009  0.009  0.009  - 
13 0.015 - 0.015  - - 
12 0.024 0.024 - - 
11 0.038 - - - 

4 20 2.022 2.022 1.002 1.002 
19 1.008 1.008 1.008 0.000 
18 1.018 1.018 0.001  0.001  
17 1  .035 + 0.003  0.003  0.003  
16 0.007  0.007  0.007 - 
15 0.012 0.012 - - 
14 0.020 0.020 
13 0.031 - - - 
12 0.047 - - - 

3 20 1.012 1.012 0.001  0.001  
19 1.034 °AM 0.002  0.002  

A = 20 B = 3 18 0.006  0.006  0.006  - 
17 0.011 0.011  - - 
16 0.020 0.020 - - 
15 0.032 - - - 
14 0.047 - 

2 20 0.  0.004  0.004  0.004  
19 0.013  0.013 - - 
18 0.026 - - - 
17 0.043 - - - 

1 20 0.048 - - - 
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TABLE K Probability Levels for the Wilcoxon Signed Rank Test 

n = 5 n = 8 n = 10 n = 11 n = 12 n = 13 

T P T P T P T P T P T P 
°0 .0313 0 .0039 0 .0010 0 .0005 0 .0002 0 .0001 

1 .0625 1 .0078 1 .0020 1 .0010 1 .0005 1 .0002 
2 .0938 2 .0117 2 .0029 2 .0015 2 .0007 2 .0004 
3 .1563 3 .0195 3 .0049 3 .0024 3 .0012 3 .0006 

4 .2188 4 .0273 4 .0068 4 .0034 4 .0017 4 .0009 
5 .3125 a5 .0391 5 .0098 5 .0049 5 .0024 5 .0012 
6 .4063 6 .0547 6 .0137 6 .0068 6 .0034 6 .0017 
7 .5000 7 .0742 7 .0186 7 .0093 7 .0046 7 .0023 

8 .0977 8 .0244 8 .0122 8 .0061 8 .0031 

n= 6 9 .1250 9 .0322 9 .0161 9 .0081 9 .0040 

0 .0156 10 .1563 '10 .0420 10 .0210 10 .0105 10 .0052 
1 .0313 11 .1914 11 .0527 11 .0269 11 .0134 11 .0067 

a 2 .0469 12 .2305 12 .0654 12 .0337 12 .0171 12 .0085 
3 .0781 13 .2734 13 .0801 °13 .0415 13 .0212 13 .0107 

4 .1094 14 .3203 14 .0967 14 .0508 14 .0261 14 .0133 
5 .1563 15 .3711 15 .1162 15 .0615 15 .0320 15 .0164 
6 .2188 16 .4219 16 .1377 16 .0737 16 .0386 16 .0199 
7 .2813 17 .4727 17 .1611 17 .0874 a17 .0461 17 .0239 
8 .3438 18 .5273 18 .1875 18 .1030 18 .0549 18 .0287 

9 .4219 n = 9 19 .2158 19 .1201 19 .0647 19 .0341 

10 .5000 0 .0020 20 .2461 20 .1392 20 .0757 20 .0402 
1 .0039 21 .2783 21 .1602 21 .0881 '21 .0471 

n = 7 2 .0059 22 .3125 22 .1826 22 .1018 22 .0549 

0 .0078 3 .0098 23 .3477 23 .2065 23 .1167 23 .0636 

1 .0156 4 .0137 24 .3848 24 .2324 24 .1331 24 .0732 
2 .0234 5 .0195 25 .4229 25 .2598 25 .1506 25 .0839 

°3 .0391 6 .0273 26 .4609 26 .2886 26 .1697 26 .0955 
4 .0547 7 .0371 27 .5000 27 .3188 27 .1902 27 .1082 
5 .0781 1̀ 8 .0488 28 .3501 28 .2119 28 .1219 

6 .1094 9 .0645 29 .3823 29 .2349 29 .1367 
7 .1484 10 .0820 30 .4155 30 .2593 30 .1527 
8 .1875 11 .1016 31 .4492 31 .2847 31 .1698 
9 .2344 12 .1250 32 .4829 32 .3110 32 .1879 

10 .2891 13 .1504 33 .5171 33 .3386 33 .2072 

11 .3438 14 .1797 34 .3667 34 .2274 
12 .4063 15 .2129 35 .3955 35 .2487 

For given n, the smallest rank total for which the probability level is equal to or less than 0.0500. 
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n = 7 n = 9 n = 12 n = 13 

T P T P T P T P 
13 .4688 16 .2480 36 .4250 36 .2709 
14 .5313 17 .2852 37 .4548 37 .2939 

18 .3262 38 .4849 38 .3177 

19 .3672 39 .5151 39 .3424 
20 .4102 40 .3677 
21 .4551 41 .3934 
22 .5000 42 .4197 

43 .4463 

44 .4730 
45 .5000 

n = 14 n = 14 n = 15 n = 16 n = 17 n = 17 
T P T 	P T P T P T P T P 
0 .0001 50 	.4516 47 .2444 39 .0719 25 .0064 74 .4633 
2 .0002 51 	.4758 48 .2622 40 .0795 26 .0075 75 .4816 
3 .0003 52 	.5000 49 .2807 41 .0877 27 .0087 76 .5000 
4 .0004 50 .2997 42 .0964 28 .0101 

5 .0006 n = 15 51 .3193 43 .1057 29 .0116 n = 18 
6 .0009 1 	.0001 52 .3394 44 .1156 30 .0133 6 .0001 
7 .0012 3 	.0002 53 .3599 45 .1261 31 .0153 10 .0002 
8 .0015 5 	.0003 54 .3808 46 .1372 32 .0174 12 .0003 
9 .0020 6 	.0004 55 .4020 47 .1489 33 .0198 14 .0004 

10 .0026 7 	.0006 56 .4235 48 .1613 34 .0224 15 .0005 
11 .0034 8 	.0008 57 .4452 49 .1742 35 .0253 16 .0006 
12 .0043 9 	.0010 58 .4670 50 .1877 36 .0284 17 .0008 
13 .0054 10 	.0013 59 .4890 51 .2019 37 .0319 18 .0010 
14 .0067 11 	.0017 60 .5110 52 .2166 38 .0357 19 .0012 

15 .0083 12 	.0021 n = 16 53 .2319 39 .0398 20 .0014 
16 .0101 13 	.0027 3 .0001 54 .2477 40 .0443 21 .0017 
17 .0123 14 	.0034 5 .0002 55 .2641 '41 .0492 22 .0020 
18 .0148 15 	.0042 7 .0003 56 .2809 42 .0544 23 .0024 
19 .0176 16 	.0051 8 .0004 57 .2983 43 .0601 24 .0028 

20 .0209 17 	.0062 9 .0005 58 .3161 44 .0662 25 .0033 
21 .0247 18 	.0075 10 .0007 59 .3343 45 .0727 26 .0038 
22 .0290 19 	.0090 11 .0008 60 .3529 46 .0797 27 .0045 
23 .0338 20 	.0108 12 .0011 61 .3718 47 .0871 28 .0052 
24 .0392 21 	.0128 13 .0013 62 .3910 48 .0950 29 .0060 
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n = 14 n = 15 n = 16 n = 16 n = 17 n = 18 

T P T P T P T P T P T P 
°25 .0453 22 .0151 14 .0017 63 .4104 49 .1034 30 .0069 
26 .0520 23 .0177 15 .0021 64 .4301 50 .1123 31 .0080 
27 .0594 24 .0206 16 .0026 65 .4500 51 .1218 32 .0091 
28 .0676 25 .0240 17 .0031 66 .4699 52 .1317 33 .0104 
29 .0765 26 .0277 18 .0038 67 .4900 53 .1421 34 .0118 

30 .0863 27 .0319 19 .0046 68 .5100 54 .1530 35 .0134 
31 .0969 28 .0365 20 .0055 55 .1645 36 .0152 
32 .1083 29 .0416 21 .0065 n = 17 56 .1764 37 .0171 

33 .1206 030 .0473 22 .0078 4 .0001 57 .1889 38 .0192 
34 .1338 31 .0535 23 .0091 8 .0002 58 .2019 39 .0216 

35 .1479 32 .0603 24 .0107 9 .0003 59 .2153 40 .0241 
36 .1629 33 .0677 25 .0125 11 .0004 60 .2293 41 .0269 
37 .1788 34 .0757 26 .0145 12 .0005 61 .2437 42 .0300 
38 .1955 35 .0844 27 .0168 13 .0007 62 .2585 43 .0333 
39 .2131 36 .0938 28 .0193 14 .0008 63 .2738 44 .0368 

40 .2316 37 .1039 29 .0222 15 .0010 64 .2895 45 .0407 
41 .2508 38 .1147 30 .0253 16 .0013 65 .3056 46 .0449 
42 .2708 39 .1262 31 .0288 17 .0016 66 .3221 047 .0494 
43 .2915 40 .1384 32 .0327 18 .0019 67 .3389 48 .0542 
44 .3129 41 .1514 33 .0370 19 .0023 68 .3559 49 .0594 

45 .3349 42 .1651 34 .0416 20 .0028 69 .3733 50 .0649 
46 .3574 43 .1796 035 .0467 21 .0033 70 .3910 51 .0708 
47 .3804 44 .1947 36 .0523 22 .0040 70 .4088 52 .0770 
48 .4039 45 .2106 37 .0583 23 .0047 72 .4268 53 .0837 
49 .4276 46 .2271 38 .0649 24 .0055 73 .4450 54 .0907 

n = 18 n = 19 n = 19 n = 20 n = 20 n = 21 

T P T P T P T P T P T P 
55 .0982 30 .0036 79 .2706 48 .0164 97 .3921 61 .0298 
56 .1061 31 .0041 80 .2839 49 .0181 98 .4062 62 .0323 
57 .1144 32 .0047 81 .2974 50 .0200 99 .4204 63 .0351 
58 .1231 33 .0054 82 .3113 51 .0220 100 .4347 64 .0380 

59 .1323 34 .0062 83 .3254 52 .0242 101 .4492 65 .0411 
60 .1419 35 .0070 84 .3397 53 .0266 102 .4636 66 .0444 
61 .1519 36 .0080 85 .3543 54 .0291 103 .4782 67 .0479 
62 .1624 37 .0090 86 .3690 55 .0319 104 .4927 68 .0516 
63 .1733 38 .0102 87 .3840 56 .0348 105 .5073 69 .0555 

64 .1846 39 .0115 88 .3991 57 .0379 n = 21 70 .0597 

65 .1964 40 .0129 89 .4144 58 .0413 14 .0001 71 .0640 
66 .2086 41 .0145 .90 .4298 59 .0448 20 .0002 72 .0686 



Appedix II • Statistical Tables 

TABLE K (continued) 

739 

n = 18 n = 19 n = 19 n = 20 n = 21 n = 21 

T P T P T P T P T P T P 
67 .2211 42 .0162 91 .4453 °60 .0487 22 .0003 73 .0735 
68 .2341 43 .0180 92 .4609 61 .0527 24 .0004 74 .0786 

69 .2475 44 .0201 93 .4765 62 .0570 26 .0005 75 .0839 
70 .2613 45 .0223 94 .4922 63 .0615 27 .0006 76 .0895 
71 .2754 46 .0247 95 .5078 64 .0664 28 .0007 77 .0953 
72 .2899 47 .0273 65 .0715 29 .0008 78 .1015 
73 .3047 48 .0301 n = 20 66 .0768 30 .0009 79 .1078 

74 .3198 49 .0331 11 .0001 67 .0825 31 .0011 80 .1145 
75 .3353 50 .0364 16 .0002 68 .0884 32 .0012 81 .1214 
76 .3509 51 .0399 19 .0003 69 .0947 33 .0014 82 .1286 
77 .3669 52 .0437 20 .0004 70 .1012 34 .0016 83 .1361 
78 .3830 '53 .0478 22 .0005 71 .1081 35 .0019 84 .1439 

79 .3994 54 .0521 23 .0006 72 .1153 36 .0021 85 .1519 
80 .4159 55 .0567 24 .0007 73 .1227 37 .0024 86 .1602 
81 .4325 56 .0616 25 .0008 74 .1305 38 .0028 87 .1688 
82 .4493 57 .0668 26 .0010 75 .1387 39 .0031 88 .1777 
83 .4661 58 .0723 27 .0012 76 .1471 40 .0036 89 .1869 

84 .4831 59 .0782 28 .0014 77 .1559 41 .0040 90 .1963 
85 .5000 60 .0844 29 .0016 78 .1650 42 .0045 91 .2060 

61 .0909 30 .0018 79 .1744 43 .0051 92 .2160 
n = 19 62 .0978 31 .0021 80 .1841 44 .0057 93 .2262 

9 .0001 63 .1051 32' .0024 81 .1942 45 .0063 94 .2367 

13 .0002 64 .1127 33 .0028 82 .2045 46 .0071 95 .2474 
15 .0003 65 .1206 34 .0032 83 .2152 47 .0079 96 .2584 
17 .0004 66 .1290 35 .0036 84 .2262 48 .0088 97 .2696 
18 .0005 67 .1377 36 .0042 85 .2375 49 .0097 98 .2810 
19 .0006 68 .1467 37 .0047 86 .2490 50 .0108 99 .2927 

20 .0007 69 .1562 38 .0053 87 .2608 51 .0119 100 .3046 
21 .0008 70 .1660 39 .0060 88 .2729 52 .0132 101 .3166 
22 .0010 71 .1762 40 .0068 89 .2853 53 .0145 102 .3289 
23 .0012 72 .1868 41 .0077 90 .2979 54 .0160 103 .3414 
24 .0014 73 .1977 42 .0086 91 .3108 55 .0175 104 .3540 

25 .0017 74 .2090 43 .0096 92 .3238 56 .0192 105 .3667 
26 .0020 75 .2207 44 .0107 93 .3371 57 .0210 106 .3796 
27 .0023 76 .2327 45 .0120 94 .3506 58 .0230 107 .3927 
28 .0027 77 .2450 46 .0133 95 .3643 59 .0251 108 .4058 
29 .0031 78 .2576 47 .0148 96 .3781 60 .0273 109 .4191 
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n = 21 n = 22 n = 22 n = 23 n = 23 n = 24 

T P T P T P T P T P T P 
110 .4324 67 .0271 116 .3751 68 .0163 117 .2700 62 .0053 
111 .4459 68 .0293 117 .3873 69 .0177 118 .2800 63 .0058 
112 .4593 69 .0317 118 .3995 70 .0192 119 .2902 64 .0063 
113 .4729 70 .0342 119 .4119 71 .0208 120 .3005 65 .0069 

114 .4864 71 .0369 120 .4243 72 .0224 121 .3110 66 .0075 
115 .5000 72 .0397 121 .4368 73 .0242 122 .3217 67 .0082 

73 .0427 122 .4494 74 .0261 123 .3325 68 .0089 
74 .0459 123 .4620 75 .0281 124 .3434 69 .0097 

n = 22 4 75 .0492 124 .4746 76 .0303 125 .3545 70 .0106 

18 .0001 76 .0527 125 .4873 77 .0325 126 .3657 71 .0115 
23 .0002 77 .0564 126 .5000 78 .0349 127 .3770 72 .0124 
26 .0003 78 .0603 79 .0374 128 .3884 73 .0135 
29 .0004 79 .0644 n = 23 80 .0401 129 .3999 74 .0146 

30 .0005 80 .0687 21 .0001 81 .0429 130 .4115 75 .0157 

32 .0006 81 .0733 28 .0002 82 .0459 131 .4231 76 .0170 
33 .0007 82 .0780 31 .0003 '83 .0490 132 .4348 77 .0183 
34 .0008 83 .0829 33 .0004 84 .0523 133 .4466 78 .0197 
35 .0010 84 .0881 35 .0005 85 .0557 134 .4584 79 .0212 
36 .0011 85 .0935 36 .0006 86 .0593 135 .4703 80 .0228 

37 .0013 86 .0991 38 .0007 87 .0631 136 .4822 81 .0245 
38 .0014 87 .1050 39 .0008 88 .0671 137 .4941 82 .0263 
39 .0016 88 .1111 40 .0009 89 .0712 138 .5060 83 .0282 
40 .0018 89 .1174 41 .0011 90 .0755 84 .0302 
41 .0021 90 .1240 42 .0012 91 .0801 n = 24 85 .0323 
42 .0023 91 .1308 43 .0014 92 .0848 25 .0001 86 .0346 
43 .0026 92 .1378 44 .0015 93 .0897 32 .0002 87 .0369 
44 .0030 93 .1451 45 .0017 94 .0948 36 .0003 88 .0394 
45 .0033 94 .1527 46 .0019 95 .1001 38 .0004 89 .0420 
46 .0037 95 .1604 47 .0022 96 .1056 40 .0005 90 .0447 

47 .0042 96 .1685 48 .0024 97 .1113 42 .0006 '91 .0475 
48 .0046 97 .1767 49 .0027 98 .1172 43 .0007 92 .0505 
49 .0052 98 .1853 50 .0030 99 .1234 44 .0008 93 .0537 
50 .0057 99 .1940 51 .0034 100 .1297 45 .0009 94 .0570 
51 .0064 100 .2030 52 .0037 101 .1363 46 .0010 95 .0604 

52 .0070 101 .2122 53 .0041 102 .1431 47 .0011 96 .0640 
53 .0078 102 .2217 54 .0046 103 .1501 48 .0013 97 .0678 
54 .0086 103 .2314 55 .0051 104 .1573 49 .0014 98 .0717 
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n = 22 n = 22 n = 23 n = 23 n = 24 n = 24 

T P T P T P T P T P T P 
55 .0095 104 .2413 56 .0056 105 .1647 50 .0016 99 .0758 
56 .0104 105 .2514 57 .0061 106 .1723 51 .0018 100 .08Q0 

57 .0115 106 .2618 58 .0068 107 .1802 52 .0020 101 .0844 
58 .0126 107 .2723 59 .0074 108 .1883 53 .0022 102 .0890 
59 .0138 108 .2830 60 .0082 109 .1965 54 .0024 103 .0938 
60 .0151 109 .2940 61 .0089 110 .2050 55 .0027 104 .0987 
61 .0164 110 .3051 62 .0098 111 .2137 56 .0029 105 .1038 

62 .0179 111 .3164 63 .0107 112 .2226 57 .0033 106 .1091 
63 .0195 112 .3278 64 .0117 113 .2317 58 .0036 107 .1146 
64 .0212 113 .3394 65 .0127 114 .2410 59 .0040 108 .1203 
65 .0231 114 .3512 66 .0138 115 .2505 60 .0044 109 .1261 
66 .0250 115 .3631 67 .0150 116 .2601 61 .0048 110 .1322 

n = 24 n = 25 n = 25 n = 25 n = 26 n = 26 

T P T P T P T P T P T P 
111 .1384 50 .0008 99 .0452 148 .3556 81 .0076 130 .1289 
112 .1448 51 .0009 a100 .0479 149 .3655 82 .0082 131 .1344 
113 .1515 52 .0010 101 .0507 150 .3755 83 .0088 132 .1399 
114 .1583 53 .0011 102 .0537 151 .3856 84 .0095 133 .1457 

115 .1653 54 .0013 103 .0567 152 .3957 85 .0102 134 .1516 
116 .1724 55 .0014 104 .0600 153 .4060 86 .0110 135 .1576 
117 .1798 56 .0015 105 .0633 154 .4163 87 .0118 136 .1638 
118 .1874 57 .0017 106 .0668 155 .4266 88 .0127 137 .1702 
119 .1951 58 .0019 107 .0705 156 .4370 89 .0136 138 .1767 

120 .2031 59 .0021 108 .0742 157 .4474 90 .0146 139 .1833 
121 .2112 60 .0023 109 .0782 158 .4579 91 .0156 140 .1901 
122 .2195 61 .0025 110 .0822 159 .4684 92 .0167 141 .1970 
123 .2279 62 .0028 111 .0865 160 .4789 93 .0179 142 .2041 
124 .2366 63 .0031 112 .0909 161 .4895 94 .0191 143 .2114 

125 .2454 64 .0034 113 .0954 162 .5000 95 .0204 144 .2187 
126 .2544 65 .0037 114 .1001 96 .0217 145 .2262 
127 .2635 66 .0040 115 .1050 n = 26 97 .0232 146 .2339 

128 .2728 67 .0044 116 .1100 34 .0001 98 .0247 147 .2417 
129 .2823 68 .0048 117 .1152 42 .0002 99 .0263 148 .2496 

130 .2919 69 .0053 118 .1205 46 .0003 100 .0279 149 .2577 
131 .3017 70 .0057 119 .1261 49 .0004 101 .0297 150 .2658 
132 .3115 71 .0062 120 .1317 51 .0005 102 .0315 151 .2741 
133 .3216 72 .0068 121 .1376 53 .0006 103 .0334 152 .2826 
134 .3317 73 .0074 122 .1436 55 .0007 104 .0355 153 .2911 
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n = 24 n = 25 n = 25 n = 26 n = 26 n = 26 

T P T P T P T P T P T P 
135 .3420 74 .0080 123 .1498 56 .0008 105 .0376 154 .2998 
136 .3524 75 .0087 124 .1562 57 .0009 106 .0398 155 .3085 
137 .3629 76 .0094 125 .1627 58 .0010 107 .0421 156 .3174 
138 .3735 77 .0101 126 .1694 59 .0011 108 .0455 157 .3264 
139 .3841 78 .0110 127 .1763 60 .0012 109 .0470 158 .3355 

140 .3949 79 .0118 128 .1833 61 .0013 '110 .0497 159 .3447 
141 .4058 80 .0128 129 .1905 62 .0015 111 .0524 160 .3539 
142 .4167 81 .0137 130 .1979 63 .0016 112 .0553 161 .3633 
143 .4277 82 .0148 131 .2054 64 .0018 113 .0582 162 .3727 
144 .4387 83 .0159 132 .2131 65 .0020 114 .0613 163 .3822 

145 .4498 84 .0171 133 .2209 66 .0021 115 .0646 164 .3918 
146 .4609 85 .0183 134 .2289 67 .0023 116 .0679 165 .4014 
147 .4721 86 .0197 135 .2371 68 .0026 117 .0714 166 .4111 
148 .4832 87 .0211 136 .2454 69 .0028 118 .0750 167 .4208 
149 .4944 88 .0226 137 .2539 70 .0031 119 .0787 168 .4306 

150 .5056 89 .0241 130 .2625 71 .0033 120 .0825 169 .4405 
90 .0258 139 .2712 72 .0036 121 .0865 170 .4503 

n = 25 91 .0275 140 .2801 73 .0040 122 .0907 171 .4602 

29 .0001 92 .0294 141 .2891 74 .0043 123 .0950 172 .4702 
37 .0002 93 .0313 142 .2983 75 .0047 124 .0994 173 .4801 

41 .0003 94 .0334 143 .3075 76 .0051 125 .1039 174 .4900 
43 .0004 95 .0355 144 .3169 77 .0055 126 .1086 175 .5000 
45 .0005 96 .0377 145 .3264 78 .0060 127 .1135 
47 .0006 97 .0401 146 .3360 79 .0065 128 .1185 
48 .0007 98 .0426 147 .3458 80 .0070 129 .1236 

n = 27 n = 27 n = 27 n = 28 n = 28 n = 28 

T P T P T P T P T P T P 
39 .0001 105 .0218 154 .2066 74 .0012 123 .0349 172 .2466 
47 .0002 106 .0231 155 .2135 75 .0013 124 .0368 173 .2538 
52 .0003 107 .0246 156 .2205 76 .0015 125 .0387 174 .2611 
55 .0004 108 .0260 157 .2277 77 .0016 126 .0407 175 .2685 

57 .0005 109 .0276 158 .2349 78 .0017 127 .0428 176 .2759 
59 .0006 110 .0292 159 .2423 79 .0019 128 .0450 177 .2835 
61 .0007 111 .0309 160 .2498 80 .0020 129 .0473 178 .2912 
62 .0008 112 .0327 161 .2574 81 .0022 a  130 .0496 179 .2990 
64 .0009 113 .0346 162 .2652 82 .0024 131 .0521 180 .3068 

65 .0010 114 .0366 163 .2730 83 .0026 132 .0546 181 .3148 
66 .0011 115 .0386 164 .2810 84 .0028 133 .0573 182 .3228 
67 .0012 116 .0407 165 .2890 85 .0030 134 .0600 183 .3309 
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n = 27 n = 27 n = 27 n = 28 n = 28 n = 28 

T P T P T P T P T P T P 
68 .0014 117 .0430 166 .2972 86 .0033 135 .0628 184 .3391 
69 .0015 118 .0453 167 .3055 87 .0035 136 .0657 185 .3474 

70 .0016 '119 .0477 168 .3138 88 .0038 137 .0688 186 .3557 
71 .0018 120 .0502 169 .3223 89 .0041 138 .0719 187 .3641 
72 .0019 121 .0528 170 .3308 90 .0044 139 .0751 188 .3725 
73 .0021 122 .0555 171 .3395 91 .0048 140 .0785 189 .3811 
74 .0023 123 .0583 172 .3482 92 .0051 141 .0819 190 .3896 

75 .0025 124 .0613 173 .3570 93 .0055 142 .0855 191 .3983 
76 .0027 125 .0643 174 .3659 94 .0059 143 .0891 192 .4070 
77 .0030 126 .0674 175 .3748 95 .0064 144 .0929 193 .4157 
78 .0032 127 .0707 176 .3838 96 .0068 145 .0968 194 .4245 
79 .0035 128 .0741 177 .3929 97 .0073 146 .1008 195 .4333 

80 .0038 129 .0776 178 .4020 98 .0078 147 .1049 196 .4421 
81 .0041 130 .0812 179 .4112 99 .0084 148 .1091 197 .4510 
82 .0044 131 .0849 180 .4204 100 .0089 149 .1135 198 .4598 
83 .0048 132 .0888 181 .4297 101 .0096 150 .1180 199 .4687 
84 .0052 133 .0927 182 .4390 102 .0102 151 .1225 200 4777 

85 .0056 134 .0968 183 .4483 103 .0109 152 .1273 201 .4866 
86 .0060 135 .1010 184 .4577 104 .0116 153 .1321 202 .4955 
87 .0065 136 .1054 185 .4670 105 .0124 154 .1370 203 .5045 
88 .0070 137 .1099 186 .4764 106 .0132 155 .1421 
89 .0075 138 .1145 187 .4859 107 .0140 156 .1473 n = 28 

90 .0081 139 .1193 188 .4953 108 .0149 157 .1526 50 .0001 
91 .0087 140 .1242 189 .5047 109 .0159 158 .1580 59 .0002 
92 .0093 141 .1292 110 .0168 159 .1636 65 .0003 
93 .0100 142 .1343 n = 28 111 .0179 160 .1693 68 .0004  

94 .0107 143 .1396 44 .0001 112 .0190 161 .1751 71 .0005 

95 .0115 144 .1450 53 .0002 113 .0201 162 .1810 73 .0006 
96 .0123 145 .1506 58 .0003 114 .0213 163 .1870 75 .0007 
97 .0131 146 .1563 61 .0004 115 .0226 164 .1932 76 .0008 
98 .0140 147 .1621 64 .0005 116 .0239 165 .1995 78 .0009 
99 .0150 148 .1681 66 .0006 117 .0252 166 .2059 79 .0010 

100 .0159 149 .1742 68 .0007 118 .0267 167 .2124 80 .0011 
101 .0170 150 .1804 69 .0008 119 .0282 168 .2190 81 .0012 
102 .0181 151 .1868 70 .0009 120 .0298 169 .2257 82 .0013 
103 .0193 152 .1932 72 .0010 121 .0314 170 .2326 83 .0014 
104 .0205 153 .1999 73 .0011 122 .0331 171 .2395 84 .0015 
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n = 29 n = 29 n = 29 n = 30 n = 30 n = 30 

T P T P T P T P T P T P 
85 .0016 134 .0362 183 .2340 90 .0013 139 .0275 188 .1854 
86 .0018 135 .0380 184 .2406 91 .0014 140 .0288 189 .1909 
87 .0019 136 .0399 185 .2473 92 .0015 141 .0303 190 .1965 
88 .0021 137 .0418 186 .2541 93 .0016 142 .0318 191 .2022 

89 .0022 138 .0439 187 .2611 94 .0017 143 .0333 192 .2081 
90 .0024 139 .0460 188 .2681 95 .0019 144 .0349 193 .2140 
91 .0026 "140 .0482 189 .2752 96 .0020 145 .0366 194 .2200 
92 .0028 141 .0504 190 .2824 97 .0022 146 .0384 195 .2261 
93 .0030 142 .0528 191 .2896 98 .0023 147 .0402 196 .2323 

94 .0032 143 .0552 192 .2970 99 .0025 148 .0420 197 .2386 
95 .0035 144 .0577 193 .3044 100 .0027 149 .0440 198 .2449 
96 .0037 145 .0603 194 .3120 101 .0029 150 .0460 119 .2514 
97 .0040 146 .0630 195 .3196 102 .0031 "151 .0481 200 .2579 
98 .0043 147 .0658 196 .3272 103 .0033 152 .0502 201 .2646 

99 .0046 148 .0687 197 .3350 104 .0036 153 .0524 202 .2713 
100 .0049 149 .0716 198 .3428 105 .0038 154 .0547 203 .2781 
101 .0053 150 .0747 199 .3507 106 .0041 155 .0571 204 .2849 
102 .0057 151 .0778 200 .3586 107 .0044 156 .0595 205 .2919 
103 .0061 152 .0811 201 .3666 108 .0047 157 .0621 206 .2989 

104 .0065 153 .0844 202 .3747 109 .0050 158 .0647 207 .3060 
105 .0069 154 .0879 203 .3828 110 .0053 159 .0674 208 .3132 
106 .0074 155 .0914 204 .3909 111 .0057 160 .0701 209 .3204 
107 .0079 156 .0951 205 .3991 112 .0060 161 .0730 210 .3277 
108 .0084 157 .0988 206 .4074 113 .0064 162 .0759 211 .3351 

109 .0089 158 .1027 207 .4157 114 .0068 163 .0790 212 .3425 
110 .0095 159 .1066 208 .4240 115 .0073 164 .0821 213 .3500 
111 .0101 160 .1107 209 .4324 116 .0077 165 .0853 214 .3576 
112 .0108 161 .1149 210 .4408 117 .0082 166 .0886 215 .3652 
113 .0115 162 .1191 211 .4492 118 .0087 167 .0920 216 .3728 

114 .0122 163 .1235 212 .4576 119 .0093 168 .0955 217 .3805 
115 .0129 164 .1280 213 .4661 120 .0098 169 .0990 218 .3883 
116 .0137 165 .1326 214 .4745 121 .0104 170 .1027 219 .3961 
117 .0145 166 .1373 215 .4830 122 .0110 171 .1065 220 .4039 
118 .0154 167 .1421 216 .4915 123 .0117 172 .1103 221 .4118 

119 .0163 168 .1471 217 .5000 124 .0124 173 .1143 222 .4197 
120 .0173 169 .1521 125 .0131 174 .1183 223 .4276 
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n = 29 n = 29 n = 30 n = 30 n = 30 

T P T P T P T P T P 
121 .0183 170 .1572 n = 30 126 .0139 175 .1225 224 .4356 

122 .0193 171 .1625 55 .0001 127 .0147 176 .1267 225 .4436 
123 .0204 172 .1679 66 .0002 128 .0155 177 .1311 226 .4516 

124 .0216 173 .1733 71 .0003 129 .0164 178 .1355 227 .4596 
125 .0228 174 .1789 75 .0004 130 .0173 179 .1400 228 .4677 
126 .0240 175 .1846 78 .0005 131 .0182 180 .1447 229 .4758 
127 .0253 176 .1904 80 .0006 132 .0192 181 .1494 230 .4838 
128 .0267 177 .1963 82 .0007 133 .0202 182 .1543 231 .4919 

129 .0281 178 .2023 84 .0008 134 .0213 183 .1592 232 .5000 
130 .0296 179 .2085 85 .0009 135 .0225 184 .1642 
131 .0311 180 .2147 87 .0010 136 .0236 185 .1694 
132 .0328 181 .2210 88 .0011 137 .0249 186 .1746 
133 .0344 182 .2274 89 .0012 138 .0261 187 .1799 

TABLE L Quantiles of the Mann - Whitney Test Statistic 

n p m=2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

.005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
2 .01 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 

.025 0 0 0 0 0 0 1 1 1 1 2 2 2 2 2 3 3 3 3 

.05 0 0 0 1 1 1 2 2 2 2 3 3 4 4 4 4 5 5 5 

.10 0 1 1 2 2 2 3 3 4 4 5 5 5 6 6 7 7 8 8 

.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

.005 0 0 0 0 0 0 0 1 1 1 2 2 2 3 3 3 3 4 4 
3 .01 0 0 0 0 0 1 1 2 2 2 3 3 3 4 4 5 5 5 6 

.025 0 0 0 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 

.05 0 1 1 2 3 3 4 5 5 6 6 7 8 8 9 10 10 11 12 

.10 1 2 2 3 4 5 6 6 7 8 9 10 11 11 12 13 14 15 16 

.001 0 0 0 0 0 0 0 0 1 1 1 2 2 2 3 3 4 4 4 

.005 0 0 0 0 1 1 2 2 3 3 4 4 5 6 6 7 7 8 9 
4 .01 0 0 0 1 2 2 3 4 4 5 6 6 7 9 8 9 10 10 11 

.025 0 0 1 2 3 4 5 5 6 7 8 9 10 11 12 12 13 14 15 

.05 0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 

.10 1 2 4 5 6 7 8 10 11 12 13 14 16 17 18 19 21 22 23 

.001 0 0 0 0 0 0 1 2 2 3 3 4 4 5 6 6 7 8 8 

.005 0 0 0 1 2 2 3 4 5 6 7 8 8 9 10 11 12 13 14 
5 .01 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

.025 0 1 2 3 4 6 7 8 9 10 12 13 14 15 16 18 19 20 21 

.05 1 2 3 5 6 7 9 10 12 13 14 16 17 19 20 21 23 24 26 

.10 2 3 5 6 8 9 11 13 14 16 18 19 21 23 24 26 28 29 31 
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n p m = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

.001 0 0 0 0 0 0 2 3 4 5 5 6 7 8 9 10 11 12 13 

.005 0 0 1 2 3 4 5 6 7 8 10 11 12 13 14 16 17 18 19 
6 .01 0 0 2 3 4 5 7 8 9 10 12 13 14 16 17 19 20 21 23 

.025 0 2 3 4 6 7 9 11 12 14 15 17 18 20 22 23 25 26 28 

.05 1 3 4 6 8 9 11 13 15 17 18 20 22 24 26 27 29 31 33 

.10 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 35 37 39 

.001 0 0 0 0 1 2 3 4 6 7 8 9 10 11 12 14 15 16 17 

.005 0 0 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 
7 .01 0 1 2 4 5 7 8 10 12 13 15 17 18 20 22 24 25 27 29 

.025 0 2 4 6 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 

.05 1 3 5 7 9 12 14 16 18 20 22 25 27 29 31 34 36 38 40 

.10 2 5 7 9 12 14 17 19 22 24 27 29 32 34 37 39 42 44 47 

.001 0 0 0 1 2 3 5 6 7 9 10 12 13 15 16 18 19 21 22 

.005 0 0 2 3 5 7 8 10 12 14 16 18 19 21 23 25 27 29 31 
8 .01 0 1 3 5 7 8 10 12 14 16 18 21 23 25 27 29 31 33 35 

.025 1 3 5 7 9 11 14 16 18 20 23 25 27 30 32 35 37 39 42 

.05 2 4 6 9 11 14 16 19 21 24 27 29 32 34 37 40 42 45 48 

.10 3 6 8 11 14 17 20 23 25 28 31 34 37 40 43 46 49 52 55 

.001 0 0 0 2 3 4 6 8 9 11 13 15 16 18 20 22 24 26 27 

.005 0 1 2 4 6 8 10 12 14 17 19 21 23 25 28 30 32 34 37 
9 .01 0 2 4 6 8 10 12 15 17 19 22 24 27 29 32 34 37 39 41 

.025 1 3 5 8 11 13 16 18 21 24 27 29 32 35 38 40 43 46 49 

.05 2 5 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 

.10 3 6 10 13 16 19 23 26 29 32 36 39 42 46 49 53 56 59 63 

.001 0 0 1 2 4 6 7 9 11 13 15 18 20 22 24 26 28 30 33 

.005 0 1 3 5 7 10 12 14 17 19 22 25 27 30 32 35 38 40 43 
10 .01 0 2 4 7 9 12 14 17 20 23 25 28 31 34 37 39 42 45 48 

.025 1 4 6 9 12 15 18 21 24 27 30 34 37 40 43 46 49 53 46 

.05 2 5 8 12 15 18 21 25 28 32 35 38 42 45 49 52 56 59 63 

.10 4 7 11 14 18 22 25 29 33 37 40 44 48 52 55 59 63 67 71 
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n p m= 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

.001 0 0 1 3 5 7 9 11 13 16 18 21 23 25 28 30 33 35 38 

.005 0 1 3 6 8 11 14 17 19 22 25 28 31 34 37 40 43 46 49 
11 .01 0 2 5 8 10 13 16 19 23 26 29 32 35 38 42 45 48 51 54 

.025 1 4 7 10 14 17 20 24 27 31 34 38 41 45 48 52 56 59 63 

.05 2 6 9 13 17 20 24 28 32 35 39 43 47 51 55 58 62 66 70 

.10 4 8 12 16 20 24 28 32 37 41 45 49 53 58 62 66 70 74 79 

.001 0 0 1 3 5 8 10 13 15 18 21 24 26 29 32 35 38 41 43 

.005 0 2 4 7 10 13 16 19 22 25 28 32 35 38 42 45 48 52 55 
12 .01 0 3 6 9 12 15 18 22 25 29 32 36 39 43 47 50 54 57 61 

.025 2 5 8 12 15 19 23 27 30 34 38 42 46 50 54 58 62 66 70 

.05 3 6 10 14 18 22 27 31 35 39 43 48 52 56 61 65 69 73 78 

.10 5 9 13 18 22 27 31 36 40 45 50 54 59 64 68 73 78 82 87 

.001 0 0 2 4 6 9 12 15 18 21 24 27 30 33 36 39 43 46 49 

.005 0 2 4 8 11 14 18 21 25 28 32 35 39 43 46 50 54 58 61 
13 .01 1 3 6 10 13 17 21 24 28 32 36 40 44 48 32 56 60 64 68 

.025 2 5 9 13 17 21 25 29 34 38 42 46 51 55 60 64 68 73 77 

.05 3 7 11 16 20 25 29 34 38 43 48 52 57 62 66 71 76 81 85 

.10 5 10 14 19 24 29 34 39 44 49 54 59 64 69 75 80 85 90 95 

.001 0 0 2 4 7 10 13 16 20 23 26 30 33 37 40 44 47 51 55 

.005 0 2 5 8 12 16 19 23 27 31 35 39 43 47 51 55 59 64 68 
14 .01 1 3 7 11 14 18 23 27 31 35 39 44 48 52 57 61 66 70 74 

.025 2 6 10 14 18 23 27 32 37 41 46 51 56 60 65 70 75 79 84 

.05 4 8 12 17 22 27 32 37 42 47 52 57 62 67 72 78 83 88 93 

.10 5 11 16 21 26 32 37 42 48 53 59 64 70 75 81 86 92 98 103 

.001 0 0 2 5 8 11 15 18 22 25 29 33 37 41 44 48 52 56 60 

.005 0 3 6 9 13 17 21 25 30 34 38 43 47 52 56 61 65 70 74 
15 .01 1 4 8 12 16 20 25 29 34 38 43 48 52 57 62 67 71 76 81 

.025 2 6 11 15 20 25 30 35 40 45 50 55 60 65 71 76 81 86 91 

.05 4 8 13 19 24 29 34 40 45 51 56 62 67 73 78 84 89 95 101 

.10 6 11 17 23 28 34 40 46 52 58 64 69 75 81 87 93 99 105 111 
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n p m=2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

.001 0 0 3 6 9 12 16 20 24 28 32 36 40 44 49 53 57 61 66 

.005 0 3 6 10 14 19 23 28 32 37 42 46 51 56 61 66 71 75 80 
16 .01 1 4 8 13 17 22 27 32 37 42 47 52 57 62 67 72 77 83 88 

.025 2 7 12 16 22 27 32 38 43 48 54 60 65 71 76 82 87 93 99 

.05 4 9 15 20 26 31 37 43 49 55 61 66 72 78 84 90 96 102 108 

.10 6 12 18 24 30 37 43 49 55 62 68 75 81 87 94 100 107 113 120 

.001 0 1 3 6 10 14 18 22 26 30 35 39 44 48 53 58 62 67 71 

.005 0 3 7 11 16 20 25 30 35 40 45 50 55 61 66 71 76 82 87 
17 .01 1 5 9 14 19 24 29 34 39 45 50 56 61 67 72 78 83 89 94 

.025 3 7 12 18 23 29 35 40 46 52 58 64 70 76 82 88 94 100 106 

.05 4 10 16 21 27 34 40 46 52 58 65 71 78 84 90 97 103 110 116 

.10 7 13 19 26 32 39 46 53 59 66 73 80 86 93 100 107 114 121 128 

.001 0 1 4 7 11 15 19 24 28 33 38 43 47 52 57 62 67 72 77 

.005 0 3 7 12 17 22 27 32 38 43 48 54 59 65 71 76 82 88 93 
18 .01 1 5 10 15 20 25 31 37 42 48 54 60 66 71 77 83 89 95 101 

.025 3 8 13 19 25 31 37 43 49 56 62 68 75 81 87 94 100 107 113 

.05 5 10 17 23 29 36 42 49 56 62 69 76 83 89 96 103 110 117 124 

.10 7 14 21 28 35 42 49 56 63 70 78 85 92 99 107 114 121 129 136 

.001 0 1 4 8 12 16 21 26 30 35 41 46 51 56 61 67 72 78 83 

.005 1 4 8 13 18 23 29 34 40 46 52 58 64 70 75 82 88 94 100 
19 .01 2 5 10 16 21 27 33 39 45 51 57 64 70 76 83 89 95 102 108 

.025 3 8 14 20 26 33 39 46 53 59 66 73 79 86 93 100 107 114 120 

.05 5 11 18 24 31 38 45 52 59 66 73 81 88 95 102 110 117 124 131 

.10 8 15 22 29 37 44 52 59 67 74 82 90 98 105 113 121 129 136 144 

.001 0 1 4 8 13 17 22 27 33 38 43 49 55 60 66 71 77 83 89 

.005 1 4 9 14 19 25 31 37 43 49 55 61 68 74 80 87 93 100 106 
20 .01 2 6 11 17 23 29 35 41 48 54 61 68 74 81 88 94 101 108 115 

.025 3 9 15 21 28 35 42 49 56 63 70 77 84 91 99 106 113 120 128 

.05 5 12 19 26 33 40 48 55 63 70 78 85 93 101 108 116 124 131 139 

.10 8 16 23 31 39 47 55 63 71 79 87 95 103 111 120 128 136 144 152 
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TABLE M Quantiles of the Kolmogorov Test Statistic 

One-Sided Test 
p = .90 

Two-Sided Test 
p = .80 

	

n = 1 	.900 

	

2 	.684 

	

3 	.565 

	

4 	.493 

	

5 	.447 

	

6 	.410 

	

7 	.381 

	

8 	.358 

	

9 	.339 

	

10 	.323 

	

11 	.308 

	

12 	.296 

	

13 	.285 

	

14 	.275 

	

15 	.266 

	

16 	.258 

	

17 	.250 

	

18 	.244 

	

19 	.237 

	

20 	.232 

	

21 	.226 

	

22 	.221 

	

23 	.216 

	

24 	.212 

	

25 	.208 

	

26 	.204 

	

27 	.200 

	

28 	.197 

	

29 	.193 

	

30 	.190 

	

31 	.187 

	

32 	.184 

	

33 	.182 

	

34 	.179 

	

35 	.177 

	

36 	.174 

	

37 	.172 

	

38 	.170 

	

39 	.168 

	

40 	.165 
Approximation for 

1.07 
n > 40 

.95 .975 .99 .995 

.90 .95 .98 .99 

.950 .975 .990 .995 

.776 .842 .900 .929 

.636 .708 .785 .829 

.565 .624 .689 .734 

.509 .563 .627 .669 

.468 .519 .577 .617 

.436 .483 .538 .576 

.410 .454 .507 .542 

.387 .430 .480 .513 

.369 .409 .457 .489 

.352 .391 .437 .468 

.338 .375 .419 .449 

.325 .361 .404 .432 

.314 .349 .390 .418 

.304 .338 .377 .404 

.295 .327 .366 .392 

.286 .318 .355 .381 

.279 .309 .346 .371 

.271 .301 .337 .361 

.265 .294 .329 .352 

.259 .287 .321 .344 

.253 .281 .314 .337 

.247 .275 .307 .330 

.242 .269 .301 .323 

.238 .264 .295 .317 

.233 .259 .290 .311 

.229 .254 .284 .305 

.225 .250 .279 .300 

.221 .246 .275 .295 

.218 .242 .270 .290 

.214 .238 .266 .285 

.211 .234 .262 .281 

.208 .231 .258 .277 

.205 .227 .254 .273 

.202 .224 .251 .269 

.199 .221 .247 .265 

.196 .218 .244 .262 

.194 .215 .241 .258 

.191 .213 .238 .255 

.189 .210 .235 .252 

1.22 1.36 1.52 1.63 

117-1 	 in- 
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TABLE N Critical Values of the Kruskal -Wallis Test Statistic 

Sample Sizes Critical 
Value a n 1  n 2  n3 

2 1 1 2.7000 .500 
2 2 1 3.6000 .200 
2 2 2 4.5714 .067 

3.7143 .200 
3 1 1 3.2000 .300 
3 2 1 4.2857 .100 

3.8571 .133 
3 2 2 5.3572 .029 

4.7143 .048 
4.5000 .067 
4.4643 .105 

3 3 1 5.1429 .043 
4.5714 .100 
4.0000 .129 

3 3 2 6.2500 .011 
5.3611 .032 
5.1389 .061 
4.5556 .100 
4.2500 .121 

3 3 3 7.2000 .004 
6.4889 .011 
5.6889 .029 
5.6000 .050 
5.0667 .086 
4.6222 .100 

4 1 1 3.5714 .200 
4 2 1 4.8214 .057 

4.5000 .076 
4.0179 .114 

4 2 2 6.0000 .014 
5.3333 .033 
5.1250 .052 
4.4583 .100 
4.1667 .105 

4 3 1 5.8333 .021 
5.2083 .050 
5.0000 .057 
4.0556 .093 
3.8889 .129 
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TABLE N (continued) 

Sample Sizes Critical 
Value a n1  n2  n 3 

4 3 2 6.4444 .008 
6.3000 .011 
5.4444 .046 
5.4000 .051 
4.5111 .098 
4.4444 .102 

4 3 3 6.7455 .010 
6.7091 .013 
5.7909 .046 
5.7273 .050 
4.7091 .092 
4.7000 .101 

4 4 1 6.6667 .010 
6.1667 .022 
4.9667 .048 
4.8667 .054 
4.1667 .082 
4.0667 .102 

4 4 2 7.0364 .006 
6.8727 .011 
5.4545 .046 
5.2364 .052 
4.5545 .098 
4.4455 .103 

4 4 3 7.1439 .010 
7.1364 .011 
5.5985 .049 
5.5758 .051 
4.5455 .099 
4.4773 .102 

4 4 4 7.6538 .008 
7.5385 .011 
5.6923 .049 
5.6538 .054 
4.6539 .097 
4.5001 .104 

5 1 1 3.8571 .143 
5 2 1 5.2500 .036 

5.0000 .048 
4.4500 .071 
4.2000 .095 
4.0500 .119 
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TABLE N (continued) 

Sample Sizes Critical 
Value a n 1  n2 n3  

5 2 2 6.5333 .008 
6.1333 .013 
5.1600 .034 
5.0400 .056 
4.3733 .090 
4.2933 .122 

5 3 1 6.4000 .012 
4.9600 .048 
4.8711 .052 
4.0178 .095 
3.8400 .123 

5 3 2 6.9091 .009 
6.8218 .010 
5.2509 .049 
5.1055 .052 
4.6509 .091 
4.4945 .101 

5 3 3 7.0788 .009 
6.9818 .011 
5.6485 .049 
5.5152 .051 
4.5333 .097 
4.4121 .109 

5 4 1 6.9545 .008 
6.8400 .011 
4.9855 .044 
4.8600 .056 
3.9873 .098 
3.9600 .102 

5 4 2 7.2045 .009 
7.1182 .010 
5.2727 .049 
5.2682 .050 
4.5409 .098 
4.5182 .101 

5 4 3 7.4449 .010 
7.3949 .011 
5.6564 .049 
5.6308 .050 



Appedix II • Statistical Tables 	 753 

TABLE N (continued) 

Sample Sizess Critical 
Value a nl 	n2 n3  

4.5487 
4.5231 

.099 

.103 
5 	4 4 7.7604 .009 

7.7440 .011 
5.6571 .049 
5.6176 .050 
4.6187 .100 
4.5527 .102 

5 	5 1 7.3091 .009 
6.8364 .011 
5.1273 .046 
4.9091 .053 
4.1091 .086 
4.0364 .105 

5 	5 2 7.3385 .010 
7.2692 .010 
5.3385 .047 
5.2462 .051 
4.6231 .097 
4.5077 .100 

5 	5 3 7.5780 .010 
7.5429 .010 
5.7055 .046 
5.6264 .051 
4.5451 .100 
4.5363 .102 

5 	5 4 7.8229 .010 
7.7914 .010 
5.6657 .049 
5.6429 .050 
4.5229 .099 
4.5200 .101 

5 	5 5 8.0000 .009 
7.9800 .010 
5.7800 .049 
5.6600 .051 
4.5600 .100 
4.5000 .102 
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TABLE 0 Exact Distribution of x? for Tables with From 2 to 9 Sets of Three Ranks 

(k = 3; n =2, 3, 4,5, 6, 7, 8, 9; P is the probability of obtaining a value of x,? as great 

as or greater than the corresponding value of x,?) 

n= 2 n= 3 n= 4 n= 5 

2 
X, P 2 

X, P X,
2 P X,

2   P 

0 1.000 .000 1.000 .0 1.000 .0 1.000 
1 .833 .667 .944 .5 .931 .4 .954 
3 .500 2.000 .528 1.5 .653 1.2 .691 
4 .167 2.667 .361 2.0 .431 1.6 .522 

4.667 1.94 3.5 .273 2.8 .367 
6.000 .028 4.5 .125 3.6 .182 

6.0 .069 4.8 .124 
6.5 .042 5.2 .093 
8.0 .0046 6.4 .039 

7.6 .024 
8.4 .0085 

10.0 .00077 

n = 6 n = 7 n = 8 n = 9 

.00 1.000 .000 1.000 .00 1.000 .000 1.000 
0.33 .956 .286 .964 .25 .967 .222 .971 
1.00 .740 .857 .768 .75 .794 .667 .814 
1.33 .570 1.143 .620 1.00 .654 .889 .865 
2.33 .430 2.000 .486 1.75 .531 1.556 .569 
3.00 .252 2.571 .305 2.25 .355 2.000 .398 
4.00 .184 3.429 .237 3.00 .285 2.667 .328 
4.33 .142 3.714 .192 3.25 .236 2.889 .278 
5.33 .072 4.571 .112 4.00 .149 3.556 .187 
6.33 .052 5.429 .085 4.75 .120 4.222 .154 
7.00 .029 6.000 .052 5.25 .079 4.667 .107 
8.33 .012 7.143 .027 6.25 .047 5.556 .069 
9.00 .0081 7.714 .021 6.75 .038 6.000 .057 
9.33 .0055 8.000 .016 7.00 .030 6.222 .048 

10.33 .0017 8.857 .0084 7.75 .018 6.889 .031 
12.00 .00013 10.286 .0036 9.00 .0099 8.000 .019 

10.571 .0027 9.25 .0080 8.222 .016 
11.143 .0012 9.75 .0048 8.667 .010 
12.286 .00032 10.75 .0024 9.556 .0060 
14.000 .000021 12.00 .0011 10.667 .0035 

12.25 .00086 10.889 .0029 
13.00 .00026 11.556 .0013 
14.25 .000061 12.667 .00066 
16.00 .0000036 13.556 .00035 

14.000 .00020 
14.222 .000097 
14.889 .000054 
16.222 .000011 
18.000 .000000€ 
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TABLE 0 Exact Distribution of x? for Tables with from 2 to 9 Sets of Three Ranks 
(k = 4; n = 2,3,4; P is the probability of obtaining a value of x,? as great 
as or greater than the corresponding value of x,?) 

n = 2 n = 3 n = 4 

Xr P 2 X, P 2 X, P X,
2   P 

.0 1.000 .2 1.000 .0 1.000 5.7 .141 

.6 .958 .6 .958 .3 .992 6.0 .105 
1.2 .834 1.0 .910 .6 .928 6.3 .094 
1.8 .792 1.8 .727 .9 .900 6.6 .077 
2.4 .625 2.2 .608 1.2 .800 6.9 .068 
3.0 .542 2.6 .524 1.5 .754 7.2 .054 
3.6 .458 3.4 .446 1.8 .677 7.5 .052 
4.2 .375 3.8 .342 2.1 .649 7.8 .036 
4.8 .208 4.2 .300 2.4 .524 8.1 .033 
5.4 .167 5.0 .207 2.7 .508 8.4 .019 
6.0 .042 5.4 .175 3.0 .432 8.7 .014 

5.8 .148 3.3 .389 9.3 .012 
6.6 .075 3.6 .355 9.6 .0069 
7.0 .054 3.9 .324 9.9 .0062 
7.4 .033 4.5 .242 10.2 .0027 
8.2 .017 4.8 .200 10.8 .0016 
9.0 .0017 5.1 .190 11.1 .00094 

5.4 .158 12.0 .000072 
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TABLE P Critical Values of the Spearman Test Statistic. Approximate Upper-Tail 
Critical Values r:`, Where P (r > 11) < a, = 4(1)30 Significance Level, a 

n .001 .005 .010 .025 .050 .100 

4 .8000 .8000 
5 .9000 .9000 .8000 .7000 

6 - .9429 .8857 .8286 .7714 .6000 
7 .9643 .8929 .8571 .7450 .6786 .5357 
8 .9286 .8571 .8095 .7143 .6190 .5000 
9 .9000 .8167 .7667 .6833 .5833 .4667 

10 .8667 .7818 .7333 .6364 .5515 .4424 

11 .8364 .7545 .7000 .6091 .5273 .4182 
12 .8182 .7273 .6713 .5804 .4965 .3986 
13 .7912 .6978 .6429 .5549 .4780 .3791 
14 .7670 .6747 .6220 .5341 .4593 .3626 
15 .7464 .6536 .6000 .5179 .4429 .3500 

16 .7265 .6324 .5824 .5000 .4265 .3382 
17 .7083 .6152 .5637 .4853 .4118 .3260 
18 .6904 .5975 .5480 .4716 .3994 .3148 
19 .6737 .5825 .5333 .4579 .3895 .3070 
20 .6586 .5684 .5203 .4451 .3789 .2977 

21 .6455 .5545 .5078 .4351 .3688 .2909 
22 .6318 .5426 .4963 .4241 .3597 .2829 
23 .6186 .5306 .4852 .4150 .3518 .2767 
24 .6070 .5200 .4748 .4061 .3435 .2704 
25 .5962 .5100 .4654 .3977 .3362 .2646 

26 .5856 .5002 .4564 .3894 .3299 .2588 
27 .5757 .4915 .4481 .3822 .3236 .2540 
28 .5660 .4828 .4401 .3749 .3175 .2490 
29 .5567 .4744 .4320 .3685 .3113 .2443 
30 .5479 .4665 .4251 .3620 .3059 .2400 

Note: The corresponding lower-tail critical value for r, is -r`. 
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distributed by Lederle Laboratories Division, American Cyanamid Company, Pearl River, New York, 
in cooperation with the Department of Statistics, The Florida State University, Tallahassee, Florida. 
Revised October 1968. Copyright 1963 by the American Cyanamid Company and the Florida State 
University. Reproduced by permission of S. K. Katti. 

L Adapted from L. R. Verdooren, "Extended Tables of Critical Values for Wilcoxon's Test Statistic," 
Biometrika, 50 (1963), 177-186. Used by permission of the author and E. S. Pearson on behalf of the 
Biometrika Trustees. The adaptation is due to W. J. Conover, Practical Nonparametric Statistics, Wiley, 
New York, 1971, 384-388. 

M. From L. H. Miller, "Table of Percentage Points of Kolmogorov Statistics," Journal of the American 
Statistical Association, 51 (1956), 111-121. Reprinted by permission of the American Statistical 
Association. The table as reprinted here follows the format found in W. J. Conover, Practical 
Nonparametric Statistics, © 1971, by John Wiley & Sons, Inc. 

N. From W. H, Kruskal and W. A. Wallis, "Use of Ranks in One-Criterion Analysis of Variance," 
Journal of the American Statistical Association, 47 (1952), 583-621; errata, ibid., 48 (9153), 907-911. 
Reprinted by permission of the American Statistical Association. 

0. From M. Friedman, "The Use of Ranks to Avoid the Assumption of Normality Implicit in the 
Analysis of Variance," Journal of the American Statistical Association, 32 (1937), 675-701. Reprinted by 
permission. 

P. From Gerald J. Glasser and Robert F. Winter, "Critical Values of the Coefficient of Rank 
Correlation for Testing the Hypothesis of Independence," Biometrika 48 (1961), 444-448. Used by 
permission. The table as reprinted here contains corrections given in W. J. Conover, Practical 
Nonparametric Statistics, © 1971, by John Wiley & Sons, Inc. 





Answers to 
Odd-Numbered 
Exercises 

Chapter 2 

2.3.1. 
Class 

Interval Frequency 
Relative 

Frequency 
Cumulative 
Frequency 

Cumulative 
Relative 

Frequency 

0- 9 102 .5025 102 .5025 
10-19 52 .2562 154 .7586 
20-29 25 .1232 179 .8818 
30-39 12 .0591 191 .9409 
40-49 7 .0345 198 .9754 
50-59 3 .0148 201 .9901 
60-69 0 .0000 201 .9901 
70-79 2 .0098 203 1.0000 

203 1.0000 

2.3.3. 
Class 

Interval Frequency 
Relative 

Frequency 
Cumulative 
Frequency 

Cumulative 
Relative 

Frequency 

0-249 4 .0702 4 .0702 
250-499 29 .5088 33 .5790 
500-749 11 .1930 44 .7720 
750-999 8 .1404 52 .9124 

1000-1249 4 .0702 56 .9826 
1250-1499 0 .0000 56 .9826 
1500-1749 1 .0175 57 1.0000 

Total 57 1.0000 

759 
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2.3.5. 	Class 	 Relative 
Interval 	Frequency 	Frequency 

	

0-2 	 5 	 .1111 

	

3-5 	16 	 .3556 

	

6-8 	13 	 .2889 

	

9-11 	 5 	 .1111 

	

12-14 	 4 	 .0889 

	

15-17 	 2 	 .0444 

45 	 1.0000 

2.3.7. 	Class 	 Relative 
Interval 	Frequency 	Frequency 

110-139 	 8 	 .0516 
140-169 	16 	 .1032 
170-199 	46 	 .2968 
200-229 	49 	 .3161 
230-259 	26 	 .1677 
260-289 	 9 	 .0581 
290-319 	 1 	 .0065 

155 	 1.0000 

2.3.9. 	Hospital A: 	Hospital B: 
Stem 	Leaf Stem 	Leaf 

17 
	

1 	 12 	5 
18 
	

4 	 13 	5 
19 
	

15 	14 	35 
20 
	

11259 	15 	02445 
21 
	

233447 	16 	5678 
22 
	

2259 	17 	38 
23 
	

389 	18 	466 
24 
	

589 	19 	0059 
20 	3 
21 	24 

2.5.1. (a) 1.8269 (b) 1.74 (c) 1.57; 1.74 (d) 1.19 (e) .09807308 (f) .31316621 (g) 17.142 
2.5.3. (a) 73.52941176 (b) 72 (c) 69; 76; 84 (d) 26 (e) 76.76470588 (f) 8.761547 (g) 11.916 
2.5.5. (a) 31 (b) 31.5 (c) 28; 35 (d) 12 (e) 11.78947368 (f) 3.4335803 (g) 11.076 
2.7.1. x = 14.1059, s2  = 177.071648, s = 13.3068, Median = 9.451, Modal class: 0-9 
2.7.3. x = 549.9386, s2  = 89207.39348, s = 298.6761, Median = 460.7069, Modal class: 

250-499 
2.9.5. (a) 6.53 (b) 5.85 (c) 15.1182 (d) 3.89. 
2.9.7. x = 203.8548, Median = 204.0918, s2  = 1368.4126, s = 36.9921. 
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Review Exercises 

13. x = 27.0476, s2  = 8.347619, s = 2.8892, Median = 26 
17. 	  Cumulative 

Relative 	Cumulative 	Relative 
Age 	Frequency 	Frequency 	Frequency 

20-29 	.101289 	 55 	 .101289 
30-39 	.171271 	 148 	 .272560 
40-49 	.208103 	 261 	 .480663 
50-59 	.165746 	351 	 .646409 
60-69 	.156538 	436 	 .802947 
70-79 	.134438 	509 	 .937385 
80-89 	.053407 	538 	 .990792 
90-99 	.009208 	543 	 1.000000 

Total 	1.000000 
.77 = 52.4278, s2  = 307.972321, s = 17.5491, Median = 51.0667 

19. Weight: z = 72.63, Median = 69.75, s2  = 142.5636, s = 11.94, C.V. = 16.4395 

2 	5 69 
4 	6 34 
7 	6 569 
7 	7 01 
5 	7 89 
3 	8 3 
2 	8 8 
1 	9 
1 	9 9 

I 	+ 	 I 

	+----Weight 
56.0 	64.0 	72.0 	80.0 	88.0 	96.0 

Height: z = 176.57, Median = 174.5, s2  = 119.0281, s = 10.91, C.V. = 6.1788 

2 	16 14 
4 	16 89 
7 	17 344 
7 	17 57 
5 	18 034 
2 	18 5 
1 	19 
1 	19 
1 	20 
1 	20 5 
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I - - 

	 +Height 

160 	170 	180 	190 	200 	210 

23. x = 3.803, 52  = .243334, s = .493289 
25. Method 1: 

Q1  = 22.8, Q2  = 30.65, Q3  = 42.40 

H 	I  

21 	28 	35 	42 	49 	56 

Method 2: 
Q1  = 23.20, Q2  = 28.30, Q3  = 40.03 

21 	28 
	

35 	42 	49 	56 

Chapter 3 

3.4.1. (a) .2857 (b) marginal (d) .0559 (e) joint (i) .1043 (g) conditional (h) .5149 (i) addition 
rule 

3.4.3. (a) clerical and able-bodied (b) clerical or able-bodied or both (c) clerical given that 
he/she is able-bodied (d) clerical 

3.6.5. .95. 
3.6.7. .301. 

Review Exercises 

3. (a) .1935 (b) .4752 (c) .0427 (d) .5452 
7. (a) .22, .5, .055, .11, .59 (b) .3, .39, .39, .17, .07, .6 
9. (a) .6, .27, .13, .25 for each area, .92, .35 (b) .01, .4, .75, .48, .08, .6 

11. .006 
13. .0625 

Chapter 4 

4.3.1. (a) .1199 (b) .9237 (c) .0763 (d) .8012 
4.3.3. (a) .2219 (b) .3883 (c) .7599 (d) .8856 (e) .0012 
4.3.5. 4.5, 3.15 
4.3.7. (a) .001 (b) .027 (c) .972 (d) .271 (e) .972 (f) .729 
4.4.1. (a) .176 (b) .384 (c) .440 (d) .427 
4.4.3. (a) .105 (b) .032 (c) .007 (d) .440 
4.4.5. (a) .086 (b) .946 (c) .463 (d) .664 (e) .026 
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4.6.1. .4236. 
4.6.3. .2912 
4.6.5. .0099 
4.6.7. .95 
4.6.9. .901 
4.6.11. -2.54 
4.6.13. 1.77 
4.6.15. 1.32 
4.7.1. (a) .6826 (b) .6915 (c) .5675 
4.7.3. (a) .3446 (b) .3446 (c) .5762 
4.7.5. (a) .3413 (b) .1056 (c) .0062 (d) .3830 
4.7.7. (a) .0630 (b) .0166 (c) .7719 

Review Exercises 

15. .1719 
17. (a) .0916 (b) .0905 (c) .9095 (d) .1845 (e) .2502 
19. (a) .762 (b) .238 (c) .065 
21. (a) .0668 (b) .6247 (c) .6826 
23. (a) .0013 (b) .0668 (c) .8931 
25. 57.10 
27. (a) 64.75 (b) 118.45 (c) 130.15 (d) 131.8 
29. 14.90 
31. 10.6 

Chapter 5 

5.3.1. 211, 12.7279 
5.3.3. (a) .1814 (b) .8016 (c) .0643 
5.3.5. (a) .5 (b) .7333 (c) .9772 
5.3.7. Ai  = 5; 4 = 3 
5.3.9. (a) .0853 (b) .0104 (c) .7973 
5.4.1. .2578 
5.4.3. .0038 
5.4.5. .0139 
5.5.1. .8135 
5.5.3. .0217 
5.5.5. (a) .1539 (b) .3409 (c) .5230 
5.6.1. .008 
5.6.3. .8622 

Review Exercises 

11. .8664 
13. .0011 
15. .0082 
17. .7575 
19. .1401 
21. Normally distributed 
23. .0166 
25. 25, 1.4 
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Chapter 6 

6.2.1. (a) 88, 92 (b) 87, 93 (c) 86, 94 
6.2.3. (a) 7.63, 8.87 (b) 7.51, 8.99 (c) 7.28, 9.22 
6.2.5. 1576.125, 1919.125 
6.3.1. (a) 2.1448 (b) 2.8073 (c) 1.8946 (d) 2.0452 
6.3.3. (a) 2 (b) 5.8175, 12.1825 
6.3.5. (a) 66.2, 76.8 (b) 65.1, 77.9 (c) 62.7, 80.3 
6.4.1. (a) .1035, 17.2964 (b) 8.1324, 29.2676 (c) - 6.3316, 23.7316 
6.4.3. (a) 13.7446, 22.4776 (b) 12.9085, 23.3137 (c) 11.2627, 24.9594 
6.4.5. .0880, 1.0320 
6.4.7. 	2.1, 4.5; 1.8, 4.8; 1.3, 4.8 
6.4.9. 24.7, 33.2 
6.5.1. 	.1511, .1995 
6.5.3. .035, .221 
6.6.1. .0566, .2424 
6.6.3. - .0210, .2348 
6.7.1. 27, 16 
6.7.3. 19 
6.8.1. 683, 1068 
6.8.3. 385, 289 
6.9.1. .2061, .5872 
6.9.3. 630, 307.86 < cr2  < 1,878, 027.08; 793.92 < a- < 1,370.41 
6.9.5. 1.37 < cr2  < 4.35; 1.17 < < 2.09 
6.9.7. 170.98503 < a 2  < 630.65006 
6.10.1. .7186, 24.3392 
6.10.3. .49 < (4/4) < 2.95 
6.10.5. .90 < (cr? /al) < 3.52 
6.10.7. 5.1263398 < (cr6/oi) < 60.298059 

Review Exercises 

13. x = 79.87, s2  = 28.1238, s = 5.30, 76.93, 82.81 
15. fi = .30, .19, .41 
17. p, = .20, p2  = .54, .26, .42 
19. fi = .90, .87, .93 
21. z = 19.23, s2  = 20.2268, 16.01, 22.45 
23. - 12.219, -7.215 
25. 7.2301, 7.5499 
27. - 107.3093, 429.3093 
29. .2294, .3666 
31. Level of confidence decreases. The interval would have no width. The level of confidence 

would be zero. 
33. t, 1.6 
35. All patients with primary atrial arrhythmias who are refractory to antiarrhythmic 

medications. Such patients who were available to the researchers. 

Chapter 7 

7.2.1. Do not reject H0, since - .51 > -1.28. p = .3085 
7.2.3. Reject H0, since 3.5355 > 2.998. p < .005 
7.2.5. Yes, z = -5.73. p < 0.0001 
7.2.7. No, t = - 1.5. .05 < p <.10 
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7.2.9. Yes, z = 3.08. p = .0010 
7.2.11. z= 4, p < .0001 
7.2.13. t = .1271, p > .20 
7.2.15. z = -4.18. Reject Ho. p < .0001 
7.2.17. z = 1.67. p = 2(.0475) = .0950 
7.2.19. z = -4. p < 0.0001 
7.3.1. Reject Ho, since 2.68 > 2.33. p = .0037 
7.3.3. Reject Ho, since 5.6506 > 2.0423. p > .01 
7.3.5. Do not reject Ho. z = 1.40, p = 2(.0808) = .1616 
7.3.7. s2  = 5421.25, t = -6.66. Reject Ho. p < 2(.005) = .010 
7.3.9. z = 3.39 Reject Ho. p = 2(1 - .9997) = .0006 
7.3.11. t = -3.3567, p < .01 
7.4.1. Reject Ho, since 6.111 > 2.583. p < .005 
7.4.3. Do not reject Ho, since 2.3242 < 2.3646..10 >.p > .05 
7.4.5. Reject Ho, since 3.9506 > 2.9768. p < .01 
7.5.1. Do not reject Ho, since 1.62 < 1.645. p = .0526 
7.5.3. Reject Ho, since 3.17 > 1.645. p = .0008 
7.5.5. z= -2.64. p = .0041 
7.6.1. Reject Ho, since 4.22 > 2.33. p < .0001 
7.6.3. Reject Ho, since 2.03 > 1.645. p = .0212 
7.7.1. Do not reject Ho, since 4.5187 > 3.325..05 < p < .10 
7.7.3. x 2  = 6.75 Do not reject Ho. p > .05 (two-sided test) 
7.7.5. ,V 2  = 28.8 Do not reject Ho. p > .10 
7.7.7. x 2  = 22.036..10 > p > .05 
7.8.1. Reject Ho, since 8.7707 > 2.85. p < .005 
7.8.3. No, V.R.= 1.83, p > .10 
7.8.5. Reject Ho. V.R. = 4, .01 < p < .025 
7.8.7. V.R. = 2.1417, p > .10 
7.9.1. 	 Value of 

Alternative 	 Power Function 
Value of p, 	 1 - 

516 	.9500 	.0500 
521 	.8461 	.1539 
528 	.5596 	.4404 
533 	.3156 	.6844 
539 	.1093 	.8907 
544 	.0314 	.9686 
547 	.0129 	.9871 

7.9.3. 	 Value of 
Alternative 	 Power Function 
Value of p, 	 1 - 

	

4.25 	.9900 	.0100 

	

4.50 	.8599 	.1401 

	

4.75 	.4325 	.5675 

	

5.00 	.0778 	.9222 

	

5.25 	.0038 	.9962 

7.10.1. n = 548; C = 518.25. Select a sample of size 548 and compute x. If Tx Z 518.25, 
reject Ho. If x < 518.25, do not reject Ho. 
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7.10.3. n = 103; C = 4.66. Select a sample of size 103 and compute x. If i 4.66, reject 
Ho. If i < 4.66, do not reject Ho. 

Review Exercises 

19. Reject H0, since 2.4910 > 1.7530. .025 > p > .01 
21. Reject H0, since 2.15 > 1.96. p = .0316 
23. d = .40, 4, = .2871, sd  = .54, t = 2.869, .005 < p < .01 
25. z = 1.095, .1379 > p > .1357 
27. t = 3.873, p < .005 
29. d = 11.49, 41  = 256.6790, sd  = 16.02, t = 2.485, .025 > p > .01 
31. Reject H0, since -2.286 < -1.7530. .01 > p > .005 

Chapter 8 

8.2.1. V.R. = 5.09, p = .009. 

HSD* = 3.391/18187/23 = 95.33 (q obtained by interpolation) 

Since 419.9 - 305.0 = 114.9 > 95.33, x, - i2  is significant. 

HSD* = 3.391/18187/15 = 118.04 

Since 419.9 - 329.3 = 90.6 < 118.04, Tx, - .7c2  is not significant. 
Since 329.3 - 305.0 = 24.3 < 118.04, i2  - x3  is not significant. 

8.2.3. V.R.= 13.39, p = .000. 

HSD* = 3.5207607/8 = 206.78 (q obtained by interpolation) 

Since 685.9 - 617.4 = 68.5 < 206.78, x, - i2  is not significant. 

HSD* = 3.521/27607/6 = 238.77 

Since 1048.0 - 685.9 = 362.1 > 238.77, x, - ;73  is significant. 
Since 1048.0 - 617.4 = 430.6 > 238.77, i2  - x3 is significant. 

8.2.5. V.R. = 41.19, p = .000.  
HSD(HSD*) = 4.641/.616/3 = 2.10 for all tests. Reject H0  for all tests except: 
- P5) µ2 1-433 /12 PO P3 - 1141 µ5 - P'6* 

8.2.7. V.R. = 61.69, p = .000. 

HSD* = 3.36 14/31 = 2.26 

Since 11.839 - 8.154 = 3.685 > 1.26, x, - i2  is significant. 
Since 11.839 - 2.640 = 9.199 > 2.26, i2 	is significant. 

HSD* = 3.36 14/39 = 2.01 

Since 8.154 - 2.640 = 5.514 > 2.01, Txt  - 1.3  is significant. 
8.2.9. Total df = 76, Treatment df = 3, Within (Error) df = 73. p < .005 
8.3.1. V.R.= 21.826, p < .005 
8.3.3. Yes V.R. = 30.22, p < .005 
8.3.5. V.R.= 7.37, .025 >p > . 0 1 



Answers to Odd-Numbered Exercises 	 767 

8.3.7. Total df = 41, Block (Dogs) df = 5, Treatments (Times) df = 6, Error df = 30 
8.4.1. V.R. = 2.43, p > .10 
8.4.3. V.R. = 21.08, p < .005 
8.4.5. Total df = 19, Block (Subject) df = 4, Treatment (Time) df = 3, Error df = 12 
8.5.1. WTI: V.R. (Homo) = 18.066, p < .005; V.R. (CU) = 2.872, .05 < p < .10; V.R. (Int) 

1.265, p > .10. TDS: V.R. (Homo) = 53.727, p < .005; V.R. (CU) = .694, p > .10; 
V.R. (Int) = 4.554, .025 < p < .05. TDI: V.R. (Homo) = 61.274, p < .005; V.R. 
(CU) = .000, p > .10; V.R.(Int) = 2.451, p > .10 

Review Exercises 

13. V.R. = 11.13, p < .005. q(.05) = 3.77, obtained by interpolation. The sample mean for 
the control subjects is significantly different from the means of the other three 
categories. No other differences between sample means are significant. 

15. V.R. = .825. Do not reject H0. p > .10 
17. V.R. (A) = 6.325, .005 < p(A) < .01, p(B) < .005, .01 > p(AB) > .005; V.R. (B) = 

38.856; V.R. (AB) = 4.970 
19. V.R.= 14.4364, p < .005 
21. V.R. = 6.32049, .01 > p > .005 
23. V.R. = 3.1187, .05 > p > .025. No significant differences among individual pairs of 

means 
25. V.R. (A) = 29.4021, p < .005; V.R. (B) = 31.4898, p < .005; V.R. (AB) = 7.11596, 

p < .005 
27. 499.5, 9, 166.5, 61.1667, 2.8889, 57.6346, < .005 
29. (a) Completely randomized, (b) 3, (c) 30, (d) No, because 1.0438 < 3.35 
31. V.R. = 26.06, p = .000. HSD = 2.4533. All differences significant except gught  - 

Moderate 
33. V.R. = 10.974, p < .005 
35. Treatment df = 1, Error df = 28, Total df = 29 (assuming an equal number of subjects 

in each group) 
37. For each of the two groups established after the first observation, we have a repeated 

measures design. If the two groups are analyzed separately, the degrees of freedom in 
each group are: Subject df = 15, Time df = 2, Error df = 14, Total 4f = 31. It would be 
more appropriate to analyze the data as a factorial experiment (the two factors being 
intervention status and time) with repeated measures on one of the factors (time). This 
type of analysis is not covered in this textbook. 

Chapter 9 

9.3.1. (a) Direct, (b) Direct, (c) Inverse 
9.3.3. 5 = - 1.66 + 7.44x 
9.3.5. 5 = 2.16 + .953x 
9.3.7. = 25.8 + .726x 
9.4.1. C(4.59 5 0 s 10.29) = .95 

Predictor Coef Stdev t-ratio p 
Constant -1.6636 0.7646 -2.18 0.047 
X 7.440 1.330 5.59 0.000 

s = 0.8657 	R-sq = .691 	R-sq(adj) = .669 
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Analysis of variance 

Source 
	

df 	SS 	Ms 

Regression 	1 	23.444 	23.444 	31.28 	0.000 
Error 	14 	10.493 	0.750 

Total 	15 	33.938 

9.4.3. C(.9017 < /3 < 1.0034) = .95 

Predictor 	Coef 	Stdev 	t-ratio 

Constant 	2.157 	1.647 	1.31 	0.194 
X 	 0.95257 	0.02551 	37.34 	0.000 

s = 7.653 	R-sq = .950 	R-sq(adj) 	= .950 

Analysis of variance 

Source 
	

df 	SS 	MS 

Regression 	1 	81658 	81658 	1394.11 	0.000 
Error 	73 	4276 	59 

Total 	74 	85934 

9.4.5. C(.5588 < p < .8931) = .95 

Predictor 	Coef 	Stdev 	t-ratio 

Constant 	25.770 	7.494 	3.44 	0.001 
X 	 0.72596 	0.08287 	8.76 	0.000 

s = 11.10 	R-sq = .641 	R-sq(adj) 	= .633 

Analysis of variance 

Source 	df 	SS 	MS 	F 	p 
Regression 	1 	9451.1 	9451.1 	76.74 	0.000 
Error 	43 	5296.1 	123.2 

Total 	44 	14747.2 

9.5.1. (a) 3.1833, 4.6490 (b) 1.9199, 5.9124 
9.5.3. (a) 57.5215, 61.1015 (b) 43.8982, 74.7248 
9.5.5. (a) 94.49, 102.24 (b) 75.65, 121.09 
9.7.1. r = .8019, t = 6.29, p = .000, C(.586 < p < .910) = .95 
9.7.3. Opiate: r = .19855, p = .0316, C(.03 < p < .53) = .95 Cocaine: r = - .38423, 

p= .0049, C( - .12 > p > - .59) = .95 
9.7.5. r = - .8099, t = - 12.43, p = .000, C(- .72 > p > - .88) = .95 
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Review Exercises 

17. r = .405, t = 2.97, p < .01 
19. 5 = 0.62 + 0.0830x 

Predictor 
	

Coef 	Stdev 	t-ratio 
	

p 
Constant 	0.618 	1.043 	0.59 	0.595 
X 	 0.08301 	0.01818 	4.57 	0.020 

s = 1.456 	R-sq = 87.4% 	R-sq(adj) = 83.2% 

Analysis of variance 

Source 
	

df 	SS 	MS 

Regression 	1 	44.176 	44.176 	20.84 	0.020 
Error 	3 	6.359 	2.120 

Total 
	

4 	50.535 

21.5 = 1.2714 + .8533x, r 2  = .6878, t = 5.35 

Source 
	

SS 	df 	MS 	V.R. 

Regression 	1.6498 	1 	1.6498 	28.64 
Residual 	.7489 	13 	.0576 

Total 
	

2.3987 	14 

23. y = 61.8819 + .509687x; V.R.= 4.285; .10 > p > .05; t = 2.07; .10 > p > .05. Approxi-
mate 95% confidence interval for p: -.03, .79; 110.3022; 87.7773, 132.8271. 

25.5 = 37.4559 + .0798579x; V.R. = 73.957; p < .005; t = 8.6013; p < .01. Approximate 
95% confidence interval for p: .80, .99; 40.6150, 42.2826. 

Chapter 10 

10.3.1.5 = 7.95 - .0101x, - .148x2  
10.3.3.5 = 13.45 + 4.02x, + 2.81x2  
10.3.5.5 = -422.00 + 11.17x, - .63x2  
10.4.1. 	  

Predictor 	 Coef 	Stdev 	t-ratio 

Constant 	 7.948 	1.108 	7.17 	0.000 
LOS 	-0.010053 	0.003453 	-2.91 	0.012 
PAI 	 -0.14823 	0.04883 	-3.04 	0.010 

s = 0.9861 	R-sq = .610 	R-sq(adj) = .550 

Analysis of variance 

Source 	df 	SS 	MS 
	

p 
Regression 	2 	19.7965 	9.8983 	10.18 	0.002 
Error 	13 	12.6410 	0.9724 

Total 
	

15 	32.4375 



(b) R = .7681146, F - 3.84, .10 > p > .05 
(c)  

(d) 

R 	( NUMIS , 	TUN 	. V02 BCAA ) = .4226 

R 	( NUMIS , 	V02 	. TUN , BCAA ) = .3036 

R 	( NUMIS , BCAA . 	TUN , V02 ) = -.0688 

R ( PRISM , TUN . V02 , BCAA ) = .7490 

R ( PRISM , V02 . TUN , BCAA ) = .8016 

R ( PRISM , BCAA . TUN , V02 ) = .6148 
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10.4.3. (a) .67 

(b) Source 

  

SS df MS V.R. p 
Regression 452.56 	2 	226.28 	7.05 .01 < p < .025 
Residual 224.70 7 32.10 

Total 	677.26 9 

(c) t(b1) = 3.75; (p < .01); t(b2)= 2.04, (.05 < p < .10) 
10.4.5. (a) .31 

(b) Source 

  

SS df MS V.R. p 
Regression 	17,023.01 	2 	8,511.505 	4.89 	.01 < p < .025 
Residual 38,276.99 22 1,739.86 

Total 	55,300.00 24 

(c) t(b1) = 3.05, (p < .01); t(b2) = - .67, (p > .20) 
10.5.1. C. I.: 2.425, 3.522. P. I.: .773, 5.174 
10.5.3. (a) 50.41 ± (2.3646X5.67)  

x 111 + (.035757)( -1.99)2  + (.059206)(.44)2  + 2(022857)(-.199)(.44) 
(b) Add 1 under the radical. 

10.5.5. (a) 532.90 ± 2.0739(41.71)  
x 	+ (.007678)(- .52)2  + (.00506)(-2.12)2  + 2(.000002)(- .52)( -2.12) 
(b) Add 1 under the radical. 

10.6.1. (a) Correlation Matrix 

PRISM PSI TISS NUMIS V02 TUN BCAA 

PRISM 1.0000 0.9363 0.6662 0.7740 0.8319 0.8103 - 0.5440 
PSI 0.9363 1.0000 0.6415 0.6677 0.7190 0.7930 - 0.4147 
TISS 0.6662 0.6415 1.0000 0.8002 0.6084 0.8259 - 0.7013 
NUMIS 0.7740 0.6677 0.8002 1.0000 0.6955 0.7108 - 0.6262 
V02 0.8319 0.7190 0.6084 0.6955 1.0000 0.6813 - 0.7806 
TUN 0.8103 0.7930 0.8259 0.7108 0.6813 1.0000 - 0.6603 
BCAA - 0.5440 - 0.4147 - 0.7013 - 0.6262 - 0.7806 - 0.6603 1.0000 
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(e)  

Exercises 771 

R ( PSI 	, TUN 	. V02 BCAA ) = .7644 

R ( PSI 	, V02 	. TUN BCAA ) = .7012 

R ( PSI BCAA . 	TUN V02 ) = .6548 

(f)  
R ( TISS 	, TUN 	. BCAA ) = .6793 

R ( TISS V02 	. TUN , BCAA ) = -.1493 

R ( TISS BCAA . 	TUN , V02 ) = -.3801 

10.6.3. (a) R = .9517, F = 57.638, p < .005 
(b), (c) ry" = .9268, t = 8.549, p < .01; ry2.1 = .3785, t = 1.417, .20 > p > .10; 
r124  = - .1789, t = - .630, p > .20 

Review Exercises 

7. R= .3496 F= .83 (p > .10) 
9. (a)) = 11.43 + 1.26x, + 3.11x2  

(b) R2  = .92 

(c) Source SS df MS V.R. p 
Regression 
Residual 

1827.004659 
158.728641 

2 
12 

913.50 
13.23 

69.048 < .005 

1985.7333 14 

(d)) = 11.43 + 1.26(10) + 3.11(5) = 39.56. 
11. 5, = - 126.487 + .176285x, - 1.56304x2  + 1.5745x3  + 1.62902x4 

(b) 	Source SS df MS V.R. p 
Regression 30873.80 4 7718.440 13.655 < .005 
Residual 5774.92 10 577.492 

36648.72 14 

(c) t, = 4.3967; t2  = - .77684; t3  = 3.53284; t4  = 2.59102 
(d) Ry2.1234 = .8424255; .R.), .1234  = .911784 

13. 5 = - .246 + .005SM1 + .00005Pmax  
15.  r2 c43,2 .1849 

Chapter 11 

11.2.1. = 2.06 + .48x, + .177x2  
Less than .5:f = 2.06 + .48x, 
Greater than .5: fi = 2.237 + .48x, 
R - sq = .259, R - sq(adj) = .239 
Analysis of variance 

Source df SS MS F p 
Regression 2 48.708 24.354 13.43 0.000 
Error 77 139.609 1.813 

Total 79 188.317 
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Since p = .596 for t = .53, conclude that the difference between outputs between 
the two methods may not have any effect on the ability to predict Td from a 
knowledge of TEB. 

11.2.3. f = 29.9 + 11.7x1  + 6.37x2. 
Female: y = 36.27 + 11.7x1. 
Male: y = 29.9 + 11.7x1. 
R - sq = .215, R - sq(adj) = .084 
Analysis of variance 

Source df SS MS F p 
Regression 2 282.49 141.25 1.65 0.234 
Error 12 1030.22 85.85 

Total 14 1312.72 

Since p = .209 for t = 1.33, conclude that gender may have no effect on the 
relationship between mexiletine and theophylline metabolism. 

11.3.1. Summary of Stepwise Procedure for Dependent Variable COUNT 

Step 
Variable 
Entered Removed 

Number 
In 

Partial 
R2  

Model 
R2  F Prob > F 

1 NETWGT 1 0.1586 0.1586 5.4649 0.0265 
2 NOTBIG2 2 0.1234 0.2820 4.8138 0.0367 
3 MAXDOSE 3 0.0351 0.3171 1.3867 0.2492 
4 NETWGT 2 0.0335 0.2836 1.3230 0.2601 
5 NOTBIG 3 0.0519 0.3355 2.1089 0.1580 
6 NOTBIG 2 0.0519 0.2836 2.1089 0.1580 

11.3.3. 

STEPWISE REGRESSION OF 	GEW ON 7 PREDICTORS, WITH 	N.= 28 
STEP 1 2 3 

CONSTANT 4.8213 5.5770 0.6937 

BMPR2 0.307 0.391 0.401 
T- RATIO 2.96 4.19 4.89 

SX -1.02 -0.88 
T- RATIO -3.18 -3.07 

GG 1.51 
T- RATIO 2.88 

S 0.886 0.762 0.671 
R- SQ 25.16 46.72 60.40 

11.4.1. Partial SAS printout: 

Parameter 	Odds 
Variable 	DF 	Estimate 	Ratio 
INTERCPT 	1 	-2.9957 
GOODNUT 	1 	3.2677 	26.250 
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Review Exercises 

15. y = 1.87 + 6.3772x1  + 1.9251x2  

Coefficient 	Standard Error 

	

1.867 	 .3182 	5.87 

	

6.3772 	 .3972 	16.06 

	

1.9251 	 .3387 	5.68 

R2  = .942 

Source 	SS 	df 	MS 	VR 

Regression 	284.6529 	2 	142.3265 	202.36954 
Residual 	17.5813 	25 	.7033 

	

302.2342 	27 

17. = - 1.1361 + .07648x1  + .7433x2  - .8239x3  - .02772x1x2  + .03204x1x3  

Coefficient 
Standard 
Deviation t pa 

- 1.1361 .4904 - 2.32 .05 > p > .02 
.07648 .01523 5.02 < .01 
.7433 .6388 1.16 > .20 

- .8239 .6298 -1.31 .20 > p > .10 
- .02772 .02039 -1.36 .20 > p > .10 

.03204 .01974 1.62 .20 > p > .10 

°Approximate. Obtained by using 35 df. 

R2  = .834 

Source SS df MS VR 

Regression 
Residual 

3.03754 
.60646 

5 
34 
39 

.60751 

.01784 
34.04325 

3.64400 

_ 	1 if A 	 1 if B 
- l 0 if otherwise 	xs = k 0 if otherwise 

For A:y = ( - 1.1361 + .7433) + (.07648 - .02772)x1  = -.3928 + .04875x1  
For B: y = ( - 1.1361 - .8239) + (.07648 + .03204)x1  = - 1.96 + .10852x1  
For C: y = - 1.1361 + .07648x1  

19. y = 2.016 - .308x1  - .104x2  + .00765x3  - .00723x4  

Chapter 12 

12.3.1. X2  = 2.072p > .005 
12.3.3. X2  = 3.417 p > .10 
12.3.5. X2  = 2.21 p > .10 
12.4.1. X2  = 28.553, p < .005 Combining last two rows: X2  = 26.113, p < .005 
12.4.3. X2  = 14.881, p < .005 
12.4.5. X2  = 42.579, p < .005 
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12.5.1. X2  = 8.575, .10 > p > .05 
12.5.3. X2  = 9.821, p < .005 
12.5.5. X2  = 82.373 with 2 d.f. Reject Ho. p < .005 
12.6.1. Since b = 6 > 4 (for A = 19, B ---- 14, a = 13), p < 2(.027) = .054. Do not reject 

Ho. 
12.6.3. Since b = 4 < 8 (for A = 13, B = 12, a = 13), p = .039. Reject H0  and conclude 

that chance of death is higher among those who hemmorage. 
12.7.1. RR= 1.1361, X2 = .95321. 95% C. I. for RR: .88, 1.45. Since the interval contains 1, 

conclude that RR may be 1. 
12.7.3. OR= 2.2286, X 2  = 3.25858, p > .05. 95% C. I. for OR: .90, 11.75. 
12.7.5. 	= 5.2722, .025 > p > .01. OR = 3.12 

Review Exercises 

15. X2  = 7.004, .01 > p > .005 
17. X2  = 2.40516, p > .10 
19. X2  = 5.1675, p > .10 
21. X 2  = 67.8015 p < .005 
23. X2  = 7.2577 .05 > p > .025 
25. Independence 
27. Homogeneity 
29. Since b = 4 > 1 (for A = 8, B = 5, a= 7), p > 2(.032) = .064 
31. X2  = 3.893, p > .10 

Chapter 13 

13.3.1. P = .3036, p = .3036 
13.3.3. P(x < 2113, .5) = .0112. Since .0112 < .05, reject Ho. p = .0112 
13.4.1. T += 48.5. .1613 < p < .174 
13.4.3. Let di = Az  - 	tid < 0, HA: µd > 0. T+= 55, Test statistic = T_= 0. 

p = .0010. Reject Ho. 
13.5.1. X2  = 16.13, p < .005. 
13.6.1. S = 177.5, T = 111.5. w1 _.001  = 121 - 16 = 105. Since 111.5 > 105, reject H0  at 

the .002 level. 
13.6.3. S = 65.5, T = 10.5, .005 < p < .01 
13.7.1. D= .3241, p < .01 
13.7.3. D= .1319, p > .20 
13.8.1. H = 13.12 (adjusted for ties), p < .005 
13.8.3. H = 15.06 (adjusted for ties), p < .005 
13.8.5. H = 23.28 (adjusted for ties), p < .005 
13.8.7. H = 19.55, p < .005 
13.9.1. xr2  = 8.67, p = .01 
13.9.3. A',2  = 25.42, p < .005 
13.10.1. r, = - 0.07, p > .20 
13.10.3. r5 = - .534, .005 > p > .001 
13.10.5. r, = - .610, .01 > p > .005 
13.10.7. rs  = .6979 

.002 < p < .010 
13.11.1. 0 = 1.429 

= -176.685 
m  = - 176.63 
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Review Exercises 

7. P(X < 1 1 10, .5) = 1 — .9893 = .0107, p = .09127 
9. X,? = 16.2, p < .005 

11. D = .1587, p > .20 
13. rs. = .6397, p < .005 

Chapter 14 

14.2.1. (a) 10.4 (b) 10.1, 11.0 (c) 16.1 (d) 21.5 (e) 16.9 (f) 47.6 (g) 15.2, 27.3 
14.3.1. (a) 97.0, 165.4, 125.0, 62.4, 5.8, 3.5 

(b) 2413 (c) 485, 1312, 1937, 2249, 2378, 2413 
(d) 76.5 





Addition rule, 66-67 
Analysis of variance, 273-351 

one-way, 277 
repeated measures design, 313-318 
two-way, 304 

Bernoulli process, 85-86 
/3, confidence interval, 382-383 

hypothesis test, 375-382 
Binomial distribution, 85-93 

parameters, 93 
table, 653-681 
Use of table, 29-92 

Biostatistics, 3 
Birth rate, crude, 641 
Bivariate normal distribution, 387-388 
Box-and-whisker plot, 46-48 

Case-fatality ratio, 644 
Cause-of-death ratio, 639 
Central limit theorem, 125 
Central tendency, measures, 32-36 

computed from grouped data, 42-45 
Chi-square distribution, 183, 503-537 

mathematical properties, 504-505 
table, 691 
use in goodness-of-fit tests, 507-520 

small expected frequencies, 512 
use in tests of homogeneity, 529-537 
use in tests of independence, 520-529 

2 X 2 table, 524 
Class interval, 17 
Coefficient of determination, 368-375 
Coefficient of multiple determination, 428-429 
Coefficient of variation, 39-40 
Combination, 87-88 
Completely randomized design, 276-302 

ANOVA table, 277 
assumptions, 280 

Computers: 
and analysis of variance, 276, 292-293, 309, 

329  

and biostatistical analysis, 10-11 
and chi-square, 534-535 
and descriptive statistics, 17, 22-23, 40, 48 
and hypothesis testing, 219-220 
and interval estimation, 155-156 
and multiple regression analysis, 438-440 
and random numbers, 11 
and simple linear regression analysis, 385-386 

Confidence coefficient, 153 
Confidence interval: 

for /3, 382-383 
multiple regression, 434-435 

for difference between two population means, 
164-170 
nonnormal populations, 165-166 

for difference between two population 
proportions, 175-176 

for mean of Y, given X, 385 
for /JAI k, 436-437 
for population mean, 151-162 

nonnormal populations, 154-155 
for population proportion, 173-174 
practical interpretation, 153 
for predicted Y, 384, 437-438 
probabilistic interpretation, 153 
for ratio of two variances, 187-190 
for p, 396-397 
for variance, 182-186 

Contingency table, 520 
Correction for continuity, 137-138 
Correlation coefficient, 389-400 

multiple, 442 
simple, 389-400 

Correlation model, 387-389, 441-445 
Critical region, 198 
Critical value, 198 
Cumulative frequencies, 10 
Cumulative relative frequencies, 10 

Data, 2 
grouped, 17-26 
raw, 15 
sources, 2-3 

777 
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Death rate: 
crude, 634 
fetal, 638 
specific, 635 
standardized, 635 

Death rates and ratios, 634-640 
Death ratio, fetal, 639 
Decision rule, 205 
Degrees of freedom, 37 
Density function, 99-100 
Descriptive statistics, 15-51 
Dispersion, measures, 16, 32-50 
Distribution-free procedures, 568 
Dummy variable, 460-476 
Duncan's new multiple range test, 295 

Estimation, 147-192 
in simple linear regression analysis, 385 

Estimator, 148 
Events: 

complementary, 68-69 
independent, 67-68 
mutually exclusive, 62 

Exploratory data analysis, 48 
Extrapolation, 402 

Factorial, 88 
Factorial experiment, 319-334 

ANOVA table, 326 
assumptions, 323 

F distribution, 187-188 
table of, 692-701 

Fecundity, 641 
Fertility, 641 

measures, 641-643 
Fertility rate: 

age-specific, 641 
cumulative, 642 
general, 641 
standardized, 642 
total, 642 

Finite population correction, 126-127 
Fisher exact test, 537-542 

table for, 705-735 
Fisher's z, 394-397 
Fixed effects model, 280 
Frequency distribution, 17-26 
Frequency polygon, 23 
Friedman test, 

table for, 754-755 
F test, 286-287 

Gauss multipliers, 431-432 
Goodness-of-fit tests, 507-520, 591-598 
Grouped data, 17-26 

Histogram, 21-22 
Hypothesis, 202 

alternative, 203 
null, 203 
research, 202 
statistical, 202 

Hypothesis tests, 201-272 
by means of confidence interval, 212 
difference between means, 223-234 

nonnormal populations, 229-231 
population variances known, 223-225 
population variances unknown, 225-229 

for 	multiple regression, 432-433 
one-sided, 212-214 
purpose, 208 
single population mean, 208-223 

nonnormal population, 217 
population variance known, 208-214 
population variance unknown, 214-217 

single population proportion, 242-244 
single population variance, 247-250 
steps in, 203-207 
two population proportions, 244-246 
two population variances, 250-253 
two-sided, 212 

Immaturity ratio, 644 
Incidence rate, 643 
Inferential statistics, 1, 147 
Interaction, 319-321 
Interval estimate, 148 
Interval scale, 6 

Joint distribution, 387 

Kolmogrov—Smirnov test, 591-598 
table for, 749 

Kruskal—Wallis test, 598-607 
table for, 750-753 

Least significant difference, 295 
Least squares, method, 360 
Least-squares line, 360-364 
Location parameters, 45 

Mann—Whitney test, 586-591 
table for, 745-748 

Mantel—Haenszel statistic, 548-553 
Margin of error, 153 
Mean, 33-34 

computed from grouped data, 43-44 
properties, 34 

Measurement, 5 
Measurement scales, 6-7 
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Median, 34-35 
computed from grouped data, 44-45 
properties, 35 

Median test, 583-586 
MINITAB: 

and box-and-whisker plots, 48 
and chi-square, 534-535 
and confidence intervals for a mean, 155-156, 

162 
data-handling commands, 647-649 
and descriptive measures, 40 
and dummy variables, 468 
and histograms, 22 
and hypothesis testing, 219-220 
and Kruskal—Wallis test, 602-603 
and multiple regression, 438-440 
and one-way ANOVA, 292-293 
and simple linear regression, 385-386 
and stem-and-leaf displays, 25-26 

Mode, 35 
computed from grouped data, 45 

Morbidity, 643 
measures, 643-644 

Mortality rate: 
infant, 638 
maternal, 637 
neonatal, 638 
perinatal, 639 

Multiple comparison, 295-298 
Multiple correlation coefficient, 442-445 
Multiple correlation model, 441-450 
Multiplication rule, 65-66 
Multivariate distribution, 441 
Multivariate normal distribution, 441 

Nominal scale, 6 
Nonparametric statistics, 567-631 

advantages, 568 
disadvantages, 569 

Nonrejection region, 205 
Normal distribution, 100-111 

applications, 107-111 
characteristics, 101 
standard, 101-107 

Normal equations, 360, 363 

Observational study, 542 
Odds, 546 
Odds ratio, 546-548 
Ogive, 83-84 
Ordered array, 4-6 
Ordinal scale, 6 
Outliers, 156 

Paired comparisons, 235-241 
Parameter, 32 

Partial correlation, 445-448 
Partial regression coefficients, 417 
Percentile, 45 
Point estimate, 148 
Poisson distribution, 94-96 

table of, 682-687 
Poisson process, 94-95 
Population, 5 

finite, 5 
infinite, 5 
sampled, 149 
target, 149 

Power, 253-259 
Precision, 153 
Prospective study, 543 
Prediction interval, multiple regression, 437-438 

simple linear regression, 384 
Prevalence rate, 644 
Probability, 59-73 

a posteriori, 60 
a priori, 60 
classical, 60 
conditional, 64 
joint, 64-65 
marginal, 64 
objective, 60-61 
personalistic, 61 
properties, 62 
relative frequency, 61 
subjective, 61 

Probability distributions, 79-111 
of continuous variables, 97-1 1 I 
of discrete variables, 79-96 

cumulative, 83-85 
properties, 81 

Proportional mortality rate, 639 
p values, 211-212 

Qualitative variables, 460-476 
Quartile, 45-46 

Random digits, table, 652 
use, 8-10 

Randomized complete block design, 302-312 
ANOVA table, 307 
assumptions, 304-305 

Range, 36-37 
Rate, 633-634 
Ratio, 634 
Ratio scale, 6 
Regression: 

logistic, 483-491 
multiple, 415-458 

assumptions, 416-417 
equation, 417-427 
model, 416-417 
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Regression (continued) 
nonparametric, 622-625 
simple linear, 353-386 

assumptions, 355-356 
equation, 357-383 
model, 354-356 

stepwise, 477-479 
Rejection region, 205 
Relative frequencies, 19-20 
Relative risk, 543-546 
Reliability coefficient, 153 
Repeated measures design, 313-318 

assumptions, 314 
Retrospective study, 543 
Risk factor, 542 

Sample, 5 
nonrandom, 150 
random, 150 
simple random, 7-10 
size for controlling Type I and Type II errors, 

259-261 
size for estimating means, 177-179 
size for estimating proportions, 180-181 

Sampling distribution, 119-142 
construction of, 120 
definition, 120 
of difference between sample proportions, 

139-141 
of difference between two sample means, 

130-134 
nonnormal populations, 133 

important characteristics, 120-121 
nonnormal populations, 124-125 
of sample mean, 121-129 
of sample proportion, 135-138 

Scatter diagram, 358-360 
Secondary attack rate, 644 
Significance level, 205 
Sign test, 569-578 
Simple random sampling, 7-10 

without replacement, 7-8 
with replacement, 7-8 

Slope, 355 
Spearman rank correlation coefficient, 613-622 

table for, 756 
Standard deviation, 38 

computed from grouped data, 49 
Standard error of mean, 40, 124 
Standard normal distribution, 101-107 

table of, 688-689  

Statistic, 32 
Statistical inference, 149 
Statistics, 2 
Stem-and-leaf display, 24-26 
Student's distribution, 158-162 

table of, 690 
Sturges' rule, 18 

t distribution, 158-162 
and difference between means, 166-170 

population variances equal, 166-167 
population variances not equal, 167-170 

properties, 158-159 
Test statistic, 204-205 
Trimmed mean, 40, 156-157 
Tukey's HSD test, 295-298 
Type I error, 206, 259-261 
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